linux-zen-desktop/drivers/gpu/drm/i915/gt/gen8_engine_cs.c

839 lines
22 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2014 Intel Corporation
*/
#include "gen8_engine_cs.h"
#include "i915_drv.h"
#include "intel_engine_regs.h"
#include "intel_gpu_commands.h"
#include "intel_lrc.h"
#include "intel_ring.h"
int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
bool vf_flush_wa = false, dc_flush_wa = false;
u32 *cs, flags = 0;
int len;
flags |= PIPE_CONTROL_CS_STALL;
if (mode & EMIT_FLUSH) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (mode & EMIT_INVALIDATE) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (GRAPHICS_VER(rq->engine->i915) == 9)
vf_flush_wa = true;
/* WaForGAMHang:kbl */
if (IS_KBL_GRAPHICS_STEP(rq->engine->i915, 0, STEP_C0))
dc_flush_wa = true;
}
len = 6;
if (vf_flush_wa)
len += 6;
if (dc_flush_wa)
len += 12;
cs = intel_ring_begin(rq, len);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (vf_flush_wa)
cs = gen8_emit_pipe_control(cs, 0, 0);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
if (dc_flush_wa)
cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
intel_ring_advance(rq, cs);
return 0;
}
int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
u32 cmd, *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
cmd = MI_FLUSH_DW + 1;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (rq->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
intel_ring_advance(rq, cs);
return 0;
}
int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
if (mode & EMIT_FLUSH) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 *cs;
u32 flags = 0;
flags |= PIPE_CONTROL_CS_STALL;
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
return 0;
}
static u32 preparser_disable(bool state)
{
return MI_ARB_CHECK | 1 << 8 | state;
}
2023-10-24 12:59:35 +02:00
static i915_reg_t gen12_get_aux_inv_reg(struct intel_engine_cs *engine)
2023-08-30 17:31:07 +02:00
{
2023-10-24 12:59:35 +02:00
switch (engine->id) {
case RCS0:
return GEN12_CCS_AUX_INV;
case BCS0:
return GEN12_BCS0_AUX_INV;
case VCS0:
return GEN12_VD0_AUX_INV;
case VCS2:
return GEN12_VD2_AUX_INV;
case VECS0:
return GEN12_VE0_AUX_INV;
case CCS0:
return GEN12_CCS0_AUX_INV;
default:
return INVALID_MMIO_REG;
}
}
static bool gen12_needs_ccs_aux_inv(struct intel_engine_cs *engine)
{
i915_reg_t reg = gen12_get_aux_inv_reg(engine);
if (IS_PONTEVECCHIO(engine->i915))
return false;
/*
* So far platforms supported by i915 having flat ccs do not require
* AUX invalidation. Check also whether the engine requires it.
*/
return i915_mmio_reg_valid(reg) && !HAS_FLAT_CCS(engine->i915);
}
u32 *gen12_emit_aux_table_inv(struct intel_engine_cs *engine, u32 *cs)
{
i915_reg_t inv_reg = gen12_get_aux_inv_reg(engine);
u32 gsi_offset = engine->gt->uncore->gsi_offset;
if (!gen12_needs_ccs_aux_inv(engine))
return cs;
2023-08-30 17:31:07 +02:00
*cs++ = MI_LOAD_REGISTER_IMM(1) | MI_LRI_MMIO_REMAP_EN;
*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
*cs++ = AUX_INV;
2023-10-24 12:59:35 +02:00
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
MI_SEMAPHORE_REGISTER_POLL |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = i915_mmio_reg_offset(inv_reg) + gsi_offset;
*cs++ = 0;
*cs++ = 0;
2023-08-30 17:31:07 +02:00
return cs;
}
2023-10-24 12:59:35 +02:00
static int mtl_dummy_pipe_control(struct i915_request *rq)
{
/* Wa_14016712196 */
if (IS_MTL_GRAPHICS_STEP(rq->engine->i915, M, STEP_A0, STEP_B0) ||
IS_MTL_GRAPHICS_STEP(rq->engine->i915, P, STEP_A0, STEP_B0)) {
u32 *cs;
/* dummy PIPE_CONTROL + depth flush */
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
cs = gen12_emit_pipe_control(cs,
0,
PIPE_CONTROL_DEPTH_CACHE_FLUSH,
LRC_PPHWSP_SCRATCH_ADDR);
intel_ring_advance(rq, cs);
}
return 0;
}
2023-08-30 17:31:07 +02:00
int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
{
struct intel_engine_cs *engine = rq->engine;
2023-10-24 12:59:35 +02:00
/*
* On Aux CCS platforms the invalidation of the Aux
* table requires quiescing memory traffic beforehand
*/
if (mode & EMIT_FLUSH || gen12_needs_ccs_aux_inv(engine)) {
u32 bit_group_0 = 0;
u32 bit_group_1 = 0;
int err;
2023-08-30 17:31:07 +02:00
u32 *cs;
2023-10-24 12:59:35 +02:00
err = mtl_dummy_pipe_control(rq);
if (err)
return err;
bit_group_0 |= PIPE_CONTROL0_HDC_PIPELINE_FLUSH;
/*
* When required, in MTL and beyond platforms we
* need to set the CCS_FLUSH bit in the pipe control
*/
if (GRAPHICS_VER_FULL(rq->i915) >= IP_VER(12, 70))
bit_group_0 |= PIPE_CONTROL_CCS_FLUSH;
bit_group_1 |= PIPE_CONTROL_TILE_CACHE_FLUSH;
bit_group_1 |= PIPE_CONTROL_FLUSH_L3;
bit_group_1 |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
bit_group_1 |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2023-08-30 17:31:07 +02:00
/* Wa_1409600907:tgl,adl-p */
2023-10-24 12:59:35 +02:00
bit_group_1 |= PIPE_CONTROL_DEPTH_STALL;
bit_group_1 |= PIPE_CONTROL_DC_FLUSH_ENABLE;
bit_group_1 |= PIPE_CONTROL_FLUSH_ENABLE;
2023-08-30 17:31:07 +02:00
2023-10-24 12:59:35 +02:00
bit_group_1 |= PIPE_CONTROL_STORE_DATA_INDEX;
bit_group_1 |= PIPE_CONTROL_QW_WRITE;
2023-08-30 17:31:07 +02:00
2023-10-24 12:59:35 +02:00
bit_group_1 |= PIPE_CONTROL_CS_STALL;
2023-08-30 17:31:07 +02:00
if (!HAS_3D_PIPELINE(engine->i915))
2023-10-24 12:59:35 +02:00
bit_group_1 &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
2023-08-30 17:31:07 +02:00
else if (engine->class == COMPUTE_CLASS)
2023-10-24 12:59:35 +02:00
bit_group_1 &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
2023-08-30 17:31:07 +02:00
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
2023-10-24 12:59:35 +02:00
cs = gen12_emit_pipe_control(cs, bit_group_0, bit_group_1,
LRC_PPHWSP_SCRATCH_ADDR);
2023-08-30 17:31:07 +02:00
intel_ring_advance(rq, cs);
}
if (mode & EMIT_INVALIDATE) {
u32 flags = 0;
u32 *cs, count;
2023-10-24 12:59:35 +02:00
int err;
err = mtl_dummy_pipe_control(rq);
if (err)
return err;
2023-08-30 17:31:07 +02:00
flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STORE_DATA_INDEX;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_CS_STALL;
if (!HAS_3D_PIPELINE(engine->i915))
flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
else if (engine->class == COMPUTE_CLASS)
flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
2023-10-24 12:59:35 +02:00
count = 8;
if (gen12_needs_ccs_aux_inv(rq->engine))
count += 8;
2023-08-30 17:31:07 +02:00
cs = intel_ring_begin(rq, count);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* Prevent the pre-parser from skipping past the TLB
* invalidate and loading a stale page for the batch
* buffer / request payload.
*/
*cs++ = preparser_disable(true);
cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
2023-10-24 12:59:35 +02:00
cs = gen12_emit_aux_table_inv(engine, cs);
2023-08-30 17:31:07 +02:00
*cs++ = preparser_disable(false);
intel_ring_advance(rq, cs);
}
return 0;
}
int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
{
2023-10-24 12:59:35 +02:00
u32 cmd = 4;
u32 *cs;
2023-08-30 17:31:07 +02:00
if (mode & EMIT_INVALIDATE) {
cmd += 2;
2023-10-24 12:59:35 +02:00
if (gen12_needs_ccs_aux_inv(rq->engine))
cmd += 8;
2023-08-30 17:31:07 +02:00
}
cs = intel_ring_begin(rq, cmd);
if (IS_ERR(cs))
return PTR_ERR(cs);
if (mode & EMIT_INVALIDATE)
*cs++ = preparser_disable(true);
cmd = MI_FLUSH_DW + 1;
/*
* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (mode & EMIT_INVALIDATE) {
cmd |= MI_INVALIDATE_TLB;
if (rq->engine->class == VIDEO_DECODE_CLASS)
cmd |= MI_INVALIDATE_BSD;
2023-10-24 12:59:35 +02:00
if (gen12_needs_ccs_aux_inv(rq->engine) &&
rq->engine->class == COPY_ENGINE_CLASS)
cmd |= MI_FLUSH_DW_CCS;
2023-08-30 17:31:07 +02:00
}
*cs++ = cmd;
*cs++ = LRC_PPHWSP_SCRATCH_ADDR;
*cs++ = 0; /* upper addr */
*cs++ = 0; /* value */
2023-10-24 12:59:35 +02:00
cs = gen12_emit_aux_table_inv(rq->engine, cs);
2023-08-30 17:31:07 +02:00
if (mode & EMIT_INVALIDATE)
*cs++ = preparser_disable(false);
intel_ring_advance(rq, cs);
return 0;
}
static u32 preempt_address(struct intel_engine_cs *engine)
{
return (i915_ggtt_offset(engine->status_page.vma) +
I915_GEM_HWS_PREEMPT_ADDR);
}
static u32 hwsp_offset(const struct i915_request *rq)
{
const struct intel_timeline *tl;
/* Before the request is executed, the timeline is fixed */
tl = rcu_dereference_protected(rq->timeline,
!i915_request_signaled(rq));
/* See the comment in i915_request_active_seqno(). */
return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
}
int gen8_emit_init_breadcrumb(struct i915_request *rq)
{
u32 *cs;
GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
if (!i915_request_timeline(rq)->has_initial_breadcrumb)
return 0;
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = hwsp_offset(rq);
*cs++ = 0;
*cs++ = rq->fence.seqno - 1;
/*
* Check if we have been preempted before we even get started.
*
* After this point i915_request_started() reports true, even if
* we get preempted and so are no longer running.
*
* i915_request_started() is used during preemption processing
* to decide if the request is currently inside the user payload
* or spinning on a kernel semaphore (or earlier). For no-preemption
* requests, we do allow preemption on the semaphore before the user
* payload, but do not allow preemption once the request is started.
*
* i915_request_started() is similarly used during GPU hangs to
* determine if the user's payload was guilty, and if so, the
* request is banned. Before the request is started, it is assumed
* to be unharmed and an innocent victim of another's hang.
*/
*cs++ = MI_NOOP;
*cs++ = MI_ARB_CHECK;
intel_ring_advance(rq, cs);
/* Record the updated position of the request's payload */
rq->infix = intel_ring_offset(rq, cs);
__set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
return 0;
}
static int __xehp_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags,
u32 arb)
{
struct intel_context *ce = rq->context;
u32 wa_offset = lrc_indirect_bb(ce);
u32 *cs;
GEM_BUG_ON(!ce->wa_bb_page);
cs = intel_ring_begin(rq, 12);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | arb;
*cs++ = MI_LOAD_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT |
MI_LRI_LRM_CS_MMIO;
*cs++ = i915_mmio_reg_offset(RING_PREDICATE_RESULT(0));
*cs++ = wa_offset + DG2_PREDICATE_RESULT_WA;
*cs++ = 0;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
/* Fixup stray MI_SET_PREDICATE as it prevents us executing the ring */
*cs++ = MI_BATCH_BUFFER_START_GEN8;
*cs++ = wa_offset + DG2_PREDICATE_RESULT_BB;
*cs++ = 0;
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
intel_ring_advance(rq, cs);
return 0;
}
int xehp_emit_bb_start_noarb(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_DISABLE);
}
int xehp_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
return __xehp_emit_bb_start(rq, offset, len, flags, MI_ARB_ENABLE);
}
int gen8_emit_bb_start_noarb(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
cs = intel_ring_begin(rq, 4);
if (IS_ERR(cs))
return PTR_ERR(cs);
/*
* WaDisableCtxRestoreArbitration:bdw,chv
*
* We don't need to perform MI_ARB_ENABLE as often as we do (in
* particular all the gen that do not need the w/a at all!), if we
* took care to make sure that on every switch into this context
* (both ordinary and for preemption) that arbitrartion was enabled
* we would be fine. However, for gen8 there is another w/a that
* requires us to not preempt inside GPGPU execution, so we keep
* arbitration disabled for gen8 batches. Arbitration will be
* re-enabled before we close the request
* (engine->emit_fini_breadcrumb).
*/
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
/* FIXME(BDW+): Address space and security selectors. */
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
intel_ring_advance(rq, cs);
return 0;
}
int gen8_emit_bb_start(struct i915_request *rq,
u64 offset, u32 len,
const unsigned int flags)
{
u32 *cs;
if (unlikely(i915_request_has_nopreempt(rq)))
return gen8_emit_bb_start_noarb(rq, offset, len, flags);
cs = intel_ring_begin(rq, 6);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
*cs++ = MI_BATCH_BUFFER_START_GEN8 |
(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
*cs++ = lower_32_bits(offset);
*cs++ = upper_32_bits(offset);
*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static void assert_request_valid(struct i915_request *rq)
{
struct intel_ring *ring __maybe_unused = rq->ring;
/* Can we unwind this request without appearing to go forwards? */
GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
{
/* Ensure there's always at least one preemption point per-request. */
*cs++ = MI_ARB_CHECK;
*cs++ = MI_NOOP;
rq->wa_tail = intel_ring_offset(rq, cs);
/* Check that entire request is less than half the ring */
assert_request_valid(rq);
return cs;
}
static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = preempt_address(rq->engine);
*cs++ = 0;
*cs++ = MI_NOOP;
return cs;
}
static __always_inline u32*
gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(rq->engine) &&
!intel_uc_uses_guc_submission(&rq->engine->gt->uc))
cs = emit_preempt_busywait(rq, cs);
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return gen8_emit_wa_tail(rq, cs);
}
static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
{
return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
}
u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
}
u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TLB_INVALIDATE |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
/* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
cs = gen8_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen8_emit_fini_breadcrumb_tail(rq, cs);
}
u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
cs = gen8_emit_pipe_control(cs,
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TLB_INVALIDATE |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE,
0);
/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
cs = gen8_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen8_emit_fini_breadcrumb_tail(rq, cs);
}
/*
* Note that the CS instruction pre-parser will not stall on the breadcrumb
* flush and will continue pre-fetching the instructions after it before the
* memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
* BB_START/END instructions, so, even though we might pre-fetch the pre-amble
* of the next request before the memory has been flushed, we're guaranteed that
* we won't access the batch itself too early.
* However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
* so, if the current request is modifying an instruction in the next request on
* the same intel_context, we might pre-fetch and then execute the pre-update
* instruction. To avoid this, the users of self-modifying code should either
* disable the parser around the code emitting the memory writes, via a new flag
* added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
* the in-kernel use-cases we've opted to use a separate context, see
* reloc_gpu() as an example.
* All the above applies only to the instructions themselves. Non-inline data
* used by the instructions is not pre-fetched.
*/
static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
*cs++ = MI_SEMAPHORE_WAIT_TOKEN |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = preempt_address(rq->engine);
*cs++ = 0;
*cs++ = 0;
return cs;
}
/* Wa_14014475959:dg2 */
#define CCS_SEMAPHORE_PPHWSP_OFFSET 0x540
static u32 ccs_semaphore_offset(struct i915_request *rq)
{
return i915_ggtt_offset(rq->context->state) +
(LRC_PPHWSP_PN * PAGE_SIZE) + CCS_SEMAPHORE_PPHWSP_OFFSET;
}
/* Wa_14014475959:dg2 */
static u32 *ccs_emit_wa_busywait(struct i915_request *rq, u32 *cs)
{
int i;
*cs++ = MI_ATOMIC_INLINE | MI_ATOMIC_GLOBAL_GTT | MI_ATOMIC_CS_STALL |
MI_ATOMIC_MOVE;
*cs++ = ccs_semaphore_offset(rq);
*cs++ = 0;
*cs++ = 1;
/*
* When MI_ATOMIC_INLINE_DATA set this command must be 11 DW + (1 NOP)
* to align. 4 DWs above + 8 filler DWs here.
*/
for (i = 0; i < 8; ++i)
*cs++ = 0;
*cs++ = MI_SEMAPHORE_WAIT |
MI_SEMAPHORE_GLOBAL_GTT |
MI_SEMAPHORE_POLL |
MI_SEMAPHORE_SAD_EQ_SDD;
*cs++ = 0;
*cs++ = ccs_semaphore_offset(rq);
*cs++ = 0;
return cs;
}
static __always_inline u32*
gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
{
*cs++ = MI_USER_INTERRUPT;
*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
if (intel_engine_has_semaphores(rq->engine) &&
!intel_uc_uses_guc_submission(&rq->engine->gt->uc))
cs = gen12_emit_preempt_busywait(rq, cs);
/* Wa_14014475959:dg2 */
if (intel_engine_uses_wa_hold_ccs_switchout(rq->engine))
cs = ccs_emit_wa_busywait(rq, cs);
rq->tail = intel_ring_offset(rq, cs);
assert_ring_tail_valid(rq->ring, rq->tail);
return gen8_emit_wa_tail(rq, cs);
}
u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
{
/* XXX Stalling flush before seqno write; post-sync not */
cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
return gen12_emit_fini_breadcrumb_tail(rq, cs);
}
u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
{
struct drm_i915_private *i915 = rq->engine->i915;
u32 flags = (PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_TLB_INVALIDATE |
PIPE_CONTROL_TILE_CACHE_FLUSH |
PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
PIPE_CONTROL_DEPTH_CACHE_FLUSH |
PIPE_CONTROL_DC_FLUSH_ENABLE |
PIPE_CONTROL_FLUSH_ENABLE);
2023-10-24 12:59:35 +02:00
/* Wa_14016712196 */
if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
/* dummy PIPE_CONTROL + depth flush */
cs = gen12_emit_pipe_control(cs, 0,
PIPE_CONTROL_DEPTH_CACHE_FLUSH, 0);
2023-08-30 17:31:07 +02:00
if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
/* Wa_1409600907 */
flags |= PIPE_CONTROL_DEPTH_STALL;
if (!HAS_3D_PIPELINE(rq->engine->i915))
flags &= ~PIPE_CONTROL_3D_ARCH_FLAGS;
else if (rq->engine->class == COMPUTE_CLASS)
flags &= ~PIPE_CONTROL_3D_ENGINE_FLAGS;
cs = gen12_emit_pipe_control(cs, PIPE_CONTROL0_HDC_PIPELINE_FLUSH, flags, 0);
/*XXX: Look at gen8_emit_fini_breadcrumb_rcs */
cs = gen12_emit_ggtt_write_rcs(cs,
rq->fence.seqno,
hwsp_offset(rq),
0,
PIPE_CONTROL_FLUSH_ENABLE |
PIPE_CONTROL_CS_STALL);
return gen12_emit_fini_breadcrumb_tail(rq, cs);
}