linux-zen-desktop/drivers/gpu/drm/mgag200/mgag200_mode.c

839 lines
23 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2010 Matt Turner.
* Copyright 2012 Red Hat
*
* Authors: Matthew Garrett
* Matt Turner
* Dave Airlie
*/
#include <linux/delay.h>
#include <linux/iosys-map.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_damage_helper.h>
#include <drm/drm_format_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_framebuffer.h>
#include <drm/drm_gem_atomic_helper.h>
#include <drm/drm_gem_framebuffer_helper.h>
#include <drm/drm_print.h>
#include <drm/drm_probe_helper.h>
#include "mgag200_drv.h"
/*
* This file contains setup code for the CRTC.
*/
static void mgag200_crtc_set_gamma_linear(struct mga_device *mdev,
const struct drm_format_info *format)
{
int i;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
switch (format->format) {
case DRM_FORMAT_RGB565:
/* Use better interpolation, to take 32 values from 0 to 255 */
for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 8 + i / 4);
}
/* Green has one more bit, so add padding with 0 for red and blue. */
for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i * 4 + i / 16);
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
}
break;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_XRGB8888:
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
WREG8(DAC_INDEX + MGA1064_COL_PAL, i);
}
break;
default:
drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
&format->format);
break;
}
}
static void mgag200_crtc_set_gamma(struct mga_device *mdev,
const struct drm_format_info *format,
struct drm_color_lut *lut)
{
int i;
WREG8(DAC_INDEX + MGA1064_INDEX, 0);
switch (format->format) {
case DRM_FORMAT_RGB565:
/* Use better interpolation, to take 32 values from lut[0] to lut[255] */
for (i = 0; i < MGAG200_LUT_SIZE / 8; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].red >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 8 + i / 4].blue >> 8);
}
/* Green has one more bit, so add padding with 0 for red and blue. */
for (i = MGAG200_LUT_SIZE / 8; i < MGAG200_LUT_SIZE / 4; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i * 4 + i / 16].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, 0);
}
break;
case DRM_FORMAT_RGB888:
case DRM_FORMAT_XRGB8888:
for (i = 0; i < MGAG200_LUT_SIZE; i++) {
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].red >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].green >> 8);
WREG8(DAC_INDEX + MGA1064_COL_PAL, lut[i].blue >> 8);
}
break;
default:
drm_warn_once(&mdev->base, "Unsupported format %p4cc for gamma correction\n",
&format->format);
break;
}
}
static inline void mga_wait_vsync(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ/10;
unsigned int status = 0;
do {
status = RREG32(MGAREG_Status);
} while ((status & 0x08) && time_before(jiffies, timeout));
timeout = jiffies + HZ/10;
status = 0;
do {
status = RREG32(MGAREG_Status);
} while (!(status & 0x08) && time_before(jiffies, timeout));
}
static inline void mga_wait_busy(struct mga_device *mdev)
{
unsigned long timeout = jiffies + HZ;
unsigned int status = 0;
do {
status = RREG8(MGAREG_Status + 2);
} while ((status & 0x01) && time_before(jiffies, timeout));
}
/*
* This is how the framebuffer base address is stored in g200 cards:
* * Assume @offset is the gpu_addr variable of the framebuffer object
* * Then addr is the number of _pixels_ (not bytes) from the start of
* VRAM to the first pixel we want to display. (divided by 2 for 32bit
* framebuffers)
* * addr is stored in the CRTCEXT0, CRTCC and CRTCD registers
* addr<20> -> CRTCEXT0<6>
* addr<19-16> -> CRTCEXT0<3-0>
* addr<15-8> -> CRTCC<7-0>
* addr<7-0> -> CRTCD<7-0>
*
* CRTCEXT0 has to be programmed last to trigger an update and make the
* new addr variable take effect.
*/
static void mgag200_set_startadd(struct mga_device *mdev,
unsigned long offset)
{
struct drm_device *dev = &mdev->base;
u32 startadd;
u8 crtcc, crtcd, crtcext0;
startadd = offset / 8;
if (startadd > 0)
drm_WARN_ON_ONCE(dev, mdev->info->bug_no_startadd);
/*
* Can't store addresses any higher than that, but we also
* don't have more than 16 MiB of memory, so it should be fine.
*/
drm_WARN_ON(dev, startadd > 0x1fffff);
RREG_ECRT(0x00, crtcext0);
crtcc = (startadd >> 8) & 0xff;
crtcd = startadd & 0xff;
crtcext0 &= 0xb0;
crtcext0 |= ((startadd >> 14) & BIT(6)) |
((startadd >> 16) & 0x0f);
WREG_CRT(0x0c, crtcc);
WREG_CRT(0x0d, crtcd);
WREG_ECRT(0x00, crtcext0);
}
void mgag200_init_registers(struct mga_device *mdev)
{
u8 crtc11, misc;
WREG_SEQ(2, 0x0f);
WREG_SEQ(3, 0x00);
WREG_SEQ(4, 0x0e);
WREG_CRT(10, 0);
WREG_CRT(11, 0);
WREG_CRT(12, 0);
WREG_CRT(13, 0);
WREG_CRT(14, 0);
WREG_CRT(15, 0);
RREG_CRT(0x11, crtc11);
crtc11 &= ~(MGAREG_CRTC11_CRTCPROTECT |
MGAREG_CRTC11_VINTEN |
MGAREG_CRTC11_VINTCLR);
WREG_CRT(0x11, crtc11);
misc = RREG8(MGA_MISC_IN);
misc |= MGAREG_MISC_IOADSEL;
WREG8(MGA_MISC_OUT, misc);
}
void mgag200_set_mode_regs(struct mga_device *mdev, const struct drm_display_mode *mode)
{
const struct mgag200_device_info *info = mdev->info;
unsigned int hdisplay, hsyncstart, hsyncend, htotal;
unsigned int vdisplay, vsyncstart, vsyncend, vtotal;
u8 misc, crtcext1, crtcext2, crtcext5;
hdisplay = mode->hdisplay / 8 - 1;
hsyncstart = mode->hsync_start / 8 - 1;
hsyncend = mode->hsync_end / 8 - 1;
htotal = mode->htotal / 8 - 1;
/* Work around hardware quirk */
if ((htotal & 0x07) == 0x06 || (htotal & 0x07) == 0x04)
htotal++;
vdisplay = mode->vdisplay - 1;
vsyncstart = mode->vsync_start - 1;
vsyncend = mode->vsync_end - 1;
vtotal = mode->vtotal - 2;
misc = RREG8(MGA_MISC_IN);
if (mode->flags & DRM_MODE_FLAG_NHSYNC)
misc |= MGAREG_MISC_HSYNCPOL;
else
misc &= ~MGAREG_MISC_HSYNCPOL;
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
misc |= MGAREG_MISC_VSYNCPOL;
else
misc &= ~MGAREG_MISC_VSYNCPOL;
crtcext1 = (((htotal - 4) & 0x100) >> 8) |
((hdisplay & 0x100) >> 7) |
((hsyncstart & 0x100) >> 6) |
(htotal & 0x40);
if (info->has_vidrst)
crtcext1 |= MGAREG_CRTCEXT1_VRSTEN |
MGAREG_CRTCEXT1_HRSTEN;
crtcext2 = ((vtotal & 0xc00) >> 10) |
((vdisplay & 0x400) >> 8) |
((vdisplay & 0xc00) >> 7) |
((vsyncstart & 0xc00) >> 5) |
((vdisplay & 0x400) >> 3);
crtcext5 = 0x00;
WREG_CRT(0, htotal - 4);
WREG_CRT(1, hdisplay);
WREG_CRT(2, hdisplay);
WREG_CRT(3, (htotal & 0x1F) | 0x80);
WREG_CRT(4, hsyncstart);
WREG_CRT(5, ((htotal & 0x20) << 2) | (hsyncend & 0x1F));
WREG_CRT(6, vtotal & 0xFF);
WREG_CRT(7, ((vtotal & 0x100) >> 8) |
((vdisplay & 0x100) >> 7) |
((vsyncstart & 0x100) >> 6) |
((vdisplay & 0x100) >> 5) |
((vdisplay & 0x100) >> 4) | /* linecomp */
((vtotal & 0x200) >> 4) |
((vdisplay & 0x200) >> 3) |
((vsyncstart & 0x200) >> 2));
WREG_CRT(9, ((vdisplay & 0x200) >> 4) |
((vdisplay & 0x200) >> 3));
WREG_CRT(16, vsyncstart & 0xFF);
WREG_CRT(17, (vsyncend & 0x0F) | 0x20);
WREG_CRT(18, vdisplay & 0xFF);
WREG_CRT(20, 0);
WREG_CRT(21, vdisplay & 0xFF);
WREG_CRT(22, (vtotal + 1) & 0xFF);
WREG_CRT(23, 0xc3);
WREG_CRT(24, vdisplay & 0xFF);
WREG_ECRT(0x01, crtcext1);
WREG_ECRT(0x02, crtcext2);
WREG_ECRT(0x05, crtcext5);
WREG8(MGA_MISC_OUT, misc);
}
static u8 mgag200_get_bpp_shift(const struct drm_format_info *format)
{
static const u8 bpp_shift[] = {0, 1, 0, 2};
return bpp_shift[format->cpp[0] - 1];
}
/*
* Calculates the HW offset value from the framebuffer's pitch. The
* offset is a multiple of the pixel size and depends on the display
* format.
*/
static u32 mgag200_calculate_offset(struct mga_device *mdev,
const struct drm_framebuffer *fb)
{
u32 offset = fb->pitches[0] / fb->format->cpp[0];
u8 bppshift = mgag200_get_bpp_shift(fb->format);
if (fb->format->cpp[0] * 8 == 24)
offset = (offset * 3) >> (4 - bppshift);
else
offset = offset >> (4 - bppshift);
return offset;
}
static void mgag200_set_offset(struct mga_device *mdev,
const struct drm_framebuffer *fb)
{
u8 crtc13, crtcext0;
u32 offset = mgag200_calculate_offset(mdev, fb);
RREG_ECRT(0, crtcext0);
crtc13 = offset & 0xff;
crtcext0 &= ~MGAREG_CRTCEXT0_OFFSET_MASK;
crtcext0 |= (offset >> 4) & MGAREG_CRTCEXT0_OFFSET_MASK;
WREG_CRT(0x13, crtc13);
WREG_ECRT(0x00, crtcext0);
}
void mgag200_set_format_regs(struct mga_device *mdev, const struct drm_format_info *format)
{
struct drm_device *dev = &mdev->base;
unsigned int bpp, bppshift, scale;
u8 crtcext3, xmulctrl;
bpp = format->cpp[0] * 8;
bppshift = mgag200_get_bpp_shift(format);
switch (bpp) {
case 24:
scale = ((1 << bppshift) * 3) - 1;
break;
default:
scale = (1 << bppshift) - 1;
break;
}
RREG_ECRT(3, crtcext3);
switch (bpp) {
case 8:
xmulctrl = MGA1064_MUL_CTL_8bits;
break;
case 16:
if (format->depth == 15)
xmulctrl = MGA1064_MUL_CTL_15bits;
else
xmulctrl = MGA1064_MUL_CTL_16bits;
break;
case 24:
xmulctrl = MGA1064_MUL_CTL_24bits;
break;
case 32:
xmulctrl = MGA1064_MUL_CTL_32_24bits;
break;
default:
/* BUG: We should have caught this problem already. */
drm_WARN_ON(dev, "invalid format depth\n");
return;
}
crtcext3 &= ~GENMASK(2, 0);
crtcext3 |= scale;
WREG_DAC(MGA1064_MUL_CTL, xmulctrl);
WREG_GFX(0, 0x00);
WREG_GFX(1, 0x00);
WREG_GFX(2, 0x00);
WREG_GFX(3, 0x00);
WREG_GFX(4, 0x00);
WREG_GFX(5, 0x40);
/* GCTL6 should be 0x05, but we configure memmapsl to 0xb8000 (text mode),
* so that it doesn't hang when running kexec/kdump on G200_SE rev42.
*/
WREG_GFX(6, 0x0d);
WREG_GFX(7, 0x0f);
WREG_GFX(8, 0x0f);
WREG_ECRT(3, crtcext3);
}
void mgag200_enable_display(struct mga_device *mdev)
{
u8 seq0, crtcext1;
RREG_SEQ(0x00, seq0);
seq0 |= MGAREG_SEQ0_SYNCRST |
MGAREG_SEQ0_ASYNCRST;
WREG_SEQ(0x00, seq0);
/*
* TODO: replace busy waiting with vblank IRQ; put
* msleep(50) before changing SCROFF
*/
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
RREG_ECRT(0x01, crtcext1);
crtcext1 &= ~MGAREG_CRTCEXT1_VSYNCOFF;
crtcext1 &= ~MGAREG_CRTCEXT1_HSYNCOFF;
WREG_ECRT(0x01, crtcext1);
}
static void mgag200_disable_display(struct mga_device *mdev)
{
u8 seq0, crtcext1;
RREG_SEQ(0x00, seq0);
seq0 &= ~MGAREG_SEQ0_SYNCRST;
WREG_SEQ(0x00, seq0);
/*
* TODO: replace busy waiting with vblank IRQ; put
* msleep(50) before changing SCROFF
*/
mga_wait_vsync(mdev);
mga_wait_busy(mdev);
RREG_ECRT(0x01, crtcext1);
crtcext1 |= MGAREG_CRTCEXT1_VSYNCOFF |
MGAREG_CRTCEXT1_HSYNCOFF;
WREG_ECRT(0x01, crtcext1);
}
static void mgag200_handle_damage(struct mga_device *mdev, const struct iosys_map *vmap,
struct drm_framebuffer *fb, struct drm_rect *clip)
{
struct iosys_map dst = IOSYS_MAP_INIT_VADDR_IOMEM(mdev->vram);
iosys_map_incr(&dst, drm_fb_clip_offset(fb->pitches[0], fb->format, clip));
drm_fb_memcpy(&dst, fb->pitches, vmap, fb, clip);
}
/*
* Primary plane
*/
const uint32_t mgag200_primary_plane_formats[] = {
DRM_FORMAT_XRGB8888,
DRM_FORMAT_RGB565,
DRM_FORMAT_RGB888,
};
const size_t mgag200_primary_plane_formats_size = ARRAY_SIZE(mgag200_primary_plane_formats);
const uint64_t mgag200_primary_plane_fmtmods[] = {
DRM_FORMAT_MOD_LINEAR,
DRM_FORMAT_MOD_INVALID
};
int mgag200_primary_plane_helper_atomic_check(struct drm_plane *plane,
struct drm_atomic_state *new_state)
{
struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(new_state, plane);
struct drm_framebuffer *new_fb = new_plane_state->fb;
struct drm_framebuffer *fb = NULL;
struct drm_crtc *new_crtc = new_plane_state->crtc;
struct drm_crtc_state *new_crtc_state = NULL;
struct mgag200_crtc_state *new_mgag200_crtc_state;
int ret;
if (new_crtc)
new_crtc_state = drm_atomic_get_new_crtc_state(new_state, new_crtc);
ret = drm_atomic_helper_check_plane_state(new_plane_state, new_crtc_state,
DRM_PLANE_NO_SCALING,
DRM_PLANE_NO_SCALING,
false, true);
if (ret)
return ret;
else if (!new_plane_state->visible)
return 0;
if (plane->state)
fb = plane->state->fb;
if (!fb || (fb->format != new_fb->format))
new_crtc_state->mode_changed = true; /* update PLL settings */
new_mgag200_crtc_state = to_mgag200_crtc_state(new_crtc_state);
new_mgag200_crtc_state->format = new_fb->format;
return 0;
}
void mgag200_primary_plane_helper_atomic_update(struct drm_plane *plane,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
struct drm_plane_state *plane_state = plane->state;
struct drm_plane_state *old_plane_state = drm_atomic_get_old_plane_state(old_state, plane);
struct drm_shadow_plane_state *shadow_plane_state = to_drm_shadow_plane_state(plane_state);
struct drm_framebuffer *fb = plane_state->fb;
struct drm_atomic_helper_damage_iter iter;
struct drm_rect damage;
drm_atomic_helper_damage_iter_init(&iter, old_plane_state, plane_state);
drm_atomic_for_each_plane_damage(&iter, &damage) {
mgag200_handle_damage(mdev, shadow_plane_state->data, fb, &damage);
}
/* Always scanout image at VRAM offset 0 */
mgag200_set_startadd(mdev, (u32)0);
mgag200_set_offset(mdev, fb);
2023-10-24 12:59:35 +02:00
}
2023-08-30 17:31:07 +02:00
2023-10-24 12:59:35 +02:00
void mgag200_primary_plane_helper_atomic_enable(struct drm_plane *plane,
struct drm_atomic_state *state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
u8 seq1;
RREG_SEQ(0x01, seq1);
seq1 &= ~MGAREG_SEQ1_SCROFF;
WREG_SEQ(0x01, seq1);
msleep(20);
2023-08-30 17:31:07 +02:00
}
void mgag200_primary_plane_helper_atomic_disable(struct drm_plane *plane,
struct drm_atomic_state *old_state)
{
struct drm_device *dev = plane->dev;
struct mga_device *mdev = to_mga_device(dev);
u8 seq1;
RREG_SEQ(0x01, seq1);
seq1 |= MGAREG_SEQ1_SCROFF;
WREG_SEQ(0x01, seq1);
msleep(20);
}
/*
* CRTC
*/
enum drm_mode_status mgag200_crtc_helper_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct mga_device *mdev = to_mga_device(crtc->dev);
const struct mgag200_device_info *info = mdev->info;
/*
* Some devices have additional limits on the size of the
* display mode.
*/
if (mode->hdisplay > info->max_hdisplay)
return MODE_VIRTUAL_X;
if (mode->vdisplay > info->max_vdisplay)
return MODE_VIRTUAL_Y;
if ((mode->hdisplay % 8) != 0 || (mode->hsync_start % 8) != 0 ||
(mode->hsync_end % 8) != 0 || (mode->htotal % 8) != 0) {
return MODE_H_ILLEGAL;
}
if (mode->crtc_hdisplay > 2048 || mode->crtc_hsync_start > 4096 ||
mode->crtc_hsync_end > 4096 || mode->crtc_htotal > 4096 ||
mode->crtc_vdisplay > 2048 || mode->crtc_vsync_start > 4096 ||
mode->crtc_vsync_end > 4096 || mode->crtc_vtotal > 4096) {
return MODE_BAD;
}
return MODE_OK;
}
int mgag200_crtc_helper_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *new_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *new_crtc_state = drm_atomic_get_new_crtc_state(new_state, crtc);
struct drm_property_blob *new_gamma_lut = new_crtc_state->gamma_lut;
int ret;
if (!new_crtc_state->enable)
return 0;
ret = drm_atomic_helper_check_crtc_primary_plane(new_crtc_state);
if (ret)
return ret;
if (new_crtc_state->mode_changed) {
if (funcs->pixpllc_atomic_check) {
ret = funcs->pixpllc_atomic_check(crtc, new_state);
if (ret)
return ret;
}
}
if (new_crtc_state->color_mgmt_changed && new_gamma_lut) {
if (new_gamma_lut->length != MGAG200_LUT_SIZE * sizeof(struct drm_color_lut)) {
drm_dbg(dev, "Wrong size for gamma_lut %zu\n", new_gamma_lut->length);
return -EINVAL;
}
}
return 0;
}
void mgag200_crtc_helper_atomic_flush(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
if (crtc_state->enable && crtc_state->color_mgmt_changed) {
const struct drm_format_info *format = mgag200_crtc_state->format;
if (crtc_state->gamma_lut)
mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
else
mgag200_crtc_set_gamma_linear(mdev, format);
}
}
void mgag200_crtc_helper_atomic_enable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct drm_device *dev = crtc->dev;
struct mga_device *mdev = to_mga_device(dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
struct drm_crtc_state *crtc_state = crtc->state;
struct drm_display_mode *adjusted_mode = &crtc_state->adjusted_mode;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
const struct drm_format_info *format = mgag200_crtc_state->format;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_set_format_regs(mdev, format);
mgag200_set_mode_regs(mdev, adjusted_mode);
if (funcs->pixpllc_atomic_update)
funcs->pixpllc_atomic_update(crtc, old_state);
if (crtc_state->gamma_lut)
mgag200_crtc_set_gamma(mdev, format, crtc_state->gamma_lut->data);
else
mgag200_crtc_set_gamma_linear(mdev, format);
mgag200_enable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
void mgag200_crtc_helper_atomic_disable(struct drm_crtc *crtc, struct drm_atomic_state *old_state)
{
struct mga_device *mdev = to_mga_device(crtc->dev);
const struct mgag200_device_funcs *funcs = mdev->funcs;
if (funcs->disable_vidrst)
funcs->disable_vidrst(mdev);
mgag200_disable_display(mdev);
if (funcs->enable_vidrst)
funcs->enable_vidrst(mdev);
}
void mgag200_crtc_reset(struct drm_crtc *crtc)
{
struct mgag200_crtc_state *mgag200_crtc_state;
if (crtc->state)
crtc->funcs->atomic_destroy_state(crtc, crtc->state);
mgag200_crtc_state = kzalloc(sizeof(*mgag200_crtc_state), GFP_KERNEL);
if (mgag200_crtc_state)
__drm_atomic_helper_crtc_reset(crtc, &mgag200_crtc_state->base);
else
__drm_atomic_helper_crtc_reset(crtc, NULL);
}
struct drm_crtc_state *mgag200_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct drm_crtc_state *crtc_state = crtc->state;
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
struct mgag200_crtc_state *new_mgag200_crtc_state;
if (!crtc_state)
return NULL;
new_mgag200_crtc_state = kzalloc(sizeof(*new_mgag200_crtc_state), GFP_KERNEL);
if (!new_mgag200_crtc_state)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &new_mgag200_crtc_state->base);
new_mgag200_crtc_state->format = mgag200_crtc_state->format;
memcpy(&new_mgag200_crtc_state->pixpllc, &mgag200_crtc_state->pixpllc,
sizeof(new_mgag200_crtc_state->pixpllc));
return &new_mgag200_crtc_state->base;
}
void mgag200_crtc_atomic_destroy_state(struct drm_crtc *crtc, struct drm_crtc_state *crtc_state)
{
struct mgag200_crtc_state *mgag200_crtc_state = to_mgag200_crtc_state(crtc_state);
__drm_atomic_helper_crtc_destroy_state(&mgag200_crtc_state->base);
kfree(mgag200_crtc_state);
}
/*
* Connector
*/
int mgag200_vga_connector_helper_get_modes(struct drm_connector *connector)
{
struct mga_device *mdev = to_mga_device(connector->dev);
int ret;
/*
* Protect access to I/O registers from concurrent modesetting
* by acquiring the I/O-register lock.
*/
mutex_lock(&mdev->rmmio_lock);
ret = drm_connector_helper_get_modes_from_ddc(connector);
mutex_unlock(&mdev->rmmio_lock);
return ret;
}
/*
* Mode config
*/
static void mgag200_mode_config_helper_atomic_commit_tail(struct drm_atomic_state *state)
{
struct mga_device *mdev = to_mga_device(state->dev);
/*
* Concurrent operations could possibly trigger a call to
* drm_connector_helper_funcs.get_modes by trying to read the
* display modes. Protect access to I/O registers by acquiring
* the I/O-register lock.
*/
mutex_lock(&mdev->rmmio_lock);
drm_atomic_helper_commit_tail(state);
mutex_unlock(&mdev->rmmio_lock);
}
static const struct drm_mode_config_helper_funcs mgag200_mode_config_helper_funcs = {
.atomic_commit_tail = mgag200_mode_config_helper_atomic_commit_tail,
};
/* Calculates a mode's required memory bandwidth (in KiB/sec). */
static uint32_t mgag200_calculate_mode_bandwidth(const struct drm_display_mode *mode,
unsigned int bits_per_pixel)
{
uint32_t total_area, divisor;
uint64_t active_area, pixels_per_second, bandwidth;
uint64_t bytes_per_pixel = (bits_per_pixel + 7) / 8;
divisor = 1024;
if (!mode->htotal || !mode->vtotal || !mode->clock)
return 0;
active_area = mode->hdisplay * mode->vdisplay;
total_area = mode->htotal * mode->vtotal;
pixels_per_second = active_area * mode->clock * 1000;
do_div(pixels_per_second, total_area);
bandwidth = pixels_per_second * bytes_per_pixel * 100;
do_div(bandwidth, divisor);
return (uint32_t)bandwidth;
}
static enum drm_mode_status mgag200_mode_config_mode_valid(struct drm_device *dev,
const struct drm_display_mode *mode)
{
static const unsigned int max_bpp = 4; // DRM_FORMAT_XRGB8888
struct mga_device *mdev = to_mga_device(dev);
unsigned long fbsize, fbpages, max_fbpages;
const struct mgag200_device_info *info = mdev->info;
max_fbpages = mdev->vram_available >> PAGE_SHIFT;
fbsize = mode->hdisplay * mode->vdisplay * max_bpp;
fbpages = DIV_ROUND_UP(fbsize, PAGE_SIZE);
if (fbpages > max_fbpages)
return MODE_MEM;
/*
* Test the mode's required memory bandwidth if the device
* specifies a maximum. Not all devices do though.
*/
if (info->max_mem_bandwidth) {
uint32_t mode_bandwidth = mgag200_calculate_mode_bandwidth(mode, max_bpp * 8);
if (mode_bandwidth > (info->max_mem_bandwidth * 1024))
return MODE_BAD;
}
return MODE_OK;
}
static const struct drm_mode_config_funcs mgag200_mode_config_funcs = {
.fb_create = drm_gem_fb_create_with_dirty,
.mode_valid = mgag200_mode_config_mode_valid,
.atomic_check = drm_atomic_helper_check,
.atomic_commit = drm_atomic_helper_commit,
};
int mgag200_mode_config_init(struct mga_device *mdev, resource_size_t vram_available)
{
struct drm_device *dev = &mdev->base;
int ret;
mdev->vram_available = vram_available;
ret = drmm_mode_config_init(dev);
if (ret) {
drm_err(dev, "drmm_mode_config_init() failed: %d\n", ret);
return ret;
}
dev->mode_config.max_width = MGAG200_MAX_FB_WIDTH;
dev->mode_config.max_height = MGAG200_MAX_FB_HEIGHT;
dev->mode_config.preferred_depth = 24;
dev->mode_config.funcs = &mgag200_mode_config_funcs;
dev->mode_config.helper_private = &mgag200_mode_config_helper_funcs;
return 0;
}