linux-zen-desktop/drivers/gpu/drm/i915/display/intel_bw.c

1328 lines
35 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <drm/drm_atomic_state_helper.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "i915_utils.h"
#include "intel_atomic.h"
#include "intel_bw.h"
#include "intel_cdclk.h"
#include "intel_display_core.h"
#include "intel_display_types.h"
#include "skl_watermark.h"
#include "intel_mchbar_regs.h"
#include "intel_pcode.h"
/* Parameters for Qclk Geyserville (QGV) */
struct intel_qgv_point {
u16 dclk, t_rp, t_rdpre, t_rc, t_ras, t_rcd;
};
struct intel_psf_gv_point {
u8 clk; /* clock in multiples of 16.6666 MHz */
};
struct intel_qgv_info {
struct intel_qgv_point points[I915_NUM_QGV_POINTS];
struct intel_psf_gv_point psf_points[I915_NUM_PSF_GV_POINTS];
u8 num_points;
u8 num_psf_points;
u8 t_bl;
u8 max_numchannels;
u8 channel_width;
u8 deinterleave;
};
static int dg1_mchbar_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 dclk_ratio, dclk_reference;
u32 val;
val = intel_uncore_read(&dev_priv->uncore, SA_PERF_STATUS_0_0_0_MCHBAR_PC);
dclk_ratio = REG_FIELD_GET(DG1_QCLK_RATIO_MASK, val);
if (val & DG1_QCLK_REFERENCE)
dclk_reference = 6; /* 6 * 16.666 MHz = 100 MHz */
else
dclk_reference = 8; /* 8 * 16.666 MHz = 133 MHz */
sp->dclk = DIV_ROUND_UP((16667 * dclk_ratio * dclk_reference) + 500, 1000);
val = intel_uncore_read(&dev_priv->uncore, SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
if (val & DG1_GEAR_TYPE)
sp->dclk *= 2;
if (sp->dclk == 0)
return -EINVAL;
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR);
sp->t_rp = REG_FIELD_GET(DG1_DRAM_T_RP_MASK, val);
sp->t_rdpre = REG_FIELD_GET(DG1_DRAM_T_RDPRE_MASK, val);
val = intel_uncore_read(&dev_priv->uncore, MCHBAR_CH0_CR_TC_PRE_0_0_0_MCHBAR_HIGH);
sp->t_rcd = REG_FIELD_GET(DG1_DRAM_T_RCD_MASK, val);
sp->t_ras = REG_FIELD_GET(DG1_DRAM_T_RAS_MASK, val);
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int icl_pcode_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
u32 val = 0, val2 = 0;
u16 dclk;
int ret;
ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ICL_PCODE_MEM_SS_READ_QGV_POINT_INFO(point),
&val, &val2);
if (ret)
return ret;
dclk = val & 0xffff;
sp->dclk = DIV_ROUND_UP((16667 * dclk) + (DISPLAY_VER(dev_priv) > 11 ? 500 : 0), 1000);
sp->t_rp = (val & 0xff0000) >> 16;
sp->t_rcd = (val & 0xff000000) >> 24;
sp->t_rdpre = val2 & 0xff;
sp->t_ras = (val2 & 0xff00) >> 8;
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int adls_pcode_read_psf_gv_point_info(struct drm_i915_private *dev_priv,
struct intel_psf_gv_point *points)
{
u32 val = 0;
int ret;
int i;
ret = snb_pcode_read(&dev_priv->uncore, ICL_PCODE_MEM_SUBSYSYSTEM_INFO |
ADL_PCODE_MEM_SS_READ_PSF_GV_INFO, &val, NULL);
if (ret)
return ret;
for (i = 0; i < I915_NUM_PSF_GV_POINTS; i++) {
points[i].clk = val & 0xff;
val >>= 8;
}
return 0;
}
2023-10-24 12:59:35 +02:00
static u16 icl_qgv_points_mask(struct drm_i915_private *i915)
{
unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
u16 qgv_points = 0, psf_points = 0;
/*
* We can _not_ use the whole ADLS_QGV_PT_MASK here, as PCode rejects
* it with failure if we try masking any unadvertised points.
* So need to operate only with those returned from PCode.
*/
if (num_qgv_points > 0)
qgv_points = GENMASK(num_qgv_points - 1, 0);
if (num_psf_gv_points > 0)
psf_points = GENMASK(num_psf_gv_points - 1, 0);
return ICL_PCODE_REQ_QGV_PT(qgv_points) | ADLS_PCODE_REQ_PSF_PT(psf_points);
}
static bool is_sagv_enabled(struct drm_i915_private *i915, u16 points_mask)
{
return !is_power_of_2(~points_mask & icl_qgv_points_mask(i915) &
ICL_PCODE_REQ_QGV_PT_MASK);
}
2023-08-30 17:31:07 +02:00
int icl_pcode_restrict_qgv_points(struct drm_i915_private *dev_priv,
u32 points_mask)
{
int ret;
2023-10-24 12:59:35 +02:00
if (DISPLAY_VER(dev_priv) >= 14)
return 0;
2023-08-30 17:31:07 +02:00
/* bspec says to keep retrying for at least 1 ms */
ret = skl_pcode_request(&dev_priv->uncore, ICL_PCODE_SAGV_DE_MEM_SS_CONFIG,
points_mask,
ICL_PCODE_REP_QGV_MASK | ADLS_PCODE_REP_PSF_MASK,
ICL_PCODE_REP_QGV_SAFE | ADLS_PCODE_REP_PSF_SAFE,
1);
if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to disable qgv points (%d) points: 0x%x\n", ret, points_mask);
return ret;
}
2023-10-24 12:59:35 +02:00
dev_priv->display.sagv.status = is_sagv_enabled(dev_priv, points_mask) ?
I915_SAGV_ENABLED : I915_SAGV_DISABLED;
2023-08-30 17:31:07 +02:00
return 0;
}
static int mtl_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp, int point)
{
u32 val, val2;
u16 dclk;
val = intel_uncore_read(&dev_priv->uncore,
MTL_MEM_SS_INFO_QGV_POINT_LOW(point));
val2 = intel_uncore_read(&dev_priv->uncore,
MTL_MEM_SS_INFO_QGV_POINT_HIGH(point));
dclk = REG_FIELD_GET(MTL_DCLK_MASK, val);
2023-10-24 12:59:35 +02:00
sp->dclk = DIV_ROUND_CLOSEST(16667 * dclk, 1000);
2023-08-30 17:31:07 +02:00
sp->t_rp = REG_FIELD_GET(MTL_TRP_MASK, val);
sp->t_rcd = REG_FIELD_GET(MTL_TRCD_MASK, val);
sp->t_rdpre = REG_FIELD_GET(MTL_TRDPRE_MASK, val2);
sp->t_ras = REG_FIELD_GET(MTL_TRAS_MASK, val2);
sp->t_rc = sp->t_rp + sp->t_ras;
return 0;
}
static int
intel_read_qgv_point_info(struct drm_i915_private *dev_priv,
struct intel_qgv_point *sp,
int point)
{
if (DISPLAY_VER(dev_priv) >= 14)
return mtl_read_qgv_point_info(dev_priv, sp, point);
else if (IS_DG1(dev_priv))
return dg1_mchbar_read_qgv_point_info(dev_priv, sp, point);
else
return icl_pcode_read_qgv_point_info(dev_priv, sp, point);
}
static int icl_get_qgv_points(struct drm_i915_private *dev_priv,
struct intel_qgv_info *qi,
bool is_y_tile)
{
const struct dram_info *dram_info = &dev_priv->dram_info;
int i, ret;
qi->num_points = dram_info->num_qgv_points;
qi->num_psf_points = dram_info->num_psf_gv_points;
if (DISPLAY_VER(dev_priv) >= 14) {
switch (dram_info->type) {
case INTEL_DRAM_DDR4:
qi->t_bl = 4;
qi->max_numchannels = 2;
qi->channel_width = 64;
qi->deinterleave = 2;
break;
case INTEL_DRAM_DDR5:
qi->t_bl = 8;
qi->max_numchannels = 4;
qi->channel_width = 32;
qi->deinterleave = 2;
break;
case INTEL_DRAM_LPDDR4:
case INTEL_DRAM_LPDDR5:
qi->t_bl = 16;
qi->max_numchannels = 8;
qi->channel_width = 16;
qi->deinterleave = 4;
break;
default:
MISSING_CASE(dram_info->type);
return -EINVAL;
}
} else if (DISPLAY_VER(dev_priv) >= 12) {
switch (dram_info->type) {
case INTEL_DRAM_DDR4:
qi->t_bl = is_y_tile ? 8 : 4;
qi->max_numchannels = 2;
qi->channel_width = 64;
qi->deinterleave = is_y_tile ? 1 : 2;
break;
case INTEL_DRAM_DDR5:
qi->t_bl = is_y_tile ? 16 : 8;
qi->max_numchannels = 4;
qi->channel_width = 32;
qi->deinterleave = is_y_tile ? 1 : 2;
break;
case INTEL_DRAM_LPDDR4:
if (IS_ROCKETLAKE(dev_priv)) {
qi->t_bl = 8;
qi->max_numchannels = 4;
qi->channel_width = 32;
qi->deinterleave = 2;
break;
}
fallthrough;
case INTEL_DRAM_LPDDR5:
qi->t_bl = 16;
qi->max_numchannels = 8;
qi->channel_width = 16;
qi->deinterleave = is_y_tile ? 2 : 4;
break;
default:
qi->t_bl = 16;
qi->max_numchannels = 1;
break;
}
} else if (DISPLAY_VER(dev_priv) == 11) {
qi->t_bl = dev_priv->dram_info.type == INTEL_DRAM_DDR4 ? 4 : 8;
qi->max_numchannels = 1;
}
if (drm_WARN_ON(&dev_priv->drm,
qi->num_points > ARRAY_SIZE(qi->points)))
qi->num_points = ARRAY_SIZE(qi->points);
for (i = 0; i < qi->num_points; i++) {
struct intel_qgv_point *sp = &qi->points[i];
ret = intel_read_qgv_point_info(dev_priv, sp, i);
if (ret)
return ret;
drm_dbg_kms(&dev_priv->drm,
"QGV %d: DCLK=%d tRP=%d tRDPRE=%d tRAS=%d tRCD=%d tRC=%d\n",
i, sp->dclk, sp->t_rp, sp->t_rdpre, sp->t_ras,
sp->t_rcd, sp->t_rc);
}
if (qi->num_psf_points > 0) {
ret = adls_pcode_read_psf_gv_point_info(dev_priv, qi->psf_points);
if (ret) {
drm_err(&dev_priv->drm, "Failed to read PSF point data; PSF points will not be considered in bandwidth calculations.\n");
qi->num_psf_points = 0;
}
for (i = 0; i < qi->num_psf_points; i++)
drm_dbg_kms(&dev_priv->drm,
"PSF GV %d: CLK=%d \n",
i, qi->psf_points[i].clk);
}
return 0;
}
static int adl_calc_psf_bw(int clk)
{
/*
* clk is multiples of 16.666MHz (100/6)
* According to BSpec PSF GV bandwidth is
* calculated as BW = 64 * clk * 16.666Mhz
*/
return DIV_ROUND_CLOSEST(64 * clk * 100, 6);
}
static int icl_sagv_max_dclk(const struct intel_qgv_info *qi)
{
u16 dclk = 0;
int i;
for (i = 0; i < qi->num_points; i++)
dclk = max(dclk, qi->points[i].dclk);
return dclk;
}
struct intel_sa_info {
u16 displayrtids;
u8 deburst, deprogbwlimit, derating;
};
static const struct intel_sa_info icl_sa_info = {
.deburst = 8,
.deprogbwlimit = 25, /* GB/s */
.displayrtids = 128,
.derating = 10,
};
static const struct intel_sa_info tgl_sa_info = {
.deburst = 16,
.deprogbwlimit = 34, /* GB/s */
.displayrtids = 256,
.derating = 10,
};
static const struct intel_sa_info rkl_sa_info = {
.deburst = 8,
.deprogbwlimit = 20, /* GB/s */
.displayrtids = 128,
.derating = 10,
};
static const struct intel_sa_info adls_sa_info = {
.deburst = 16,
.deprogbwlimit = 38, /* GB/s */
.displayrtids = 256,
.derating = 10,
};
static const struct intel_sa_info adlp_sa_info = {
.deburst = 16,
.deprogbwlimit = 38, /* GB/s */
.displayrtids = 256,
.derating = 20,
};
static const struct intel_sa_info mtl_sa_info = {
.deburst = 32,
.deprogbwlimit = 38, /* GB/s */
.displayrtids = 256,
2023-10-24 12:59:35 +02:00
.derating = 10,
2023-08-30 17:31:07 +02:00
};
static int icl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
struct intel_qgv_info qi = {};
bool is_y_tile = true; /* assume y tile may be used */
int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
int ipqdepth, ipqdepthpch = 16;
int dclk_max;
int maxdebw;
int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
int i, ret;
ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Failed to get memory subsystem information, ignoring bandwidth limits");
return ret;
}
dclk_max = icl_sagv_max_dclk(&qi);
maxdebw = min(sa->deprogbwlimit * 1000, dclk_max * 16 * 6 / 10);
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
qi.deinterleave = DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
for (i = 0; i < num_groups; i++) {
struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
int clpchgroup;
int j;
clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
bi->num_planes = (ipqdepth - clpchgroup) / clpchgroup + 1;
bi->num_qgv_points = qi.num_points;
bi->num_psf_gv_points = qi.num_psf_points;
for (j = 0; j < qi.num_points; j++) {
const struct intel_qgv_point *sp = &qi.points[j];
int ct, bw;
/*
* Max row cycle time
*
* FIXME what is the logic behind the
* assumed burst length?
*/
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
bi->deratedbw[j] = min(maxdebw,
bw * (100 - sa->derating) / 100);
drm_dbg_kms(&dev_priv->drm,
"BW%d / QGV %d: num_planes=%d deratedbw=%u\n",
i, j, bi->num_planes, bi->deratedbw[j]);
}
}
/*
* In case if SAGV is disabled in BIOS, we always get 1
* SAGV point, but we can't send PCode commands to restrict it
* as it will fail and pointless anyway.
*/
if (qi.num_points == 1)
dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
else
dev_priv->display.sagv.status = I915_SAGV_ENABLED;
return 0;
}
static int tgl_get_bw_info(struct drm_i915_private *dev_priv, const struct intel_sa_info *sa)
{
struct intel_qgv_info qi = {};
const struct dram_info *dram_info = &dev_priv->dram_info;
bool is_y_tile = true; /* assume y tile may be used */
int num_channels = max_t(u8, 1, dev_priv->dram_info.num_channels);
int ipqdepth, ipqdepthpch = 16;
int dclk_max;
int maxdebw, peakbw;
int clperchgroup;
int num_groups = ARRAY_SIZE(dev_priv->display.bw.max);
int i, ret;
ret = icl_get_qgv_points(dev_priv, &qi, is_y_tile);
if (ret) {
drm_dbg_kms(&dev_priv->drm,
"Failed to get memory subsystem information, ignoring bandwidth limits");
return ret;
}
if (DISPLAY_VER(dev_priv) < 14 &&
(dram_info->type == INTEL_DRAM_LPDDR4 || dram_info->type == INTEL_DRAM_LPDDR5))
num_channels *= 2;
qi.deinterleave = qi.deinterleave ? : DIV_ROUND_UP(num_channels, is_y_tile ? 4 : 2);
if (num_channels < qi.max_numchannels && DISPLAY_VER(dev_priv) >= 12)
qi.deinterleave = max(DIV_ROUND_UP(qi.deinterleave, 2), 1);
if (DISPLAY_VER(dev_priv) > 11 && num_channels > qi.max_numchannels)
drm_warn(&dev_priv->drm, "Number of channels exceeds max number of channels.");
if (qi.max_numchannels != 0)
num_channels = min_t(u8, num_channels, qi.max_numchannels);
dclk_max = icl_sagv_max_dclk(&qi);
peakbw = num_channels * DIV_ROUND_UP(qi.channel_width, 8) * dclk_max;
maxdebw = min(sa->deprogbwlimit * 1000, peakbw * 6 / 10); /* 60% */
ipqdepth = min(ipqdepthpch, sa->displayrtids / num_channels);
/*
* clperchgroup = 4kpagespermempage * clperchperblock,
* clperchperblock = 8 / num_channels * interleave
*/
clperchgroup = 4 * DIV_ROUND_UP(8, num_channels) * qi.deinterleave;
for (i = 0; i < num_groups; i++) {
struct intel_bw_info *bi = &dev_priv->display.bw.max[i];
struct intel_bw_info *bi_next;
int clpchgroup;
int j;
clpchgroup = (sa->deburst * qi.deinterleave / num_channels) << i;
if (i < num_groups - 1) {
bi_next = &dev_priv->display.bw.max[i + 1];
if (clpchgroup < clperchgroup)
bi_next->num_planes = (ipqdepth - clpchgroup) /
clpchgroup + 1;
else
bi_next->num_planes = 0;
}
bi->num_qgv_points = qi.num_points;
bi->num_psf_gv_points = qi.num_psf_points;
for (j = 0; j < qi.num_points; j++) {
const struct intel_qgv_point *sp = &qi.points[j];
int ct, bw;
/*
* Max row cycle time
*
* FIXME what is the logic behind the
* assumed burst length?
*/
ct = max_t(int, sp->t_rc, sp->t_rp + sp->t_rcd +
(clpchgroup - 1) * qi.t_bl + sp->t_rdpre);
bw = DIV_ROUND_UP(sp->dclk * clpchgroup * 32 * num_channels, ct);
bi->deratedbw[j] = min(maxdebw,
bw * (100 - sa->derating) / 100);
2023-10-24 12:59:35 +02:00
bi->peakbw[j] = DIV_ROUND_CLOSEST(sp->dclk *
num_channels *
qi.channel_width, 8);
2023-08-30 17:31:07 +02:00
drm_dbg_kms(&dev_priv->drm,
2023-10-24 12:59:35 +02:00
"BW%d / QGV %d: num_planes=%d deratedbw=%u peakbw: %u\n",
i, j, bi->num_planes, bi->deratedbw[j],
bi->peakbw[j]);
2023-08-30 17:31:07 +02:00
}
for (j = 0; j < qi.num_psf_points; j++) {
const struct intel_psf_gv_point *sp = &qi.psf_points[j];
bi->psf_bw[j] = adl_calc_psf_bw(sp->clk);
drm_dbg_kms(&dev_priv->drm,
"BW%d / PSF GV %d: num_planes=%d bw=%u\n",
i, j, bi->num_planes, bi->psf_bw[j]);
}
}
/*
* In case if SAGV is disabled in BIOS, we always get 1
* SAGV point, but we can't send PCode commands to restrict it
* as it will fail and pointless anyway.
*/
if (qi.num_points == 1)
dev_priv->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
else
dev_priv->display.sagv.status = I915_SAGV_ENABLED;
return 0;
}
static void dg2_get_bw_info(struct drm_i915_private *i915)
{
unsigned int deratedbw = IS_DG2_G11(i915) ? 38000 : 50000;
int num_groups = ARRAY_SIZE(i915->display.bw.max);
int i;
/*
* DG2 doesn't have SAGV or QGV points, just a constant max bandwidth
* that doesn't depend on the number of planes enabled. So fill all the
* plane group with constant bw information for uniformity with other
* platforms. DG2-G10 platforms have a constant 50 GB/s bandwidth,
* whereas DG2-G11 platforms have 38 GB/s.
*/
for (i = 0; i < num_groups; i++) {
struct intel_bw_info *bi = &i915->display.bw.max[i];
bi->num_planes = 1;
/* Need only one dummy QGV point per group */
bi->num_qgv_points = 1;
bi->deratedbw[0] = deratedbw;
}
i915->display.sagv.status = I915_SAGV_NOT_CONTROLLED;
}
2023-10-24 12:59:35 +02:00
static unsigned int icl_max_bw_index(struct drm_i915_private *dev_priv,
int num_planes, int qgv_point)
2023-08-30 17:31:07 +02:00
{
int i;
/*
* Let's return max bw for 0 planes
*/
num_planes = max(1, num_planes);
for (i = 0; i < ARRAY_SIZE(dev_priv->display.bw.max); i++) {
const struct intel_bw_info *bi =
&dev_priv->display.bw.max[i];
/*
* Pcode will not expose all QGV points when
* SAGV is forced to off/min/med/max.
*/
if (qgv_point >= bi->num_qgv_points)
return UINT_MAX;
if (num_planes >= bi->num_planes)
2023-10-24 12:59:35 +02:00
return i;
2023-08-30 17:31:07 +02:00
}
2023-10-24 12:59:35 +02:00
return UINT_MAX;
2023-08-30 17:31:07 +02:00
}
2023-10-24 12:59:35 +02:00
static unsigned int tgl_max_bw_index(struct drm_i915_private *dev_priv,
int num_planes, int qgv_point)
2023-08-30 17:31:07 +02:00
{
int i;
/*
* Let's return max bw for 0 planes
*/
num_planes = max(1, num_planes);
for (i = ARRAY_SIZE(dev_priv->display.bw.max) - 1; i >= 0; i--) {
const struct intel_bw_info *bi =
&dev_priv->display.bw.max[i];
/*
* Pcode will not expose all QGV points when
* SAGV is forced to off/min/med/max.
*/
if (qgv_point >= bi->num_qgv_points)
return UINT_MAX;
if (num_planes <= bi->num_planes)
2023-10-24 12:59:35 +02:00
return i;
2023-08-30 17:31:07 +02:00
}
2023-10-24 12:59:35 +02:00
return 0;
2023-08-30 17:31:07 +02:00
}
static unsigned int adl_psf_bw(struct drm_i915_private *dev_priv,
int psf_gv_point)
{
const struct intel_bw_info *bi =
&dev_priv->display.bw.max[0];
return bi->psf_bw[psf_gv_point];
}
void intel_bw_init_hw(struct drm_i915_private *dev_priv)
{
if (!HAS_DISPLAY(dev_priv))
return;
if (DISPLAY_VER(dev_priv) >= 14)
tgl_get_bw_info(dev_priv, &mtl_sa_info);
else if (IS_DG2(dev_priv))
dg2_get_bw_info(dev_priv);
else if (IS_ALDERLAKE_P(dev_priv))
tgl_get_bw_info(dev_priv, &adlp_sa_info);
else if (IS_ALDERLAKE_S(dev_priv))
tgl_get_bw_info(dev_priv, &adls_sa_info);
else if (IS_ROCKETLAKE(dev_priv))
tgl_get_bw_info(dev_priv, &rkl_sa_info);
else if (DISPLAY_VER(dev_priv) == 12)
tgl_get_bw_info(dev_priv, &tgl_sa_info);
else if (DISPLAY_VER(dev_priv) == 11)
icl_get_bw_info(dev_priv, &icl_sa_info);
}
static unsigned int intel_bw_crtc_num_active_planes(const struct intel_crtc_state *crtc_state)
{
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
return hweight8(crtc_state->active_planes & ~BIT(PLANE_CURSOR));
}
static unsigned int intel_bw_crtc_data_rate(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
unsigned int data_rate = 0;
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
/*
* We assume cursors are small enough
* to not not cause bandwidth problems.
*/
if (plane_id == PLANE_CURSOR)
continue;
data_rate += crtc_state->data_rate[plane_id];
if (DISPLAY_VER(i915) < 11)
data_rate += crtc_state->data_rate_y[plane_id];
}
return data_rate;
}
/* "Maximum Pipe Read Bandwidth" */
static int intel_bw_crtc_min_cdclk(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
if (DISPLAY_VER(i915) < 12)
return 0;
return DIV_ROUND_UP_ULL(mul_u32_u32(intel_bw_crtc_data_rate(crtc_state), 10), 512);
}
void intel_bw_crtc_update(struct intel_bw_state *bw_state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
bw_state->data_rate[crtc->pipe] =
intel_bw_crtc_data_rate(crtc_state);
bw_state->num_active_planes[crtc->pipe] =
intel_bw_crtc_num_active_planes(crtc_state);
drm_dbg_kms(&i915->drm, "pipe %c data rate %u num active planes %u\n",
pipe_name(crtc->pipe),
bw_state->data_rate[crtc->pipe],
bw_state->num_active_planes[crtc->pipe]);
}
static unsigned int intel_bw_num_active_planes(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int num_active_planes = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
num_active_planes += bw_state->num_active_planes[pipe];
return num_active_planes;
}
static unsigned int intel_bw_data_rate(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
unsigned int data_rate = 0;
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
data_rate += bw_state->data_rate[pipe];
if (DISPLAY_VER(dev_priv) >= 13 && i915_vtd_active(dev_priv))
data_rate = DIV_ROUND_UP(data_rate * 105, 100);
return data_rate;
}
struct intel_bw_state *
intel_atomic_get_old_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_old_global_obj_state(state, &dev_priv->display.bw.obj);
return to_intel_bw_state(bw_state);
}
struct intel_bw_state *
intel_atomic_get_new_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_new_global_obj_state(state, &dev_priv->display.bw.obj);
return to_intel_bw_state(bw_state);
}
struct intel_bw_state *
intel_atomic_get_bw_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *bw_state;
bw_state = intel_atomic_get_global_obj_state(state, &dev_priv->display.bw.obj);
if (IS_ERR(bw_state))
return ERR_CAST(bw_state);
return to_intel_bw_state(bw_state);
}
2023-10-24 12:59:35 +02:00
static int mtl_find_qgv_points(struct drm_i915_private *i915,
unsigned int data_rate,
unsigned int num_active_planes,
struct intel_bw_state *new_bw_state)
{
unsigned int best_rate = UINT_MAX;
unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
unsigned int qgv_peak_bw = 0;
int i;
int ret;
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
/*
* If SAGV cannot be enabled, disable the pcode SAGV by passing all 1's
* for qgv peak bw in PM Demand request. So assign UINT_MAX if SAGV is
* not enabled. PM Demand code will clamp the value for the register
*/
if (!intel_can_enable_sagv(i915, new_bw_state)) {
new_bw_state->qgv_point_peakbw = U16_MAX;
drm_dbg_kms(&i915->drm, "No SAGV, use UINT_MAX as peak bw.");
return 0;
}
/*
* Find the best QGV point by comparing the data_rate with max data rate
* offered per plane group
*/
for (i = 0; i < num_qgv_points; i++) {
unsigned int bw_index =
tgl_max_bw_index(i915, num_active_planes, i);
unsigned int max_data_rate;
if (bw_index >= ARRAY_SIZE(i915->display.bw.max))
continue;
max_data_rate = i915->display.bw.max[bw_index].deratedbw[i];
if (max_data_rate < data_rate)
continue;
if (max_data_rate - data_rate < best_rate) {
best_rate = max_data_rate - data_rate;
qgv_peak_bw = i915->display.bw.max[bw_index].peakbw[i];
}
drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d qgv_peak_bw: %d\n",
i, max_data_rate, data_rate, qgv_peak_bw);
}
drm_dbg_kms(&i915->drm, "Matching peaks QGV bw: %d for required data rate: %d\n",
qgv_peak_bw, data_rate);
/*
* The display configuration cannot be supported if no QGV point
* satisfying the required data rate is found
*/
if (qgv_peak_bw == 0) {
drm_dbg_kms(&i915->drm, "No QGV points for bw %d for display configuration(%d active planes).\n",
data_rate, num_active_planes);
return -EINVAL;
}
/* MTL PM DEMAND expects QGV BW parameter in multiples of 100 mbps */
new_bw_state->qgv_point_peakbw = DIV_ROUND_CLOSEST(qgv_peak_bw, 100);
return 0;
}
static int icl_find_qgv_points(struct drm_i915_private *i915,
unsigned int data_rate,
unsigned int num_active_planes,
const struct intel_bw_state *old_bw_state,
struct intel_bw_state *new_bw_state)
{
unsigned int max_bw_point = 0;
unsigned int max_bw = 0;
unsigned int num_psf_gv_points = i915->display.bw.max[0].num_psf_gv_points;
unsigned int num_qgv_points = i915->display.bw.max[0].num_qgv_points;
u16 psf_points = 0;
u16 qgv_points = 0;
int i;
int ret;
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
for (i = 0; i < num_qgv_points; i++) {
unsigned int idx;
unsigned int max_data_rate;
if (DISPLAY_VER(i915) > 11)
idx = tgl_max_bw_index(i915, num_active_planes, i);
else
idx = icl_max_bw_index(i915, num_active_planes, i);
if (idx >= ARRAY_SIZE(i915->display.bw.max))
continue;
max_data_rate = i915->display.bw.max[idx].deratedbw[i];
/*
* We need to know which qgv point gives us
* maximum bandwidth in order to disable SAGV
* if we find that we exceed SAGV block time
* with watermarks. By that moment we already
* have those, as it is calculated earlier in
* intel_atomic_check,
*/
if (max_data_rate > max_bw) {
max_bw_point = i;
max_bw = max_data_rate;
}
if (max_data_rate >= data_rate)
qgv_points |= BIT(i);
drm_dbg_kms(&i915->drm, "QGV point %d: max bw %d required %d\n",
i, max_data_rate, data_rate);
}
for (i = 0; i < num_psf_gv_points; i++) {
unsigned int max_data_rate = adl_psf_bw(i915, i);
if (max_data_rate >= data_rate)
psf_points |= BIT(i);
drm_dbg_kms(&i915->drm, "PSF GV point %d: max bw %d"
" required %d\n",
i, max_data_rate, data_rate);
}
/*
* BSpec states that we always should have at least one allowed point
* left, so if we couldn't - simply reject the configuration for obvious
* reasons.
*/
if (qgv_points == 0) {
drm_dbg_kms(&i915->drm, "No QGV points provide sufficient memory"
" bandwidth %d for display configuration(%d active planes).\n",
data_rate, num_active_planes);
return -EINVAL;
}
if (num_psf_gv_points > 0 && psf_points == 0) {
drm_dbg_kms(&i915->drm, "No PSF GV points provide sufficient memory"
" bandwidth %d for display configuration(%d active planes).\n",
data_rate, num_active_planes);
return -EINVAL;
}
/*
* Leave only single point with highest bandwidth, if
* we can't enable SAGV due to the increased memory latency it may
* cause.
*/
if (!intel_can_enable_sagv(i915, new_bw_state)) {
qgv_points = BIT(max_bw_point);
drm_dbg_kms(&i915->drm, "No SAGV, using single QGV point %d\n",
max_bw_point);
}
/*
* We store the ones which need to be masked as that is what PCode
* actually accepts as a parameter.
*/
new_bw_state->qgv_points_mask =
~(ICL_PCODE_REQ_QGV_PT(qgv_points) |
ADLS_PCODE_REQ_PSF_PT(psf_points)) &
icl_qgv_points_mask(i915);
/*
* If the actual mask had changed we need to make sure that
* the commits are serialized(in case this is a nomodeset, nonblocking)
*/
if (new_bw_state->qgv_points_mask != old_bw_state->qgv_points_mask) {
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
if (ret)
return ret;
}
return 0;
}
static int intel_bw_check_qgv_points(struct drm_i915_private *i915,
const struct intel_bw_state *old_bw_state,
struct intel_bw_state *new_bw_state)
{
unsigned int data_rate = intel_bw_data_rate(i915, new_bw_state);
unsigned int num_active_planes =
intel_bw_num_active_planes(i915, new_bw_state);
data_rate = DIV_ROUND_UP(data_rate, 1000);
if (DISPLAY_VER(i915) >= 14)
return mtl_find_qgv_points(i915, data_rate, num_active_planes,
new_bw_state);
else
return icl_find_qgv_points(i915, data_rate, num_active_planes,
old_bw_state, new_bw_state);
}
2023-08-30 17:31:07 +02:00
static bool intel_bw_state_changed(struct drm_i915_private *i915,
const struct intel_bw_state *old_bw_state,
const struct intel_bw_state *new_bw_state)
{
enum pipe pipe;
for_each_pipe(i915, pipe) {
const struct intel_dbuf_bw *old_crtc_bw =
&old_bw_state->dbuf_bw[pipe];
const struct intel_dbuf_bw *new_crtc_bw =
&new_bw_state->dbuf_bw[pipe];
enum dbuf_slice slice;
for_each_dbuf_slice(i915, slice) {
if (old_crtc_bw->max_bw[slice] != new_crtc_bw->max_bw[slice] ||
old_crtc_bw->active_planes[slice] != new_crtc_bw->active_planes[slice])
return true;
}
if (old_bw_state->min_cdclk[pipe] != new_bw_state->min_cdclk[pipe])
return true;
}
return false;
}
static void skl_plane_calc_dbuf_bw(struct intel_bw_state *bw_state,
struct intel_crtc *crtc,
enum plane_id plane_id,
const struct skl_ddb_entry *ddb,
unsigned int data_rate)
{
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
unsigned int dbuf_mask = skl_ddb_dbuf_slice_mask(i915, ddb);
enum dbuf_slice slice;
/*
* The arbiter can only really guarantee an
* equal share of the total bw to each plane.
*/
for_each_dbuf_slice_in_mask(i915, slice, dbuf_mask) {
crtc_bw->max_bw[slice] = max(crtc_bw->max_bw[slice], data_rate);
crtc_bw->active_planes[slice] |= BIT(plane_id);
}
}
static void skl_crtc_calc_dbuf_bw(struct intel_bw_state *bw_state,
const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[crtc->pipe];
enum plane_id plane_id;
memset(crtc_bw, 0, sizeof(*crtc_bw));
if (!crtc_state->hw.active)
return;
for_each_plane_id_on_crtc(crtc, plane_id) {
/*
* We assume cursors are small enough
* to not cause bandwidth problems.
*/
if (plane_id == PLANE_CURSOR)
continue;
skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
&crtc_state->wm.skl.plane_ddb[plane_id],
crtc_state->data_rate[plane_id]);
if (DISPLAY_VER(i915) < 11)
skl_plane_calc_dbuf_bw(bw_state, crtc, plane_id,
&crtc_state->wm.skl.plane_ddb_y[plane_id],
crtc_state->data_rate[plane_id]);
}
}
/* "Maximum Data Buffer Bandwidth" */
static int
intel_bw_dbuf_min_cdclk(struct drm_i915_private *i915,
const struct intel_bw_state *bw_state)
{
unsigned int total_max_bw = 0;
enum dbuf_slice slice;
for_each_dbuf_slice(i915, slice) {
int num_active_planes = 0;
unsigned int max_bw = 0;
enum pipe pipe;
/*
* The arbiter can only really guarantee an
* equal share of the total bw to each plane.
*/
for_each_pipe(i915, pipe) {
const struct intel_dbuf_bw *crtc_bw = &bw_state->dbuf_bw[pipe];
max_bw = max(crtc_bw->max_bw[slice], max_bw);
num_active_planes += hweight8(crtc_bw->active_planes[slice]);
}
max_bw *= num_active_planes;
total_max_bw = max(total_max_bw, max_bw);
}
return DIV_ROUND_UP(total_max_bw, 64);
}
int intel_bw_min_cdclk(struct drm_i915_private *i915,
const struct intel_bw_state *bw_state)
{
enum pipe pipe;
int min_cdclk;
min_cdclk = intel_bw_dbuf_min_cdclk(i915, bw_state);
for_each_pipe(i915, pipe)
min_cdclk = max(bw_state->min_cdclk[pipe], min_cdclk);
return min_cdclk;
}
int intel_bw_calc_min_cdclk(struct intel_atomic_state *state,
bool *need_cdclk_calc)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_bw_state *new_bw_state = NULL;
const struct intel_bw_state *old_bw_state = NULL;
const struct intel_cdclk_state *cdclk_state;
const struct intel_crtc_state *crtc_state;
int old_min_cdclk, new_min_cdclk;
struct intel_crtc *crtc;
int i;
if (DISPLAY_VER(dev_priv) < 9)
return 0;
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
skl_crtc_calc_dbuf_bw(new_bw_state, crtc_state);
new_bw_state->min_cdclk[crtc->pipe] =
intel_bw_crtc_min_cdclk(crtc_state);
}
if (!old_bw_state)
return 0;
if (intel_bw_state_changed(dev_priv, old_bw_state, new_bw_state)) {
int ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
old_min_cdclk = intel_bw_min_cdclk(dev_priv, old_bw_state);
new_min_cdclk = intel_bw_min_cdclk(dev_priv, new_bw_state);
/*
* No need to check against the cdclk state if
* the min cdclk doesn't increase.
*
* Ie. we only ever increase the cdclk due to bandwidth
* requirements. This can reduce back and forth
* display blinking due to constant cdclk changes.
*/
if (new_min_cdclk <= old_min_cdclk)
return 0;
cdclk_state = intel_atomic_get_cdclk_state(state);
if (IS_ERR(cdclk_state))
return PTR_ERR(cdclk_state);
/*
* No need to recalculate the cdclk state if
* the min cdclk doesn't increase.
*
* Ie. we only ever increase the cdclk due to bandwidth
* requirements. This can reduce back and forth
* display blinking due to constant cdclk changes.
*/
if (new_min_cdclk <= cdclk_state->bw_min_cdclk)
return 0;
drm_dbg_kms(&dev_priv->drm,
"new bandwidth min cdclk (%d kHz) > old min cdclk (%d kHz)\n",
new_min_cdclk, cdclk_state->bw_min_cdclk);
*need_cdclk_calc = true;
return 0;
}
static int intel_bw_check_data_rate(struct intel_atomic_state *state, bool *changed)
{
struct drm_i915_private *i915 = to_i915(state->base.dev);
const struct intel_crtc_state *new_crtc_state, *old_crtc_state;
struct intel_crtc *crtc;
int i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
unsigned int old_data_rate =
intel_bw_crtc_data_rate(old_crtc_state);
unsigned int new_data_rate =
intel_bw_crtc_data_rate(new_crtc_state);
unsigned int old_active_planes =
intel_bw_crtc_num_active_planes(old_crtc_state);
unsigned int new_active_planes =
intel_bw_crtc_num_active_planes(new_crtc_state);
struct intel_bw_state *new_bw_state;
/*
* Avoid locking the bw state when
* nothing significant has changed.
*/
if (old_data_rate == new_data_rate &&
old_active_planes == new_active_planes)
continue;
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
new_bw_state->data_rate[crtc->pipe] = new_data_rate;
new_bw_state->num_active_planes[crtc->pipe] = new_active_planes;
*changed = true;
drm_dbg_kms(&i915->drm,
"[CRTC:%d:%s] data rate %u num active planes %u\n",
crtc->base.base.id, crtc->base.name,
new_bw_state->data_rate[crtc->pipe],
new_bw_state->num_active_planes[crtc->pipe]);
}
return 0;
}
int intel_bw_atomic_check(struct intel_atomic_state *state)
{
bool changed = false;
2023-10-24 12:59:35 +02:00
struct drm_i915_private *i915 = to_i915(state->base.dev);
struct intel_bw_state *new_bw_state;
const struct intel_bw_state *old_bw_state;
int ret;
2023-08-30 17:31:07 +02:00
/* FIXME earlier gens need some checks too */
2023-10-24 12:59:35 +02:00
if (DISPLAY_VER(i915) < 11)
2023-08-30 17:31:07 +02:00
return 0;
ret = intel_bw_check_data_rate(state, &changed);
if (ret)
return ret;
old_bw_state = intel_atomic_get_old_bw_state(state);
new_bw_state = intel_atomic_get_new_bw_state(state);
if (new_bw_state &&
2023-10-24 12:59:35 +02:00
intel_can_enable_sagv(i915, old_bw_state) !=
intel_can_enable_sagv(i915, new_bw_state))
2023-08-30 17:31:07 +02:00
changed = true;
/*
* If none of our inputs (data rates, number of active
* planes, SAGV yes/no) changed then nothing to do here.
*/
if (!changed)
return 0;
2023-10-24 12:59:35 +02:00
ret = intel_bw_check_qgv_points(i915, old_bw_state, new_bw_state);
2023-08-30 17:31:07 +02:00
if (ret)
return ret;
return 0;
}
static struct intel_global_state *
intel_bw_duplicate_state(struct intel_global_obj *obj)
{
struct intel_bw_state *state;
state = kmemdup(obj->state, sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
return &state->base;
}
static void intel_bw_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_bw_funcs = {
.atomic_duplicate_state = intel_bw_duplicate_state,
.atomic_destroy_state = intel_bw_destroy_state,
};
int intel_bw_init(struct drm_i915_private *dev_priv)
{
struct intel_bw_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
intel_atomic_global_obj_init(dev_priv, &dev_priv->display.bw.obj,
&state->base, &intel_bw_funcs);
return 0;
}