linux-zen-desktop/drivers/accel/qaic/qaic_data.c

1903 lines
47 KiB
C
Raw Permalink Normal View History

2023-10-24 12:59:35 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2019-2021, The Linux Foundation. All rights reserved. */
/* Copyright (c) 2021-2023 Qualcomm Innovation Center, Inc. All rights reserved. */
#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-buf.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/math64.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <linux/scatterlist.h>
#include <linux/spinlock.h>
#include <linux/srcu.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/wait.h>
#include <drm/drm_file.h>
#include <drm/drm_gem.h>
#include <drm/drm_prime.h>
#include <drm/drm_print.h>
#include <uapi/drm/qaic_accel.h>
#include "qaic.h"
#define SEM_VAL_MASK GENMASK_ULL(11, 0)
#define SEM_INDEX_MASK GENMASK_ULL(4, 0)
#define BULK_XFER BIT(3)
#define GEN_COMPLETION BIT(4)
#define INBOUND_XFER 1
#define OUTBOUND_XFER 2
#define REQHP_OFF 0x0 /* we read this */
#define REQTP_OFF 0x4 /* we write this */
#define RSPHP_OFF 0x8 /* we write this */
#define RSPTP_OFF 0xc /* we read this */
#define ENCODE_SEM(val, index, sync, cmd, flags) \
({ \
FIELD_PREP(GENMASK(11, 0), (val)) | \
FIELD_PREP(GENMASK(20, 16), (index)) | \
FIELD_PREP(BIT(22), (sync)) | \
FIELD_PREP(GENMASK(26, 24), (cmd)) | \
FIELD_PREP(GENMASK(30, 29), (flags)) | \
FIELD_PREP(BIT(31), (cmd) ? 1 : 0); \
})
#define NUM_EVENTS 128
#define NUM_DELAYS 10
static unsigned int wait_exec_default_timeout_ms = 5000; /* 5 sec default */
module_param(wait_exec_default_timeout_ms, uint, 0600);
MODULE_PARM_DESC(wait_exec_default_timeout_ms, "Default timeout for DRM_IOCTL_QAIC_WAIT_BO");
static unsigned int datapath_poll_interval_us = 100; /* 100 usec default */
module_param(datapath_poll_interval_us, uint, 0600);
MODULE_PARM_DESC(datapath_poll_interval_us,
"Amount of time to sleep between activity when datapath polling is enabled");
struct dbc_req {
/*
* A request ID is assigned to each memory handle going in DMA queue.
* As a single memory handle can enqueue multiple elements in DMA queue
* all of them will have the same request ID.
*/
__le16 req_id;
/* Future use */
__u8 seq_id;
/*
* Special encoded variable
* 7 0 - Do not force to generate MSI after DMA is completed
* 1 - Force to generate MSI after DMA is completed
* 6:5 Reserved
* 4 1 - Generate completion element in the response queue
* 0 - No Completion Code
* 3 0 - DMA request is a Link list transfer
* 1 - DMA request is a Bulk transfer
* 2 Reserved
* 1:0 00 - No DMA transfer involved
* 01 - DMA transfer is part of inbound transfer
* 10 - DMA transfer has outbound transfer
* 11 - NA
*/
__u8 cmd;
__le32 resv;
/* Source address for the transfer */
__le64 src_addr;
/* Destination address for the transfer */
__le64 dest_addr;
/* Length of transfer request */
__le32 len;
__le32 resv2;
/* Doorbell address */
__le64 db_addr;
/*
* Special encoded variable
* 7 1 - Doorbell(db) write
* 0 - No doorbell write
* 6:2 Reserved
* 1:0 00 - 32 bit access, db address must be aligned to 32bit-boundary
* 01 - 16 bit access, db address must be aligned to 16bit-boundary
* 10 - 8 bit access, db address must be aligned to 8bit-boundary
* 11 - Reserved
*/
__u8 db_len;
__u8 resv3;
__le16 resv4;
/* 32 bit data written to doorbell address */
__le32 db_data;
/*
* Special encoded variable
* All the fields of sem_cmdX are passed from user and all are ORed
* together to form sem_cmd.
* 0:11 Semaphore value
* 15:12 Reserved
* 20:16 Semaphore index
* 21 Reserved
* 22 Semaphore Sync
* 23 Reserved
* 26:24 Semaphore command
* 28:27 Reserved
* 29 Semaphore DMA out bound sync fence
* 30 Semaphore DMA in bound sync fence
* 31 Enable semaphore command
*/
__le32 sem_cmd0;
__le32 sem_cmd1;
__le32 sem_cmd2;
__le32 sem_cmd3;
} __packed;
struct dbc_rsp {
/* Request ID of the memory handle whose DMA transaction is completed */
__le16 req_id;
/* Status of the DMA transaction. 0 : Success otherwise failure */
__le16 status;
} __packed;
inline int get_dbc_req_elem_size(void)
{
return sizeof(struct dbc_req);
}
inline int get_dbc_rsp_elem_size(void)
{
return sizeof(struct dbc_rsp);
}
static void free_slice(struct kref *kref)
{
struct bo_slice *slice = container_of(kref, struct bo_slice, ref_count);
list_del(&slice->slice);
drm_gem_object_put(&slice->bo->base);
sg_free_table(slice->sgt);
kfree(slice->sgt);
kfree(slice->reqs);
kfree(slice);
}
static int clone_range_of_sgt_for_slice(struct qaic_device *qdev, struct sg_table **sgt_out,
struct sg_table *sgt_in, u64 size, u64 offset)
{
int total_len, len, nents, offf = 0, offl = 0;
struct scatterlist *sg, *sgn, *sgf, *sgl;
struct sg_table *sgt;
int ret, j;
/* find out number of relevant nents needed for this mem */
total_len = 0;
sgf = NULL;
sgl = NULL;
nents = 0;
size = size ? size : PAGE_SIZE;
for (sg = sgt_in->sgl; sg; sg = sg_next(sg)) {
len = sg_dma_len(sg);
if (!len)
continue;
if (offset >= total_len && offset < total_len + len) {
sgf = sg;
offf = offset - total_len;
}
if (sgf)
nents++;
if (offset + size >= total_len &&
offset + size <= total_len + len) {
sgl = sg;
offl = offset + size - total_len;
break;
}
total_len += len;
}
if (!sgf || !sgl) {
ret = -EINVAL;
goto out;
}
sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
if (!sgt) {
ret = -ENOMEM;
goto out;
}
ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
if (ret)
goto free_sgt;
/* copy relevant sg node and fix page and length */
sgn = sgf;
for_each_sgtable_sg(sgt, sg, j) {
memcpy(sg, sgn, sizeof(*sg));
if (sgn == sgf) {
sg_dma_address(sg) += offf;
sg_dma_len(sg) -= offf;
sg_set_page(sg, sg_page(sgn), sg_dma_len(sg), offf);
} else {
offf = 0;
}
if (sgn == sgl) {
sg_dma_len(sg) = offl - offf;
sg_set_page(sg, sg_page(sgn), offl - offf, offf);
sg_mark_end(sg);
break;
}
sgn = sg_next(sgn);
}
*sgt_out = sgt;
return ret;
free_sgt:
kfree(sgt);
out:
*sgt_out = NULL;
return ret;
}
static int encode_reqs(struct qaic_device *qdev, struct bo_slice *slice,
struct qaic_attach_slice_entry *req)
{
__le64 db_addr = cpu_to_le64(req->db_addr);
__le32 db_data = cpu_to_le32(req->db_data);
struct scatterlist *sg;
__u8 cmd = BULK_XFER;
int presync_sem;
u64 dev_addr;
__u8 db_len;
int i;
if (!slice->no_xfer)
cmd |= (slice->dir == DMA_TO_DEVICE ? INBOUND_XFER : OUTBOUND_XFER);
if (req->db_len && !IS_ALIGNED(req->db_addr, req->db_len / 8))
return -EINVAL;
presync_sem = req->sem0.presync + req->sem1.presync + req->sem2.presync + req->sem3.presync;
if (presync_sem > 1)
return -EINVAL;
presync_sem = req->sem0.presync << 0 | req->sem1.presync << 1 |
req->sem2.presync << 2 | req->sem3.presync << 3;
switch (req->db_len) {
case 32:
db_len = BIT(7);
break;
case 16:
db_len = BIT(7) | 1;
break;
case 8:
db_len = BIT(7) | 2;
break;
case 0:
db_len = 0; /* doorbell is not active for this command */
break;
default:
return -EINVAL; /* should never hit this */
}
/*
* When we end up splitting up a single request (ie a buf slice) into
* multiple DMA requests, we have to manage the sync data carefully.
* There can only be one presync sem. That needs to be on every xfer
* so that the DMA engine doesn't transfer data before the receiver is
* ready. We only do the doorbell and postsync sems after the xfer.
* To guarantee previous xfers for the request are complete, we use a
* fence.
*/
dev_addr = req->dev_addr;
for_each_sgtable_sg(slice->sgt, sg, i) {
slice->reqs[i].cmd = cmd;
slice->reqs[i].src_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
sg_dma_address(sg) : dev_addr);
slice->reqs[i].dest_addr = cpu_to_le64(slice->dir == DMA_TO_DEVICE ?
dev_addr : sg_dma_address(sg));
/*
* sg_dma_len(sg) returns size of a DMA segment, maximum DMA
* segment size is set to UINT_MAX by qaic and hence return
* values of sg_dma_len(sg) can never exceed u32 range. So,
* by down sizing we are not corrupting the value.
*/
slice->reqs[i].len = cpu_to_le32((u32)sg_dma_len(sg));
switch (presync_sem) {
case BIT(0):
slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val,
req->sem0.index,
req->sem0.presync,
req->sem0.cmd,
req->sem0.flags));
break;
case BIT(1):
slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val,
req->sem1.index,
req->sem1.presync,
req->sem1.cmd,
req->sem1.flags));
break;
case BIT(2):
slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val,
req->sem2.index,
req->sem2.presync,
req->sem2.cmd,
req->sem2.flags));
break;
case BIT(3):
slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val,
req->sem3.index,
req->sem3.presync,
req->sem3.cmd,
req->sem3.flags));
break;
}
dev_addr += sg_dma_len(sg);
}
/* add post transfer stuff to last segment */
i--;
slice->reqs[i].cmd |= GEN_COMPLETION;
slice->reqs[i].db_addr = db_addr;
slice->reqs[i].db_len = db_len;
slice->reqs[i].db_data = db_data;
/*
* Add a fence if we have more than one request going to the hardware
* representing the entirety of the user request, and the user request
* has no presync condition.
* Fences are expensive, so we try to avoid them. We rely on the
* hardware behavior to avoid needing one when there is a presync
* condition. When a presync exists, all requests for that same
* presync will be queued into a fifo. Thus, since we queue the
* post xfer activity only on the last request we queue, the hardware
* will ensure that the last queued request is processed last, thus
* making sure the post xfer activity happens at the right time without
* a fence.
*/
if (i && !presync_sem)
req->sem0.flags |= (slice->dir == DMA_TO_DEVICE ?
QAIC_SEM_INSYNCFENCE : QAIC_SEM_OUTSYNCFENCE);
slice->reqs[i].sem_cmd0 = cpu_to_le32(ENCODE_SEM(req->sem0.val, req->sem0.index,
req->sem0.presync, req->sem0.cmd,
req->sem0.flags));
slice->reqs[i].sem_cmd1 = cpu_to_le32(ENCODE_SEM(req->sem1.val, req->sem1.index,
req->sem1.presync, req->sem1.cmd,
req->sem1.flags));
slice->reqs[i].sem_cmd2 = cpu_to_le32(ENCODE_SEM(req->sem2.val, req->sem2.index,
req->sem2.presync, req->sem2.cmd,
req->sem2.flags));
slice->reqs[i].sem_cmd3 = cpu_to_le32(ENCODE_SEM(req->sem3.val, req->sem3.index,
req->sem3.presync, req->sem3.cmd,
req->sem3.flags));
return 0;
}
static int qaic_map_one_slice(struct qaic_device *qdev, struct qaic_bo *bo,
struct qaic_attach_slice_entry *slice_ent)
{
struct sg_table *sgt = NULL;
struct bo_slice *slice;
int ret;
ret = clone_range_of_sgt_for_slice(qdev, &sgt, bo->sgt, slice_ent->size, slice_ent->offset);
if (ret)
goto out;
slice = kmalloc(sizeof(*slice), GFP_KERNEL);
if (!slice) {
ret = -ENOMEM;
goto free_sgt;
}
slice->reqs = kcalloc(sgt->nents, sizeof(*slice->reqs), GFP_KERNEL);
if (!slice->reqs) {
ret = -ENOMEM;
goto free_slice;
}
slice->no_xfer = !slice_ent->size;
slice->sgt = sgt;
slice->nents = sgt->nents;
slice->dir = bo->dir;
slice->bo = bo;
slice->size = slice_ent->size;
slice->offset = slice_ent->offset;
ret = encode_reqs(qdev, slice, slice_ent);
if (ret)
goto free_req;
bo->total_slice_nents += sgt->nents;
kref_init(&slice->ref_count);
drm_gem_object_get(&bo->base);
list_add_tail(&slice->slice, &bo->slices);
return 0;
free_req:
kfree(slice->reqs);
free_slice:
kfree(slice);
free_sgt:
sg_free_table(sgt);
kfree(sgt);
out:
return ret;
}
static int create_sgt(struct qaic_device *qdev, struct sg_table **sgt_out, u64 size)
{
struct scatterlist *sg;
struct sg_table *sgt;
struct page **pages;
int *pages_order;
int buf_extra;
int max_order;
int nr_pages;
int ret = 0;
int i, j, k;
int order;
if (size) {
nr_pages = DIV_ROUND_UP(size, PAGE_SIZE);
/*
* calculate how much extra we are going to allocate, to remove
* later
*/
buf_extra = (PAGE_SIZE - size % PAGE_SIZE) % PAGE_SIZE;
max_order = min(MAX_ORDER - 1, get_order(size));
} else {
/* allocate a single page for book keeping */
nr_pages = 1;
buf_extra = 0;
max_order = 0;
}
pages = kvmalloc_array(nr_pages, sizeof(*pages) + sizeof(*pages_order), GFP_KERNEL);
if (!pages) {
ret = -ENOMEM;
goto out;
}
pages_order = (void *)pages + sizeof(*pages) * nr_pages;
/*
* Allocate requested memory using alloc_pages. It is possible to allocate
* the requested memory in multiple chunks by calling alloc_pages
* multiple times. Use SG table to handle multiple allocated pages.
*/
i = 0;
while (nr_pages > 0) {
order = min(get_order(nr_pages * PAGE_SIZE), max_order);
while (1) {
pages[i] = alloc_pages(GFP_KERNEL | GFP_HIGHUSER |
__GFP_NOWARN | __GFP_ZERO |
(order ? __GFP_NORETRY : __GFP_RETRY_MAYFAIL),
order);
if (pages[i])
break;
if (!order--) {
ret = -ENOMEM;
goto free_partial_alloc;
}
}
max_order = order;
pages_order[i] = order;
nr_pages -= 1 << order;
if (nr_pages <= 0)
/* account for over allocation */
buf_extra += abs(nr_pages) * PAGE_SIZE;
i++;
}
sgt = kmalloc(sizeof(*sgt), GFP_KERNEL);
if (!sgt) {
ret = -ENOMEM;
goto free_partial_alloc;
}
if (sg_alloc_table(sgt, i, GFP_KERNEL)) {
ret = -ENOMEM;
goto free_sgt;
}
/* Populate the SG table with the allocated memory pages */
sg = sgt->sgl;
for (k = 0; k < i; k++, sg = sg_next(sg)) {
/* Last entry requires special handling */
if (k < i - 1) {
sg_set_page(sg, pages[k], PAGE_SIZE << pages_order[k], 0);
} else {
sg_set_page(sg, pages[k], (PAGE_SIZE << pages_order[k]) - buf_extra, 0);
sg_mark_end(sg);
}
}
kvfree(pages);
*sgt_out = sgt;
return ret;
free_sgt:
kfree(sgt);
free_partial_alloc:
for (j = 0; j < i; j++)
__free_pages(pages[j], pages_order[j]);
kvfree(pages);
out:
*sgt_out = NULL;
return ret;
}
static bool invalid_sem(struct qaic_sem *sem)
{
if (sem->val & ~SEM_VAL_MASK || sem->index & ~SEM_INDEX_MASK ||
!(sem->presync == 0 || sem->presync == 1) || sem->pad ||
sem->flags & ~(QAIC_SEM_INSYNCFENCE | QAIC_SEM_OUTSYNCFENCE) ||
sem->cmd > QAIC_SEM_WAIT_GT_0)
return true;
return false;
}
static int qaic_validate_req(struct qaic_device *qdev, struct qaic_attach_slice_entry *slice_ent,
u32 count, u64 total_size)
{
int i;
for (i = 0; i < count; i++) {
if (!(slice_ent[i].db_len == 32 || slice_ent[i].db_len == 16 ||
slice_ent[i].db_len == 8 || slice_ent[i].db_len == 0) ||
invalid_sem(&slice_ent[i].sem0) || invalid_sem(&slice_ent[i].sem1) ||
invalid_sem(&slice_ent[i].sem2) || invalid_sem(&slice_ent[i].sem3))
return -EINVAL;
if (slice_ent[i].offset + slice_ent[i].size > total_size)
return -EINVAL;
}
return 0;
}
static void qaic_free_sgt(struct sg_table *sgt)
{
struct scatterlist *sg;
for (sg = sgt->sgl; sg; sg = sg_next(sg))
if (sg_page(sg))
__free_pages(sg_page(sg), get_order(sg->length));
sg_free_table(sgt);
kfree(sgt);
}
static void qaic_gem_print_info(struct drm_printer *p, unsigned int indent,
const struct drm_gem_object *obj)
{
struct qaic_bo *bo = to_qaic_bo(obj);
drm_printf_indent(p, indent, "user requested size=%llu\n", bo->size);
}
static const struct vm_operations_struct drm_vm_ops = {
.open = drm_gem_vm_open,
.close = drm_gem_vm_close,
};
static int qaic_gem_object_mmap(struct drm_gem_object *obj, struct vm_area_struct *vma)
{
struct qaic_bo *bo = to_qaic_bo(obj);
unsigned long offset = 0;
struct scatterlist *sg;
int ret = 0;
if (obj->import_attach)
return -EINVAL;
for (sg = bo->sgt->sgl; sg; sg = sg_next(sg)) {
if (sg_page(sg)) {
ret = remap_pfn_range(vma, vma->vm_start + offset, page_to_pfn(sg_page(sg)),
sg->length, vma->vm_page_prot);
if (ret)
goto out;
offset += sg->length;
}
}
out:
return ret;
}
static void qaic_free_object(struct drm_gem_object *obj)
{
struct qaic_bo *bo = to_qaic_bo(obj);
if (obj->import_attach) {
/* DMABUF/PRIME Path */
drm_prime_gem_destroy(obj, NULL);
} else {
/* Private buffer allocation path */
qaic_free_sgt(bo->sgt);
}
drm_gem_object_release(obj);
kfree(bo);
}
static const struct drm_gem_object_funcs qaic_gem_funcs = {
.free = qaic_free_object,
.print_info = qaic_gem_print_info,
.mmap = qaic_gem_object_mmap,
.vm_ops = &drm_vm_ops,
};
static struct qaic_bo *qaic_alloc_init_bo(void)
{
struct qaic_bo *bo;
bo = kzalloc(sizeof(*bo), GFP_KERNEL);
if (!bo)
return ERR_PTR(-ENOMEM);
INIT_LIST_HEAD(&bo->slices);
init_completion(&bo->xfer_done);
complete_all(&bo->xfer_done);
return bo;
}
int qaic_create_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_create_bo *args = data;
int usr_rcu_id, qdev_rcu_id;
struct drm_gem_object *obj;
struct qaic_device *qdev;
struct qaic_user *usr;
struct qaic_bo *bo;
size_t size;
int ret;
if (args->pad)
return -EINVAL;
size = PAGE_ALIGN(args->size);
if (size == 0)
return -EINVAL;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
bo = qaic_alloc_init_bo();
if (IS_ERR(bo)) {
ret = PTR_ERR(bo);
goto unlock_dev_srcu;
}
obj = &bo->base;
drm_gem_private_object_init(dev, obj, size);
obj->funcs = &qaic_gem_funcs;
ret = create_sgt(qdev, &bo->sgt, size);
if (ret)
goto free_bo;
bo->size = args->size;
ret = drm_gem_handle_create(file_priv, obj, &args->handle);
if (ret)
goto free_sgt;
bo->handle = args->handle;
drm_gem_object_put(obj);
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return 0;
free_sgt:
qaic_free_sgt(bo->sgt);
free_bo:
kfree(bo);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
int qaic_mmap_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_mmap_bo *args = data;
int usr_rcu_id, qdev_rcu_id;
struct drm_gem_object *obj;
struct qaic_device *qdev;
struct qaic_user *usr;
int ret;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
obj = drm_gem_object_lookup(file_priv, args->handle);
if (!obj) {
ret = -ENOENT;
goto unlock_dev_srcu;
}
ret = drm_gem_create_mmap_offset(obj);
if (ret == 0)
args->offset = drm_vma_node_offset_addr(&obj->vma_node);
drm_gem_object_put(obj);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
struct drm_gem_object *qaic_gem_prime_import(struct drm_device *dev, struct dma_buf *dma_buf)
{
struct dma_buf_attachment *attach;
struct drm_gem_object *obj;
struct qaic_bo *bo;
size_t size;
int ret;
bo = qaic_alloc_init_bo();
if (IS_ERR(bo)) {
ret = PTR_ERR(bo);
goto out;
}
obj = &bo->base;
get_dma_buf(dma_buf);
attach = dma_buf_attach(dma_buf, dev->dev);
if (IS_ERR(attach)) {
ret = PTR_ERR(attach);
goto attach_fail;
}
size = PAGE_ALIGN(attach->dmabuf->size);
if (size == 0) {
ret = -EINVAL;
goto size_align_fail;
}
drm_gem_private_object_init(dev, obj, size);
/*
* skipping dma_buf_map_attachment() as we do not know the direction
* just yet. Once the direction is known in the subsequent IOCTL to
* attach slicing, we can do it then.
*/
obj->funcs = &qaic_gem_funcs;
obj->import_attach = attach;
obj->resv = dma_buf->resv;
return obj;
size_align_fail:
dma_buf_detach(dma_buf, attach);
attach_fail:
dma_buf_put(dma_buf);
kfree(bo);
out:
return ERR_PTR(ret);
}
static int qaic_prepare_import_bo(struct qaic_bo *bo, struct qaic_attach_slice_hdr *hdr)
{
struct drm_gem_object *obj = &bo->base;
struct sg_table *sgt;
int ret;
if (obj->import_attach->dmabuf->size < hdr->size)
return -EINVAL;
sgt = dma_buf_map_attachment(obj->import_attach, hdr->dir);
if (IS_ERR(sgt)) {
ret = PTR_ERR(sgt);
return ret;
}
bo->sgt = sgt;
bo->size = hdr->size;
return 0;
}
static int qaic_prepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo,
struct qaic_attach_slice_hdr *hdr)
{
int ret;
if (bo->size != hdr->size)
return -EINVAL;
ret = dma_map_sgtable(&qdev->pdev->dev, bo->sgt, hdr->dir, 0);
if (ret)
return -EFAULT;
return 0;
}
static int qaic_prepare_bo(struct qaic_device *qdev, struct qaic_bo *bo,
struct qaic_attach_slice_hdr *hdr)
{
int ret;
if (bo->base.import_attach)
ret = qaic_prepare_import_bo(bo, hdr);
else
ret = qaic_prepare_export_bo(qdev, bo, hdr);
if (ret == 0)
bo->dir = hdr->dir;
return ret;
}
static void qaic_unprepare_import_bo(struct qaic_bo *bo)
{
dma_buf_unmap_attachment(bo->base.import_attach, bo->sgt, bo->dir);
bo->sgt = NULL;
bo->size = 0;
}
static void qaic_unprepare_export_bo(struct qaic_device *qdev, struct qaic_bo *bo)
{
dma_unmap_sgtable(&qdev->pdev->dev, bo->sgt, bo->dir, 0);
}
static void qaic_unprepare_bo(struct qaic_device *qdev, struct qaic_bo *bo)
{
if (bo->base.import_attach)
qaic_unprepare_import_bo(bo);
else
qaic_unprepare_export_bo(qdev, bo);
bo->dir = 0;
}
static void qaic_free_slices_bo(struct qaic_bo *bo)
{
struct bo_slice *slice, *temp;
list_for_each_entry_safe(slice, temp, &bo->slices, slice)
kref_put(&slice->ref_count, free_slice);
}
static int qaic_attach_slicing_bo(struct qaic_device *qdev, struct qaic_bo *bo,
struct qaic_attach_slice_hdr *hdr,
struct qaic_attach_slice_entry *slice_ent)
{
int ret, i;
for (i = 0; i < hdr->count; i++) {
ret = qaic_map_one_slice(qdev, bo, &slice_ent[i]);
if (ret) {
qaic_free_slices_bo(bo);
return ret;
}
}
if (bo->total_slice_nents > qdev->dbc[hdr->dbc_id].nelem) {
qaic_free_slices_bo(bo);
return -ENOSPC;
}
bo->sliced = true;
bo->nr_slice = hdr->count;
list_add_tail(&bo->bo_list, &qdev->dbc[hdr->dbc_id].bo_lists);
return 0;
}
int qaic_attach_slice_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_attach_slice_entry *slice_ent;
struct qaic_attach_slice *args = data;
int rcu_id, usr_rcu_id, qdev_rcu_id;
struct dma_bridge_chan *dbc;
struct drm_gem_object *obj;
struct qaic_device *qdev;
unsigned long arg_size;
struct qaic_user *usr;
u8 __user *user_data;
struct qaic_bo *bo;
int ret;
if (args->hdr.count == 0)
return -EINVAL;
arg_size = args->hdr.count * sizeof(*slice_ent);
if (arg_size / args->hdr.count != sizeof(*slice_ent))
return -EINVAL;
if (args->hdr.size == 0)
return -EINVAL;
if (!(args->hdr.dir == DMA_TO_DEVICE || args->hdr.dir == DMA_FROM_DEVICE))
return -EINVAL;
if (args->data == 0)
return -EINVAL;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
if (args->hdr.dbc_id >= qdev->num_dbc) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
user_data = u64_to_user_ptr(args->data);
slice_ent = kzalloc(arg_size, GFP_KERNEL);
if (!slice_ent) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
ret = copy_from_user(slice_ent, user_data, arg_size);
if (ret) {
ret = -EFAULT;
goto free_slice_ent;
}
ret = qaic_validate_req(qdev, slice_ent, args->hdr.count, args->hdr.size);
if (ret)
goto free_slice_ent;
obj = drm_gem_object_lookup(file_priv, args->hdr.handle);
if (!obj) {
ret = -ENOENT;
goto free_slice_ent;
}
bo = to_qaic_bo(obj);
if (bo->sliced) {
ret = -EINVAL;
goto put_bo;
}
dbc = &qdev->dbc[args->hdr.dbc_id];
rcu_id = srcu_read_lock(&dbc->ch_lock);
if (dbc->usr != usr) {
ret = -EINVAL;
goto unlock_ch_srcu;
}
ret = qaic_prepare_bo(qdev, bo, &args->hdr);
if (ret)
goto unlock_ch_srcu;
ret = qaic_attach_slicing_bo(qdev, bo, &args->hdr, slice_ent);
if (ret)
goto unprepare_bo;
if (args->hdr.dir == DMA_TO_DEVICE)
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, args->hdr.dir);
bo->dbc = dbc;
srcu_read_unlock(&dbc->ch_lock, rcu_id);
drm_gem_object_put(obj);
kfree(slice_ent);
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return 0;
unprepare_bo:
qaic_unprepare_bo(qdev, bo);
unlock_ch_srcu:
srcu_read_unlock(&dbc->ch_lock, rcu_id);
put_bo:
drm_gem_object_put(obj);
free_slice_ent:
kfree(slice_ent);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
static inline int copy_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice, u32 dbc_id,
u32 head, u32 *ptail)
{
struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
struct dbc_req *reqs = slice->reqs;
u32 tail = *ptail;
u32 avail;
avail = head - tail;
if (head <= tail)
avail += dbc->nelem;
--avail;
if (avail < slice->nents)
return -EAGAIN;
if (tail + slice->nents > dbc->nelem) {
avail = dbc->nelem - tail;
avail = min_t(u32, avail, slice->nents);
memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
sizeof(*reqs) * avail);
reqs += avail;
avail = slice->nents - avail;
if (avail)
memcpy(dbc->req_q_base, reqs, sizeof(*reqs) * avail);
} else {
memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
sizeof(*reqs) * slice->nents);
}
*ptail = (tail + slice->nents) % dbc->nelem;
return 0;
}
/*
* Based on the value of resize we may only need to transmit first_n
* entries and the last entry, with last_bytes to send from the last entry.
* Note that first_n could be 0.
*/
static inline int copy_partial_exec_reqs(struct qaic_device *qdev, struct bo_slice *slice,
u64 resize, u32 dbc_id, u32 head, u32 *ptail)
{
struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
struct dbc_req *reqs = slice->reqs;
struct dbc_req *last_req;
u32 tail = *ptail;
u64 total_bytes;
u64 last_bytes;
u32 first_n;
u32 avail;
int ret;
int i;
avail = head - tail;
if (head <= tail)
avail += dbc->nelem;
--avail;
total_bytes = 0;
for (i = 0; i < slice->nents; i++) {
total_bytes += le32_to_cpu(reqs[i].len);
if (total_bytes >= resize)
break;
}
if (total_bytes < resize) {
/* User space should have used the full buffer path. */
ret = -EINVAL;
return ret;
}
first_n = i;
last_bytes = i ? resize + le32_to_cpu(reqs[i].len) - total_bytes : resize;
if (avail < (first_n + 1))
return -EAGAIN;
if (first_n) {
if (tail + first_n > dbc->nelem) {
avail = dbc->nelem - tail;
avail = min_t(u32, avail, first_n);
memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
sizeof(*reqs) * avail);
last_req = reqs + avail;
avail = first_n - avail;
if (avail)
memcpy(dbc->req_q_base, last_req, sizeof(*reqs) * avail);
} else {
memcpy(dbc->req_q_base + tail * get_dbc_req_elem_size(), reqs,
sizeof(*reqs) * first_n);
}
}
/* Copy over the last entry. Here we need to adjust len to the left over
* size, and set src and dst to the entry it is copied to.
*/
last_req = dbc->req_q_base + (tail + first_n) % dbc->nelem * get_dbc_req_elem_size();
memcpy(last_req, reqs + slice->nents - 1, sizeof(*reqs));
/*
* last_bytes holds size of a DMA segment, maximum DMA segment size is
* set to UINT_MAX by qaic and hence last_bytes can never exceed u32
* range. So, by down sizing we are not corrupting the value.
*/
last_req->len = cpu_to_le32((u32)last_bytes);
last_req->src_addr = reqs[first_n].src_addr;
last_req->dest_addr = reqs[first_n].dest_addr;
*ptail = (tail + first_n + 1) % dbc->nelem;
return 0;
}
static int send_bo_list_to_device(struct qaic_device *qdev, struct drm_file *file_priv,
struct qaic_execute_entry *exec, unsigned int count,
bool is_partial, struct dma_bridge_chan *dbc, u32 head,
u32 *tail)
{
struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
struct drm_gem_object *obj;
struct bo_slice *slice;
unsigned long flags;
struct qaic_bo *bo;
bool queued;
int i, j;
int ret;
for (i = 0; i < count; i++) {
/*
* ref count will be decremented when the transfer of this
* buffer is complete. It is inside dbc_irq_threaded_fn().
*/
obj = drm_gem_object_lookup(file_priv,
is_partial ? pexec[i].handle : exec[i].handle);
if (!obj) {
ret = -ENOENT;
goto failed_to_send_bo;
}
bo = to_qaic_bo(obj);
if (!bo->sliced) {
ret = -EINVAL;
goto failed_to_send_bo;
}
if (is_partial && pexec[i].resize > bo->size) {
ret = -EINVAL;
goto failed_to_send_bo;
}
spin_lock_irqsave(&dbc->xfer_lock, flags);
queued = bo->queued;
bo->queued = true;
if (queued) {
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
ret = -EINVAL;
goto failed_to_send_bo;
}
bo->req_id = dbc->next_req_id++;
list_for_each_entry(slice, &bo->slices, slice) {
/*
* If this slice does not fall under the given
* resize then skip this slice and continue the loop
*/
if (is_partial && pexec[i].resize && pexec[i].resize <= slice->offset)
continue;
for (j = 0; j < slice->nents; j++)
slice->reqs[j].req_id = cpu_to_le16(bo->req_id);
/*
* If it is a partial execute ioctl call then check if
* resize has cut this slice short then do a partial copy
* else do complete copy
*/
if (is_partial && pexec[i].resize &&
pexec[i].resize < slice->offset + slice->size)
ret = copy_partial_exec_reqs(qdev, slice,
pexec[i].resize - slice->offset,
dbc->id, head, tail);
else
ret = copy_exec_reqs(qdev, slice, dbc->id, head, tail);
if (ret) {
bo->queued = false;
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
goto failed_to_send_bo;
}
}
reinit_completion(&bo->xfer_done);
list_add_tail(&bo->xfer_list, &dbc->xfer_list);
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
dma_sync_sgtable_for_device(&qdev->pdev->dev, bo->sgt, bo->dir);
}
return 0;
failed_to_send_bo:
if (likely(obj))
drm_gem_object_put(obj);
for (j = 0; j < i; j++) {
spin_lock_irqsave(&dbc->xfer_lock, flags);
bo = list_last_entry(&dbc->xfer_list, struct qaic_bo, xfer_list);
obj = &bo->base;
bo->queued = false;
list_del(&bo->xfer_list);
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
drm_gem_object_put(obj);
}
return ret;
}
static void update_profiling_data(struct drm_file *file_priv,
struct qaic_execute_entry *exec, unsigned int count,
bool is_partial, u64 received_ts, u64 submit_ts, u32 queue_level)
{
struct qaic_partial_execute_entry *pexec = (struct qaic_partial_execute_entry *)exec;
struct drm_gem_object *obj;
struct qaic_bo *bo;
int i;
for (i = 0; i < count; i++) {
/*
* Since we already committed the BO to hardware, the only way
* this should fail is a pending signal. We can't cancel the
* submit to hardware, so we have to just skip the profiling
* data. In case the signal is not fatal to the process, we
* return success so that the user doesn't try to resubmit.
*/
obj = drm_gem_object_lookup(file_priv,
is_partial ? pexec[i].handle : exec[i].handle);
if (!obj)
break;
bo = to_qaic_bo(obj);
bo->perf_stats.req_received_ts = received_ts;
bo->perf_stats.req_submit_ts = submit_ts;
bo->perf_stats.queue_level_before = queue_level;
queue_level += bo->total_slice_nents;
drm_gem_object_put(obj);
}
}
static int __qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv,
bool is_partial)
{
struct qaic_partial_execute_entry *pexec;
struct qaic_execute *args = data;
struct qaic_execute_entry *exec;
struct dma_bridge_chan *dbc;
int usr_rcu_id, qdev_rcu_id;
struct qaic_device *qdev;
struct qaic_user *usr;
u8 __user *user_data;
unsigned long n;
u64 received_ts;
u32 queue_level;
u64 submit_ts;
int rcu_id;
u32 head;
u32 tail;
u64 size;
int ret;
received_ts = ktime_get_ns();
size = is_partial ? sizeof(*pexec) : sizeof(*exec);
n = (unsigned long)size * args->hdr.count;
if (args->hdr.count == 0 || n / args->hdr.count != size)
return -EINVAL;
user_data = u64_to_user_ptr(args->data);
exec = kcalloc(args->hdr.count, size, GFP_KERNEL);
pexec = (struct qaic_partial_execute_entry *)exec;
if (!exec)
return -ENOMEM;
if (copy_from_user(exec, user_data, n)) {
ret = -EFAULT;
goto free_exec;
}
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
if (args->hdr.dbc_id >= qdev->num_dbc) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
dbc = &qdev->dbc[args->hdr.dbc_id];
rcu_id = srcu_read_lock(&dbc->ch_lock);
if (!dbc->usr || dbc->usr->handle != usr->handle) {
ret = -EPERM;
goto release_ch_rcu;
}
head = readl(dbc->dbc_base + REQHP_OFF);
tail = readl(dbc->dbc_base + REQTP_OFF);
if (head == U32_MAX || tail == U32_MAX) {
/* PCI link error */
ret = -ENODEV;
goto release_ch_rcu;
}
queue_level = head <= tail ? tail - head : dbc->nelem - (head - tail);
ret = send_bo_list_to_device(qdev, file_priv, exec, args->hdr.count, is_partial, dbc,
head, &tail);
if (ret)
goto release_ch_rcu;
/* Finalize commit to hardware */
submit_ts = ktime_get_ns();
writel(tail, dbc->dbc_base + REQTP_OFF);
update_profiling_data(file_priv, exec, args->hdr.count, is_partial, received_ts,
submit_ts, queue_level);
if (datapath_polling)
schedule_work(&dbc->poll_work);
release_ch_rcu:
srcu_read_unlock(&dbc->ch_lock, rcu_id);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
free_exec:
kfree(exec);
return ret;
}
int qaic_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
return __qaic_execute_bo_ioctl(dev, data, file_priv, false);
}
int qaic_partial_execute_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
return __qaic_execute_bo_ioctl(dev, data, file_priv, true);
}
/*
* Our interrupt handling is a bit more complicated than a simple ideal, but
* sadly necessary.
*
* Each dbc has a completion queue. Entries in the queue correspond to DMA
* requests which the device has processed. The hardware already has a built
* in irq mitigation. When the device puts an entry into the queue, it will
* only trigger an interrupt if the queue was empty. Therefore, when adding
* the Nth event to a non-empty queue, the hardware doesn't trigger an
* interrupt. This means the host doesn't get additional interrupts signaling
* the same thing - the queue has something to process.
* This behavior can be overridden in the DMA request.
* This means that when the host receives an interrupt, it is required to
* drain the queue.
*
* This behavior is what NAPI attempts to accomplish, although we can't use
* NAPI as we don't have a netdev. We use threaded irqs instead.
*
* However, there is a situation where the host drains the queue fast enough
* that every event causes an interrupt. Typically this is not a problem as
* the rate of events would be low. However, that is not the case with
* lprnet for example. On an Intel Xeon D-2191 where we run 8 instances of
* lprnet, the host receives roughly 80k interrupts per second from the device
* (per /proc/interrupts). While NAPI documentation indicates the host should
* just chug along, sadly that behavior causes instability in some hosts.
*
* Therefore, we implement an interrupt disable scheme similar to NAPI. The
* key difference is that we will delay after draining the queue for a small
* time to allow additional events to come in via polling. Using the above
* lprnet workload, this reduces the number of interrupts processed from
* ~80k/sec to about 64 in 5 minutes and appears to solve the system
* instability.
*/
irqreturn_t dbc_irq_handler(int irq, void *data)
{
struct dma_bridge_chan *dbc = data;
int rcu_id;
u32 head;
u32 tail;
rcu_id = srcu_read_lock(&dbc->ch_lock);
if (!dbc->usr) {
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_HANDLED;
}
head = readl(dbc->dbc_base + RSPHP_OFF);
if (head == U32_MAX) { /* PCI link error */
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_NONE;
}
tail = readl(dbc->dbc_base + RSPTP_OFF);
if (tail == U32_MAX) { /* PCI link error */
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_NONE;
}
if (head == tail) { /* queue empty */
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_NONE;
}
disable_irq_nosync(irq);
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_WAKE_THREAD;
}
void irq_polling_work(struct work_struct *work)
{
struct dma_bridge_chan *dbc = container_of(work, struct dma_bridge_chan, poll_work);
unsigned long flags;
int rcu_id;
u32 head;
u32 tail;
rcu_id = srcu_read_lock(&dbc->ch_lock);
while (1) {
if (dbc->qdev->in_reset) {
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
if (!dbc->usr) {
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
spin_lock_irqsave(&dbc->xfer_lock, flags);
if (list_empty(&dbc->xfer_list)) {
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
head = readl(dbc->dbc_base + RSPHP_OFF);
if (head == U32_MAX) { /* PCI link error */
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
tail = readl(dbc->dbc_base + RSPTP_OFF);
if (tail == U32_MAX) { /* PCI link error */
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
if (head != tail) {
irq_wake_thread(dbc->irq, dbc);
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return;
}
cond_resched();
usleep_range(datapath_poll_interval_us, 2 * datapath_poll_interval_us);
}
}
irqreturn_t dbc_irq_threaded_fn(int irq, void *data)
{
struct dma_bridge_chan *dbc = data;
int event_count = NUM_EVENTS;
int delay_count = NUM_DELAYS;
struct qaic_device *qdev;
struct qaic_bo *bo, *i;
struct dbc_rsp *rsp;
unsigned long flags;
int rcu_id;
u16 status;
u16 req_id;
u32 head;
u32 tail;
rcu_id = srcu_read_lock(&dbc->ch_lock);
head = readl(dbc->dbc_base + RSPHP_OFF);
if (head == U32_MAX) /* PCI link error */
goto error_out;
qdev = dbc->qdev;
read_fifo:
if (!event_count) {
event_count = NUM_EVENTS;
cond_resched();
}
/*
* if this channel isn't assigned or gets unassigned during processing
* we have nothing further to do
*/
if (!dbc->usr)
goto error_out;
tail = readl(dbc->dbc_base + RSPTP_OFF);
if (tail == U32_MAX) /* PCI link error */
goto error_out;
if (head == tail) { /* queue empty */
if (delay_count) {
--delay_count;
usleep_range(100, 200);
goto read_fifo; /* check for a new event */
}
goto normal_out;
}
delay_count = NUM_DELAYS;
while (head != tail) {
if (!event_count)
break;
--event_count;
rsp = dbc->rsp_q_base + head * sizeof(*rsp);
req_id = le16_to_cpu(rsp->req_id);
status = le16_to_cpu(rsp->status);
if (status)
pci_dbg(qdev->pdev, "req_id %d failed with status %d\n", req_id, status);
spin_lock_irqsave(&dbc->xfer_lock, flags);
/*
* A BO can receive multiple interrupts, since a BO can be
* divided into multiple slices and a buffer receives as many
* interrupts as slices. So until it receives interrupts for
* all the slices we cannot mark that buffer complete.
*/
list_for_each_entry_safe(bo, i, &dbc->xfer_list, xfer_list) {
if (bo->req_id == req_id)
bo->nr_slice_xfer_done++;
else
continue;
if (bo->nr_slice_xfer_done < bo->nr_slice)
break;
/*
* At this point we have received all the interrupts for
* BO, which means BO execution is complete.
*/
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
bo->nr_slice_xfer_done = 0;
bo->queued = false;
list_del(&bo->xfer_list);
bo->perf_stats.req_processed_ts = ktime_get_ns();
complete_all(&bo->xfer_done);
drm_gem_object_put(&bo->base);
break;
}
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
head = (head + 1) % dbc->nelem;
}
/*
* Update the head pointer of response queue and let the device know
* that we have consumed elements from the queue.
*/
writel(head, dbc->dbc_base + RSPHP_OFF);
/* elements might have been put in the queue while we were processing */
goto read_fifo;
normal_out:
if (likely(!datapath_polling))
enable_irq(irq);
else
schedule_work(&dbc->poll_work);
/* checking the fifo and enabling irqs is a race, missed event check */
tail = readl(dbc->dbc_base + RSPTP_OFF);
if (tail != U32_MAX && head != tail) {
if (likely(!datapath_polling))
disable_irq_nosync(irq);
goto read_fifo;
}
srcu_read_unlock(&dbc->ch_lock, rcu_id);
return IRQ_HANDLED;
error_out:
srcu_read_unlock(&dbc->ch_lock, rcu_id);
if (likely(!datapath_polling))
enable_irq(irq);
else
schedule_work(&dbc->poll_work);
return IRQ_HANDLED;
}
int qaic_wait_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_wait *args = data;
int usr_rcu_id, qdev_rcu_id;
struct dma_bridge_chan *dbc;
struct drm_gem_object *obj;
struct qaic_device *qdev;
unsigned long timeout;
struct qaic_user *usr;
struct qaic_bo *bo;
int rcu_id;
int ret;
if (args->pad != 0)
return -EINVAL;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
if (args->dbc_id >= qdev->num_dbc) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
dbc = &qdev->dbc[args->dbc_id];
rcu_id = srcu_read_lock(&dbc->ch_lock);
if (dbc->usr != usr) {
ret = -EPERM;
goto unlock_ch_srcu;
}
obj = drm_gem_object_lookup(file_priv, args->handle);
if (!obj) {
ret = -ENOENT;
goto unlock_ch_srcu;
}
bo = to_qaic_bo(obj);
timeout = args->timeout ? args->timeout : wait_exec_default_timeout_ms;
timeout = msecs_to_jiffies(timeout);
ret = wait_for_completion_interruptible_timeout(&bo->xfer_done, timeout);
if (!ret) {
ret = -ETIMEDOUT;
goto put_obj;
}
if (ret > 0)
ret = 0;
if (!dbc->usr)
ret = -EPERM;
put_obj:
drm_gem_object_put(obj);
unlock_ch_srcu:
srcu_read_unlock(&dbc->ch_lock, rcu_id);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
int qaic_perf_stats_bo_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv)
{
struct qaic_perf_stats_entry *ent = NULL;
struct qaic_perf_stats *args = data;
int usr_rcu_id, qdev_rcu_id;
struct drm_gem_object *obj;
struct qaic_device *qdev;
struct qaic_user *usr;
struct qaic_bo *bo;
int ret, i;
usr = file_priv->driver_priv;
usr_rcu_id = srcu_read_lock(&usr->qddev_lock);
if (!usr->qddev) {
ret = -ENODEV;
goto unlock_usr_srcu;
}
qdev = usr->qddev->qdev;
qdev_rcu_id = srcu_read_lock(&qdev->dev_lock);
if (qdev->in_reset) {
ret = -ENODEV;
goto unlock_dev_srcu;
}
if (args->hdr.dbc_id >= qdev->num_dbc) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
ent = kcalloc(args->hdr.count, sizeof(*ent), GFP_KERNEL);
if (!ent) {
ret = -EINVAL;
goto unlock_dev_srcu;
}
ret = copy_from_user(ent, u64_to_user_ptr(args->data), args->hdr.count * sizeof(*ent));
if (ret) {
ret = -EFAULT;
goto free_ent;
}
for (i = 0; i < args->hdr.count; i++) {
obj = drm_gem_object_lookup(file_priv, ent[i].handle);
if (!obj) {
ret = -ENOENT;
goto free_ent;
}
bo = to_qaic_bo(obj);
/*
* perf stats ioctl is called before wait ioctl is complete then
* the latency information is invalid.
*/
if (bo->perf_stats.req_processed_ts < bo->perf_stats.req_submit_ts) {
ent[i].device_latency_us = 0;
} else {
ent[i].device_latency_us = div_u64((bo->perf_stats.req_processed_ts -
bo->perf_stats.req_submit_ts), 1000);
}
ent[i].submit_latency_us = div_u64((bo->perf_stats.req_submit_ts -
bo->perf_stats.req_received_ts), 1000);
ent[i].queue_level_before = bo->perf_stats.queue_level_before;
ent[i].num_queue_element = bo->total_slice_nents;
drm_gem_object_put(obj);
}
if (copy_to_user(u64_to_user_ptr(args->data), ent, args->hdr.count * sizeof(*ent)))
ret = -EFAULT;
free_ent:
kfree(ent);
unlock_dev_srcu:
srcu_read_unlock(&qdev->dev_lock, qdev_rcu_id);
unlock_usr_srcu:
srcu_read_unlock(&usr->qddev_lock, usr_rcu_id);
return ret;
}
static void empty_xfer_list(struct qaic_device *qdev, struct dma_bridge_chan *dbc)
{
unsigned long flags;
struct qaic_bo *bo;
spin_lock_irqsave(&dbc->xfer_lock, flags);
while (!list_empty(&dbc->xfer_list)) {
bo = list_first_entry(&dbc->xfer_list, typeof(*bo), xfer_list);
bo->queued = false;
list_del(&bo->xfer_list);
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
dma_sync_sgtable_for_cpu(&qdev->pdev->dev, bo->sgt, bo->dir);
complete_all(&bo->xfer_done);
drm_gem_object_put(&bo->base);
spin_lock_irqsave(&dbc->xfer_lock, flags);
}
spin_unlock_irqrestore(&dbc->xfer_lock, flags);
}
int disable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
{
if (!qdev->dbc[dbc_id].usr || qdev->dbc[dbc_id].usr->handle != usr->handle)
return -EPERM;
qdev->dbc[dbc_id].usr = NULL;
synchronize_srcu(&qdev->dbc[dbc_id].ch_lock);
return 0;
}
/**
* enable_dbc - Enable the DBC. DBCs are disabled by removing the context of
* user. Add user context back to DBC to enable it. This function trusts the
* DBC ID passed and expects the DBC to be disabled.
* @qdev: Qranium device handle
* @dbc_id: ID of the DBC
* @usr: User context
*/
void enable_dbc(struct qaic_device *qdev, u32 dbc_id, struct qaic_user *usr)
{
qdev->dbc[dbc_id].usr = usr;
}
void wakeup_dbc(struct qaic_device *qdev, u32 dbc_id)
{
struct dma_bridge_chan *dbc = &qdev->dbc[dbc_id];
dbc->usr = NULL;
empty_xfer_list(qdev, dbc);
synchronize_srcu(&dbc->ch_lock);
/*
* Threads holding channel lock, may add more elements in the xfer_list.
* Flush out these elements from xfer_list.
*/
empty_xfer_list(qdev, dbc);
}
void release_dbc(struct qaic_device *qdev, u32 dbc_id)
{
struct bo_slice *slice, *slice_temp;
struct qaic_bo *bo, *bo_temp;
struct dma_bridge_chan *dbc;
dbc = &qdev->dbc[dbc_id];
if (!dbc->in_use)
return;
wakeup_dbc(qdev, dbc_id);
dma_free_coherent(&qdev->pdev->dev, dbc->total_size, dbc->req_q_base, dbc->dma_addr);
dbc->total_size = 0;
dbc->req_q_base = NULL;
dbc->dma_addr = 0;
dbc->nelem = 0;
dbc->usr = NULL;
list_for_each_entry_safe(bo, bo_temp, &dbc->bo_lists, bo_list) {
list_for_each_entry_safe(slice, slice_temp, &bo->slices, slice)
kref_put(&slice->ref_count, free_slice);
bo->sliced = false;
INIT_LIST_HEAD(&bo->slices);
bo->total_slice_nents = 0;
bo->dir = 0;
bo->dbc = NULL;
bo->nr_slice = 0;
bo->nr_slice_xfer_done = 0;
bo->queued = false;
bo->req_id = 0;
init_completion(&bo->xfer_done);
complete_all(&bo->xfer_done);
list_del(&bo->bo_list);
bo->perf_stats.req_received_ts = 0;
bo->perf_stats.req_submit_ts = 0;
bo->perf_stats.req_processed_ts = 0;
bo->perf_stats.queue_level_before = 0;
}
dbc->in_use = false;
wake_up(&dbc->dbc_release);
}