linux-zen-desktop/drivers/mtd/nand/raw/brcmnand/brcmnand.c

3324 lines
88 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright © 2010-2015 Broadcom Corporation
*/
#include <linux/clk.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/platform_data/brcmnand.h>
#include <linux/err.h>
#include <linux/completion.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/ioport.h>
#include <linux/bug.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include <linux/mm.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/slab.h>
#include <linux/static_key.h>
#include <linux/list.h>
#include <linux/log2.h>
#include "brcmnand.h"
/*
* This flag controls if WP stays on between erase/write commands to mitigate
* flash corruption due to power glitches. Values:
* 0: NAND_WP is not used or not available
* 1: NAND_WP is set by default, cleared for erase/write operations
* 2: NAND_WP is always cleared
*/
static int wp_on = 1;
module_param(wp_on, int, 0444);
/***********************************************************************
* Definitions
***********************************************************************/
#define DRV_NAME "brcmnand"
#define CMD_NULL 0x00
#define CMD_PAGE_READ 0x01
#define CMD_SPARE_AREA_READ 0x02
#define CMD_STATUS_READ 0x03
#define CMD_PROGRAM_PAGE 0x04
#define CMD_PROGRAM_SPARE_AREA 0x05
#define CMD_COPY_BACK 0x06
#define CMD_DEVICE_ID_READ 0x07
#define CMD_BLOCK_ERASE 0x08
#define CMD_FLASH_RESET 0x09
#define CMD_BLOCKS_LOCK 0x0a
#define CMD_BLOCKS_LOCK_DOWN 0x0b
#define CMD_BLOCKS_UNLOCK 0x0c
#define CMD_READ_BLOCKS_LOCK_STATUS 0x0d
#define CMD_PARAMETER_READ 0x0e
#define CMD_PARAMETER_CHANGE_COL 0x0f
#define CMD_LOW_LEVEL_OP 0x10
struct brcm_nand_dma_desc {
u32 next_desc;
u32 next_desc_ext;
u32 cmd_irq;
u32 dram_addr;
u32 dram_addr_ext;
u32 tfr_len;
u32 total_len;
u32 flash_addr;
u32 flash_addr_ext;
u32 cs;
u32 pad2[5];
u32 status_valid;
} __packed;
/* Bitfields for brcm_nand_dma_desc::status_valid */
#define FLASH_DMA_ECC_ERROR (1 << 8)
#define FLASH_DMA_CORR_ERROR (1 << 9)
/* Bitfields for DMA_MODE */
#define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */
#define FLASH_DMA_MODE_MODE BIT(0) /* link list */
#define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \
FLASH_DMA_MODE_MODE)
/* 512B flash cache in the NAND controller HW */
#define FC_SHIFT 9U
#define FC_BYTES 512U
#define FC_WORDS (FC_BYTES >> 2)
#define BRCMNAND_MIN_PAGESIZE 512
#define BRCMNAND_MIN_BLOCKSIZE (8 * 1024)
#define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024)
#define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY)
#define NAND_POLL_STATUS_TIMEOUT_MS 100
#define EDU_CMD_WRITE 0x00
#define EDU_CMD_READ 0x01
#define EDU_STATUS_ACTIVE BIT(0)
#define EDU_ERR_STATUS_ERRACK BIT(0)
#define EDU_DONE_MASK GENMASK(1, 0)
#define EDU_CONFIG_MODE_NAND BIT(0)
#define EDU_CONFIG_SWAP_BYTE BIT(1)
#ifdef CONFIG_CPU_BIG_ENDIAN
#define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE
#else
#define EDU_CONFIG_SWAP_CFG 0
#endif
/* edu registers */
enum edu_reg {
EDU_CONFIG = 0,
EDU_DRAM_ADDR,
EDU_EXT_ADDR,
EDU_LENGTH,
EDU_CMD,
EDU_STOP,
EDU_STATUS,
EDU_DONE,
EDU_ERR_STATUS,
};
static const u16 edu_regs[] = {
[EDU_CONFIG] = 0x00,
[EDU_DRAM_ADDR] = 0x04,
[EDU_EXT_ADDR] = 0x08,
[EDU_LENGTH] = 0x0c,
[EDU_CMD] = 0x10,
[EDU_STOP] = 0x14,
[EDU_STATUS] = 0x18,
[EDU_DONE] = 0x1c,
[EDU_ERR_STATUS] = 0x20,
};
/* flash_dma registers */
enum flash_dma_reg {
FLASH_DMA_REVISION = 0,
FLASH_DMA_FIRST_DESC,
FLASH_DMA_FIRST_DESC_EXT,
FLASH_DMA_CTRL,
FLASH_DMA_MODE,
FLASH_DMA_STATUS,
FLASH_DMA_INTERRUPT_DESC,
FLASH_DMA_INTERRUPT_DESC_EXT,
FLASH_DMA_ERROR_STATUS,
FLASH_DMA_CURRENT_DESC,
FLASH_DMA_CURRENT_DESC_EXT,
};
/* flash_dma registers v0*/
static const u16 flash_dma_regs_v0[] = {
[FLASH_DMA_REVISION] = 0x00,
[FLASH_DMA_FIRST_DESC] = 0x04,
[FLASH_DMA_CTRL] = 0x08,
[FLASH_DMA_MODE] = 0x0c,
[FLASH_DMA_STATUS] = 0x10,
[FLASH_DMA_INTERRUPT_DESC] = 0x14,
[FLASH_DMA_ERROR_STATUS] = 0x18,
[FLASH_DMA_CURRENT_DESC] = 0x1c,
};
/* flash_dma registers v1*/
static const u16 flash_dma_regs_v1[] = {
[FLASH_DMA_REVISION] = 0x00,
[FLASH_DMA_FIRST_DESC] = 0x04,
[FLASH_DMA_FIRST_DESC_EXT] = 0x08,
[FLASH_DMA_CTRL] = 0x0c,
[FLASH_DMA_MODE] = 0x10,
[FLASH_DMA_STATUS] = 0x14,
[FLASH_DMA_INTERRUPT_DESC] = 0x18,
[FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c,
[FLASH_DMA_ERROR_STATUS] = 0x20,
[FLASH_DMA_CURRENT_DESC] = 0x24,
[FLASH_DMA_CURRENT_DESC_EXT] = 0x28,
};
/* flash_dma registers v4 */
static const u16 flash_dma_regs_v4[] = {
[FLASH_DMA_REVISION] = 0x00,
[FLASH_DMA_FIRST_DESC] = 0x08,
[FLASH_DMA_FIRST_DESC_EXT] = 0x0c,
[FLASH_DMA_CTRL] = 0x10,
[FLASH_DMA_MODE] = 0x14,
[FLASH_DMA_STATUS] = 0x18,
[FLASH_DMA_INTERRUPT_DESC] = 0x20,
[FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24,
[FLASH_DMA_ERROR_STATUS] = 0x28,
[FLASH_DMA_CURRENT_DESC] = 0x30,
[FLASH_DMA_CURRENT_DESC_EXT] = 0x34,
};
/* Controller feature flags */
enum {
BRCMNAND_HAS_1K_SECTORS = BIT(0),
BRCMNAND_HAS_PREFETCH = BIT(1),
BRCMNAND_HAS_CACHE_MODE = BIT(2),
BRCMNAND_HAS_WP = BIT(3),
};
struct brcmnand_host;
static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key);
struct brcmnand_controller {
struct device *dev;
struct nand_controller controller;
void __iomem *nand_base;
void __iomem *nand_fc; /* flash cache */
void __iomem *flash_dma_base;
int irq;
unsigned int dma_irq;
int nand_version;
/* Some SoCs provide custom interrupt status register(s) */
struct brcmnand_soc *soc;
/* Some SoCs have a gateable clock for the controller */
struct clk *clk;
int cmd_pending;
bool dma_pending;
bool edu_pending;
struct completion done;
struct completion dma_done;
struct completion edu_done;
/* List of NAND hosts (one for each chip-select) */
struct list_head host_list;
/* EDU info, per-transaction */
const u16 *edu_offsets;
void __iomem *edu_base;
int edu_irq;
int edu_count;
u64 edu_dram_addr;
u32 edu_ext_addr;
u32 edu_cmd;
u32 edu_config;
int sas; /* spare area size, per flash cache */
int sector_size_1k;
u8 *oob;
/* flash_dma reg */
const u16 *flash_dma_offsets;
struct brcm_nand_dma_desc *dma_desc;
dma_addr_t dma_pa;
int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf,
u8 *oob, u32 len, u8 dma_cmd);
/* in-memory cache of the FLASH_CACHE, used only for some commands */
u8 flash_cache[FC_BYTES];
/* Controller revision details */
const u16 *reg_offsets;
unsigned int reg_spacing; /* between CS1, CS2, ... regs */
const u8 *cs_offsets; /* within each chip-select */
const u8 *cs0_offsets; /* within CS0, if different */
unsigned int max_block_size;
const unsigned int *block_sizes;
unsigned int max_page_size;
const unsigned int *page_sizes;
unsigned int page_size_shift;
unsigned int max_oob;
2023-10-24 12:59:35 +02:00
u32 ecc_level_shift;
2023-08-30 17:31:07 +02:00
u32 features;
/* for low-power standby/resume only */
u32 nand_cs_nand_select;
u32 nand_cs_nand_xor;
u32 corr_stat_threshold;
u32 flash_dma_mode;
u32 flash_edu_mode;
bool pio_poll_mode;
};
struct brcmnand_cfg {
u64 device_size;
unsigned int block_size;
unsigned int page_size;
unsigned int spare_area_size;
unsigned int device_width;
unsigned int col_adr_bytes;
unsigned int blk_adr_bytes;
unsigned int ful_adr_bytes;
unsigned int sector_size_1k;
unsigned int ecc_level;
/* use for low-power standby/resume only */
u32 acc_control;
u32 config;
u32 config_ext;
u32 timing_1;
u32 timing_2;
};
struct brcmnand_host {
struct list_head node;
struct nand_chip chip;
struct platform_device *pdev;
int cs;
unsigned int last_cmd;
unsigned int last_byte;
u64 last_addr;
struct brcmnand_cfg hwcfg;
struct brcmnand_controller *ctrl;
};
enum brcmnand_reg {
BRCMNAND_CMD_START = 0,
BRCMNAND_CMD_EXT_ADDRESS,
BRCMNAND_CMD_ADDRESS,
BRCMNAND_INTFC_STATUS,
BRCMNAND_CS_SELECT,
BRCMNAND_CS_XOR,
BRCMNAND_LL_OP,
BRCMNAND_CS0_BASE,
BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */
BRCMNAND_CORR_THRESHOLD,
BRCMNAND_CORR_THRESHOLD_EXT,
BRCMNAND_UNCORR_COUNT,
BRCMNAND_CORR_COUNT,
BRCMNAND_CORR_EXT_ADDR,
BRCMNAND_CORR_ADDR,
BRCMNAND_UNCORR_EXT_ADDR,
BRCMNAND_UNCORR_ADDR,
BRCMNAND_SEMAPHORE,
BRCMNAND_ID,
BRCMNAND_ID_EXT,
BRCMNAND_LL_RDATA,
BRCMNAND_OOB_READ_BASE,
BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */
BRCMNAND_OOB_WRITE_BASE,
BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */
BRCMNAND_FC_BASE,
};
/* BRCMNAND v2.1-v2.2 */
static const u16 brcmnand_regs_v21[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x5c,
[BRCMNAND_CS_SELECT] = 0x14,
[BRCMNAND_CS_XOR] = 0x18,
[BRCMNAND_LL_OP] = 0,
[BRCMNAND_CS0_BASE] = 0x40,
[BRCMNAND_CS1_BASE] = 0,
[BRCMNAND_CORR_THRESHOLD] = 0,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0,
[BRCMNAND_UNCORR_COUNT] = 0,
[BRCMNAND_CORR_COUNT] = 0,
[BRCMNAND_CORR_EXT_ADDR] = 0x60,
[BRCMNAND_CORR_ADDR] = 0x64,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x68,
[BRCMNAND_UNCORR_ADDR] = 0x6c,
[BRCMNAND_SEMAPHORE] = 0x50,
[BRCMNAND_ID] = 0x54,
[BRCMNAND_ID_EXT] = 0,
[BRCMNAND_LL_RDATA] = 0,
[BRCMNAND_OOB_READ_BASE] = 0x20,
[BRCMNAND_OOB_READ_10_BASE] = 0,
[BRCMNAND_OOB_WRITE_BASE] = 0x30,
[BRCMNAND_OOB_WRITE_10_BASE] = 0,
[BRCMNAND_FC_BASE] = 0x200,
};
/* BRCMNAND v3.3-v4.0 */
static const u16 brcmnand_regs_v33[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x6c,
[BRCMNAND_CS_SELECT] = 0x14,
[BRCMNAND_CS_XOR] = 0x18,
[BRCMNAND_LL_OP] = 0x178,
[BRCMNAND_CS0_BASE] = 0x40,
[BRCMNAND_CS1_BASE] = 0xd0,
[BRCMNAND_CORR_THRESHOLD] = 0x84,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0,
[BRCMNAND_UNCORR_COUNT] = 0,
[BRCMNAND_CORR_COUNT] = 0,
[BRCMNAND_CORR_EXT_ADDR] = 0x70,
[BRCMNAND_CORR_ADDR] = 0x74,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
[BRCMNAND_UNCORR_ADDR] = 0x7c,
[BRCMNAND_SEMAPHORE] = 0x58,
[BRCMNAND_ID] = 0x60,
[BRCMNAND_ID_EXT] = 0x64,
[BRCMNAND_LL_RDATA] = 0x17c,
[BRCMNAND_OOB_READ_BASE] = 0x20,
[BRCMNAND_OOB_READ_10_BASE] = 0x130,
[BRCMNAND_OOB_WRITE_BASE] = 0x30,
[BRCMNAND_OOB_WRITE_10_BASE] = 0,
[BRCMNAND_FC_BASE] = 0x200,
};
/* BRCMNAND v5.0 */
static const u16 brcmnand_regs_v50[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x6c,
[BRCMNAND_CS_SELECT] = 0x14,
[BRCMNAND_CS_XOR] = 0x18,
[BRCMNAND_LL_OP] = 0x178,
[BRCMNAND_CS0_BASE] = 0x40,
[BRCMNAND_CS1_BASE] = 0xd0,
[BRCMNAND_CORR_THRESHOLD] = 0x84,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0,
[BRCMNAND_UNCORR_COUNT] = 0,
[BRCMNAND_CORR_COUNT] = 0,
[BRCMNAND_CORR_EXT_ADDR] = 0x70,
[BRCMNAND_CORR_ADDR] = 0x74,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x78,
[BRCMNAND_UNCORR_ADDR] = 0x7c,
[BRCMNAND_SEMAPHORE] = 0x58,
[BRCMNAND_ID] = 0x60,
[BRCMNAND_ID_EXT] = 0x64,
[BRCMNAND_LL_RDATA] = 0x17c,
[BRCMNAND_OOB_READ_BASE] = 0x20,
[BRCMNAND_OOB_READ_10_BASE] = 0x130,
[BRCMNAND_OOB_WRITE_BASE] = 0x30,
[BRCMNAND_OOB_WRITE_10_BASE] = 0x140,
[BRCMNAND_FC_BASE] = 0x200,
};
/* BRCMNAND v6.0 - v7.1 */
static const u16 brcmnand_regs_v60[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x14,
[BRCMNAND_CS_SELECT] = 0x18,
[BRCMNAND_CS_XOR] = 0x1c,
[BRCMNAND_LL_OP] = 0x20,
[BRCMNAND_CS0_BASE] = 0x50,
[BRCMNAND_CS1_BASE] = 0,
[BRCMNAND_CORR_THRESHOLD] = 0xc0,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4,
[BRCMNAND_UNCORR_COUNT] = 0xfc,
[BRCMNAND_CORR_COUNT] = 0x100,
[BRCMNAND_CORR_EXT_ADDR] = 0x10c,
[BRCMNAND_CORR_ADDR] = 0x110,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
[BRCMNAND_UNCORR_ADDR] = 0x118,
[BRCMNAND_SEMAPHORE] = 0x150,
[BRCMNAND_ID] = 0x194,
[BRCMNAND_ID_EXT] = 0x198,
[BRCMNAND_LL_RDATA] = 0x19c,
[BRCMNAND_OOB_READ_BASE] = 0x200,
[BRCMNAND_OOB_READ_10_BASE] = 0,
[BRCMNAND_OOB_WRITE_BASE] = 0x280,
[BRCMNAND_OOB_WRITE_10_BASE] = 0,
[BRCMNAND_FC_BASE] = 0x400,
};
/* BRCMNAND v7.1 */
static const u16 brcmnand_regs_v71[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x14,
[BRCMNAND_CS_SELECT] = 0x18,
[BRCMNAND_CS_XOR] = 0x1c,
[BRCMNAND_LL_OP] = 0x20,
[BRCMNAND_CS0_BASE] = 0x50,
[BRCMNAND_CS1_BASE] = 0,
[BRCMNAND_CORR_THRESHOLD] = 0xdc,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
[BRCMNAND_UNCORR_COUNT] = 0xfc,
[BRCMNAND_CORR_COUNT] = 0x100,
[BRCMNAND_CORR_EXT_ADDR] = 0x10c,
[BRCMNAND_CORR_ADDR] = 0x110,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
[BRCMNAND_UNCORR_ADDR] = 0x118,
[BRCMNAND_SEMAPHORE] = 0x150,
[BRCMNAND_ID] = 0x194,
[BRCMNAND_ID_EXT] = 0x198,
[BRCMNAND_LL_RDATA] = 0x19c,
[BRCMNAND_OOB_READ_BASE] = 0x200,
[BRCMNAND_OOB_READ_10_BASE] = 0,
[BRCMNAND_OOB_WRITE_BASE] = 0x280,
[BRCMNAND_OOB_WRITE_10_BASE] = 0,
[BRCMNAND_FC_BASE] = 0x400,
};
/* BRCMNAND v7.2 */
static const u16 brcmnand_regs_v72[] = {
[BRCMNAND_CMD_START] = 0x04,
[BRCMNAND_CMD_EXT_ADDRESS] = 0x08,
[BRCMNAND_CMD_ADDRESS] = 0x0c,
[BRCMNAND_INTFC_STATUS] = 0x14,
[BRCMNAND_CS_SELECT] = 0x18,
[BRCMNAND_CS_XOR] = 0x1c,
[BRCMNAND_LL_OP] = 0x20,
[BRCMNAND_CS0_BASE] = 0x50,
[BRCMNAND_CS1_BASE] = 0,
[BRCMNAND_CORR_THRESHOLD] = 0xdc,
[BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0,
[BRCMNAND_UNCORR_COUNT] = 0xfc,
[BRCMNAND_CORR_COUNT] = 0x100,
[BRCMNAND_CORR_EXT_ADDR] = 0x10c,
[BRCMNAND_CORR_ADDR] = 0x110,
[BRCMNAND_UNCORR_EXT_ADDR] = 0x114,
[BRCMNAND_UNCORR_ADDR] = 0x118,
[BRCMNAND_SEMAPHORE] = 0x150,
[BRCMNAND_ID] = 0x194,
[BRCMNAND_ID_EXT] = 0x198,
[BRCMNAND_LL_RDATA] = 0x19c,
[BRCMNAND_OOB_READ_BASE] = 0x200,
[BRCMNAND_OOB_READ_10_BASE] = 0,
[BRCMNAND_OOB_WRITE_BASE] = 0x400,
[BRCMNAND_OOB_WRITE_10_BASE] = 0,
[BRCMNAND_FC_BASE] = 0x600,
};
enum brcmnand_cs_reg {
BRCMNAND_CS_CFG_EXT = 0,
BRCMNAND_CS_CFG,
BRCMNAND_CS_ACC_CONTROL,
BRCMNAND_CS_TIMING1,
BRCMNAND_CS_TIMING2,
};
/* Per chip-select offsets for v7.1 */
static const u8 brcmnand_cs_offsets_v71[] = {
[BRCMNAND_CS_ACC_CONTROL] = 0x00,
[BRCMNAND_CS_CFG_EXT] = 0x04,
[BRCMNAND_CS_CFG] = 0x08,
[BRCMNAND_CS_TIMING1] = 0x0c,
[BRCMNAND_CS_TIMING2] = 0x10,
};
/* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */
static const u8 brcmnand_cs_offsets[] = {
[BRCMNAND_CS_ACC_CONTROL] = 0x00,
[BRCMNAND_CS_CFG_EXT] = 0x04,
[BRCMNAND_CS_CFG] = 0x04,
[BRCMNAND_CS_TIMING1] = 0x08,
[BRCMNAND_CS_TIMING2] = 0x0c,
};
/* Per chip-select offset for <= v5.0 on CS0 only */
static const u8 brcmnand_cs_offsets_cs0[] = {
[BRCMNAND_CS_ACC_CONTROL] = 0x00,
[BRCMNAND_CS_CFG_EXT] = 0x08,
[BRCMNAND_CS_CFG] = 0x08,
[BRCMNAND_CS_TIMING1] = 0x10,
[BRCMNAND_CS_TIMING2] = 0x14,
};
/*
* Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had
* one config register, but once the bitfields overflowed, newer controllers
* (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around.
*/
enum {
CFG_BLK_ADR_BYTES_SHIFT = 8,
CFG_COL_ADR_BYTES_SHIFT = 12,
CFG_FUL_ADR_BYTES_SHIFT = 16,
CFG_BUS_WIDTH_SHIFT = 23,
CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT),
CFG_DEVICE_SIZE_SHIFT = 24,
/* Only for v2.1 */
CFG_PAGE_SIZE_SHIFT_v2_1 = 30,
/* Only for pre-v7.1 (with no CFG_EXT register) */
CFG_PAGE_SIZE_SHIFT = 20,
CFG_BLK_SIZE_SHIFT = 28,
/* Only for v7.1+ (with CFG_EXT register) */
CFG_EXT_PAGE_SIZE_SHIFT = 0,
CFG_EXT_BLK_SIZE_SHIFT = 4,
};
/* BRCMNAND_INTFC_STATUS */
enum {
INTFC_FLASH_STATUS = GENMASK(7, 0),
INTFC_ERASED = BIT(27),
INTFC_OOB_VALID = BIT(28),
INTFC_CACHE_VALID = BIT(29),
INTFC_FLASH_READY = BIT(30),
INTFC_CTLR_READY = BIT(31),
};
2023-10-24 12:59:35 +02:00
/***********************************************************************
* NAND ACC CONTROL bitfield
*
* Some bits have remained constant throughout hardware revision, while
* others have shifted around.
***********************************************************************/
/* Constant for all versions (where supported) */
enum {
/* See BRCMNAND_HAS_CACHE_MODE */
ACC_CONTROL_CACHE_MODE = BIT(22),
/* See BRCMNAND_HAS_PREFETCH */
ACC_CONTROL_PREFETCH = BIT(23),
ACC_CONTROL_PAGE_HIT = BIT(24),
ACC_CONTROL_WR_PREEMPT = BIT(25),
ACC_CONTROL_PARTIAL_PAGE = BIT(26),
ACC_CONTROL_RD_ERASED = BIT(27),
ACC_CONTROL_FAST_PGM_RDIN = BIT(28),
ACC_CONTROL_WR_ECC = BIT(30),
ACC_CONTROL_RD_ECC = BIT(31),
};
#define ACC_CONTROL_ECC_SHIFT 16
/* Only for v7.2 */
#define ACC_CONTROL_ECC_EXT_SHIFT 13
2023-08-30 17:31:07 +02:00
static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl)
{
#if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA)
return static_branch_unlikely(&brcmnand_soc_has_ops_key);
#else
return false;
#endif
}
static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs)
{
if (brcmnand_non_mmio_ops(ctrl))
return brcmnand_soc_read(ctrl->soc, offs);
return brcmnand_readl(ctrl->nand_base + offs);
}
static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs,
u32 val)
{
if (brcmnand_non_mmio_ops(ctrl))
brcmnand_soc_write(ctrl->soc, val, offs);
else
brcmnand_writel(val, ctrl->nand_base + offs);
}
static int brcmnand_revision_init(struct brcmnand_controller *ctrl)
{
static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 };
static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 };
static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 };
static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 };
static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 };
static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 };
static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 };
ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff;
/* Only support v2.1+ */
if (ctrl->nand_version < 0x0201) {
dev_err(ctrl->dev, "version %#x not supported\n",
ctrl->nand_version);
return -ENODEV;
}
/* Register offsets */
if (ctrl->nand_version >= 0x0702)
ctrl->reg_offsets = brcmnand_regs_v72;
else if (ctrl->nand_version == 0x0701)
ctrl->reg_offsets = brcmnand_regs_v71;
else if (ctrl->nand_version >= 0x0600)
ctrl->reg_offsets = brcmnand_regs_v60;
else if (ctrl->nand_version >= 0x0500)
ctrl->reg_offsets = brcmnand_regs_v50;
else if (ctrl->nand_version >= 0x0303)
ctrl->reg_offsets = brcmnand_regs_v33;
else if (ctrl->nand_version >= 0x0201)
ctrl->reg_offsets = brcmnand_regs_v21;
/* Chip-select stride */
if (ctrl->nand_version >= 0x0701)
ctrl->reg_spacing = 0x14;
else
ctrl->reg_spacing = 0x10;
/* Per chip-select registers */
if (ctrl->nand_version >= 0x0701) {
ctrl->cs_offsets = brcmnand_cs_offsets_v71;
} else {
ctrl->cs_offsets = brcmnand_cs_offsets;
/* v3.3-5.0 have a different CS0 offset layout */
if (ctrl->nand_version >= 0x0303 &&
ctrl->nand_version <= 0x0500)
ctrl->cs0_offsets = brcmnand_cs_offsets_cs0;
}
/* Page / block sizes */
if (ctrl->nand_version >= 0x0701) {
/* >= v7.1 use nice power-of-2 values! */
ctrl->max_page_size = 16 * 1024;
ctrl->max_block_size = 2 * 1024 * 1024;
} else {
if (ctrl->nand_version >= 0x0304)
ctrl->page_sizes = page_sizes_v3_4;
else if (ctrl->nand_version >= 0x0202)
ctrl->page_sizes = page_sizes_v2_2;
else
ctrl->page_sizes = page_sizes_v2_1;
if (ctrl->nand_version >= 0x0202)
ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT;
else
ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1;
if (ctrl->nand_version >= 0x0600)
ctrl->block_sizes = block_sizes_v6;
else if (ctrl->nand_version >= 0x0400)
ctrl->block_sizes = block_sizes_v4;
else if (ctrl->nand_version >= 0x0202)
ctrl->block_sizes = block_sizes_v2_2;
else
ctrl->block_sizes = block_sizes_v2_1;
if (ctrl->nand_version < 0x0400) {
if (ctrl->nand_version < 0x0202)
ctrl->max_page_size = 2048;
else
ctrl->max_page_size = 4096;
ctrl->max_block_size = 512 * 1024;
}
}
/* Maximum spare area sector size (per 512B) */
if (ctrl->nand_version == 0x0702)
ctrl->max_oob = 128;
else if (ctrl->nand_version >= 0x0600)
ctrl->max_oob = 64;
else if (ctrl->nand_version >= 0x0500)
ctrl->max_oob = 32;
else
ctrl->max_oob = 16;
/* v6.0 and newer (except v6.1) have prefetch support */
if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601)
ctrl->features |= BRCMNAND_HAS_PREFETCH;
/*
* v6.x has cache mode, but it's implemented differently. Ignore it for
* now.
*/
if (ctrl->nand_version >= 0x0700)
ctrl->features |= BRCMNAND_HAS_CACHE_MODE;
if (ctrl->nand_version >= 0x0500)
ctrl->features |= BRCMNAND_HAS_1K_SECTORS;
if (ctrl->nand_version >= 0x0700)
ctrl->features |= BRCMNAND_HAS_WP;
else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp"))
ctrl->features |= BRCMNAND_HAS_WP;
2023-10-24 12:59:35 +02:00
/* v7.2 has different ecc level shift in the acc register */
if (ctrl->nand_version == 0x0702)
ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT;
else
ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT;
2023-08-30 17:31:07 +02:00
return 0;
}
static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl)
{
/* flash_dma register offsets */
if (ctrl->nand_version >= 0x0703)
ctrl->flash_dma_offsets = flash_dma_regs_v4;
else if (ctrl->nand_version == 0x0602)
ctrl->flash_dma_offsets = flash_dma_regs_v0;
else
ctrl->flash_dma_offsets = flash_dma_regs_v1;
}
static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl,
enum brcmnand_reg reg)
{
u16 offs = ctrl->reg_offsets[reg];
if (offs)
return nand_readreg(ctrl, offs);
else
return 0;
}
static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl,
enum brcmnand_reg reg, u32 val)
{
u16 offs = ctrl->reg_offsets[reg];
if (offs)
nand_writereg(ctrl, offs, val);
}
static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl,
enum brcmnand_reg reg, u32 mask, unsigned
int shift, u32 val)
{
u32 tmp = brcmnand_read_reg(ctrl, reg);
tmp &= ~mask;
tmp |= val << shift;
brcmnand_write_reg(ctrl, reg, tmp);
}
static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word)
{
if (brcmnand_non_mmio_ops(ctrl))
return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR);
return __raw_readl(ctrl->nand_fc + word * 4);
}
static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl,
int word, u32 val)
{
if (brcmnand_non_mmio_ops(ctrl))
brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR);
else
__raw_writel(val, ctrl->nand_fc + word * 4);
}
static inline void edu_writel(struct brcmnand_controller *ctrl,
enum edu_reg reg, u32 val)
{
u16 offs = ctrl->edu_offsets[reg];
brcmnand_writel(val, ctrl->edu_base + offs);
}
static inline u32 edu_readl(struct brcmnand_controller *ctrl,
enum edu_reg reg)
{
u16 offs = ctrl->edu_offsets[reg];
return brcmnand_readl(ctrl->edu_base + offs);
}
static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl)
{
/* Clear error addresses */
brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0);
brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0);
brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0);
brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0);
}
static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl)
{
u64 err_addr;
err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR);
err_addr |= ((u64)(brcmnand_read_reg(ctrl,
BRCMNAND_UNCORR_EXT_ADDR)
& 0xffff) << 32);
return err_addr;
}
static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl)
{
u64 err_addr;
err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR);
err_addr |= ((u64)(brcmnand_read_reg(ctrl,
BRCMNAND_CORR_EXT_ADDR)
& 0xffff) << 32);
return err_addr;
}
static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS,
(host->cs << 16) | ((addr >> 32) & 0xffff));
(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS);
brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
lower_32_bits(addr));
(void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
}
static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs,
enum brcmnand_cs_reg reg)
{
u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE];
u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE];
u8 cs_offs;
if (cs == 0 && ctrl->cs0_offsets)
cs_offs = ctrl->cs0_offsets[reg];
else
cs_offs = ctrl->cs_offsets[reg];
if (cs && offs_cs1)
return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs;
return offs_cs0 + cs * ctrl->reg_spacing + cs_offs;
}
static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl)
{
if (ctrl->nand_version < 0x0600)
return 1;
return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT);
}
static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val)
{
struct brcmnand_controller *ctrl = host->ctrl;
unsigned int shift = 0, bits;
enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD;
int cs = host->cs;
if (!ctrl->reg_offsets[reg])
return;
if (ctrl->nand_version == 0x0702)
bits = 7;
else if (ctrl->nand_version >= 0x0600)
bits = 6;
else if (ctrl->nand_version >= 0x0500)
bits = 5;
else
bits = 4;
if (ctrl->nand_version >= 0x0702) {
if (cs >= 4)
reg = BRCMNAND_CORR_THRESHOLD_EXT;
shift = (cs % 4) * bits;
} else if (ctrl->nand_version >= 0x0600) {
if (cs >= 5)
reg = BRCMNAND_CORR_THRESHOLD_EXT;
shift = (cs % 5) * bits;
}
brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val);
}
static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl)
{
/* Kludge for the BCMA-based NAND controller which does not actually
* shift the command
*/
if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl))
return 0;
if (ctrl->nand_version < 0x0602)
return 24;
return 0;
}
static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl)
{
if (ctrl->nand_version == 0x0702)
return GENMASK(7, 0);
else if (ctrl->nand_version >= 0x0600)
return GENMASK(6, 0);
else if (ctrl->nand_version >= 0x0303)
return GENMASK(5, 0);
else
return GENMASK(4, 0);
}
static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl)
{
u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f;
2023-10-24 12:59:35 +02:00
mask <<= ACC_CONTROL_ECC_SHIFT;
2023-08-30 17:31:07 +02:00
/* v7.2 includes additional ECC levels */
2023-10-24 12:59:35 +02:00
if (ctrl->nand_version == 0x0702)
mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT;
2023-08-30 17:31:07 +02:00
return mask;
}
static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en)
{
struct brcmnand_controller *ctrl = host->ctrl;
u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
u32 acc_control = nand_readreg(ctrl, offs);
u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC;
if (en) {
acc_control |= ecc_flags; /* enable RD/WR ECC */
2023-10-24 12:59:35 +02:00
acc_control &= ~brcmnand_ecc_level_mask(ctrl);
acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift;
2023-08-30 17:31:07 +02:00
} else {
acc_control &= ~ecc_flags; /* disable RD/WR ECC */
acc_control &= ~brcmnand_ecc_level_mask(ctrl);
}
nand_writereg(ctrl, offs, acc_control);
}
static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl)
{
if (ctrl->nand_version >= 0x0702)
return 9;
else if (ctrl->nand_version >= 0x0600)
return 7;
else if (ctrl->nand_version >= 0x0500)
return 6;
else
return -1;
}
static int brcmnand_get_sector_size_1k(struct brcmnand_host *host)
{
struct brcmnand_controller *ctrl = host->ctrl;
int shift = brcmnand_sector_1k_shift(ctrl);
u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_ACC_CONTROL);
if (shift < 0)
return 0;
return (nand_readreg(ctrl, acc_control_offs) >> shift) & 0x1;
}
static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val)
{
struct brcmnand_controller *ctrl = host->ctrl;
int shift = brcmnand_sector_1k_shift(ctrl);
u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_ACC_CONTROL);
u32 tmp;
if (shift < 0)
return;
tmp = nand_readreg(ctrl, acc_control_offs);
tmp &= ~(1 << shift);
tmp |= (!!val) << shift;
nand_writereg(ctrl, acc_control_offs, tmp);
}
/***********************************************************************
* CS_NAND_SELECT
***********************************************************************/
enum {
CS_SELECT_NAND_WP = BIT(29),
CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30),
};
static int bcmnand_ctrl_poll_status(struct brcmnand_controller *ctrl,
u32 mask, u32 expected_val,
unsigned long timeout_ms)
{
unsigned long limit;
u32 val;
if (!timeout_ms)
timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS;
limit = jiffies + msecs_to_jiffies(timeout_ms);
do {
val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
if ((val & mask) == expected_val)
return 0;
cpu_relax();
} while (time_after(limit, jiffies));
2023-10-24 12:59:35 +02:00
/*
* do a final check after time out in case the CPU was busy and the driver
* did not get enough time to perform the polling to avoid false alarms
*/
val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS);
if ((val & mask) == expected_val)
return 0;
2023-08-30 17:31:07 +02:00
dev_warn(ctrl->dev, "timeout on status poll (expected %x got %x)\n",
expected_val, val & mask);
return -ETIMEDOUT;
}
static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en)
{
u32 val = en ? CS_SELECT_NAND_WP : 0;
brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val);
}
/***********************************************************************
* Flash DMA
***********************************************************************/
static inline bool has_flash_dma(struct brcmnand_controller *ctrl)
{
return ctrl->flash_dma_base;
}
static inline bool has_edu(struct brcmnand_controller *ctrl)
{
return ctrl->edu_base;
}
static inline bool use_dma(struct brcmnand_controller *ctrl)
{
return has_flash_dma(ctrl) || has_edu(ctrl);
}
static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl)
{
if (ctrl->pio_poll_mode)
return;
if (has_flash_dma(ctrl)) {
ctrl->flash_dma_base = NULL;
disable_irq(ctrl->dma_irq);
}
disable_irq(ctrl->irq);
ctrl->pio_poll_mode = true;
}
static inline bool flash_dma_buf_ok(const void *buf)
{
return buf && !is_vmalloc_addr(buf) &&
likely(IS_ALIGNED((uintptr_t)buf, 4));
}
static inline void flash_dma_writel(struct brcmnand_controller *ctrl,
enum flash_dma_reg dma_reg, u32 val)
{
u16 offs = ctrl->flash_dma_offsets[dma_reg];
brcmnand_writel(val, ctrl->flash_dma_base + offs);
}
static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl,
enum flash_dma_reg dma_reg)
{
u16 offs = ctrl->flash_dma_offsets[dma_reg];
return brcmnand_readl(ctrl->flash_dma_base + offs);
}
/* Low-level operation types: command, address, write, or read */
enum brcmnand_llop_type {
LL_OP_CMD,
LL_OP_ADDR,
LL_OP_WR,
LL_OP_RD,
};
/***********************************************************************
* Internal support functions
***********************************************************************/
static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl,
struct brcmnand_cfg *cfg)
{
if (ctrl->nand_version <= 0x0701)
return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 &&
cfg->ecc_level == 15;
else
return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 &&
cfg->ecc_level == 15) ||
(cfg->spare_area_size == 28 && cfg->ecc_level == 16));
}
/*
* Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given
* the layout/configuration.
* Returns -ERRCODE on failure.
*/
static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_cfg *cfg = &host->hwcfg;
int sas = cfg->spare_area_size << cfg->sector_size_1k;
int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
if (section >= sectors)
return -ERANGE;
oobregion->offset = (section * sas) + 6;
oobregion->length = 3;
return 0;
}
static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_cfg *cfg = &host->hwcfg;
int sas = cfg->spare_area_size << cfg->sector_size_1k;
int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
u32 next;
if (section > sectors)
return -ERANGE;
next = (section * sas);
if (section < sectors)
next += 6;
if (section) {
oobregion->offset = ((section - 1) * sas) + 9;
} else {
if (cfg->page_size > 512) {
/* Large page NAND uses first 2 bytes for BBI */
oobregion->offset = 2;
} else {
/* Small page NAND uses last byte before ECC for BBI */
oobregion->offset = 0;
next--;
}
}
oobregion->length = next - oobregion->offset;
return 0;
}
static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = {
.ecc = brcmnand_hamming_ooblayout_ecc,
.free = brcmnand_hamming_ooblayout_free,
};
static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_cfg *cfg = &host->hwcfg;
int sas = cfg->spare_area_size << cfg->sector_size_1k;
int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
if (section >= sectors)
return -ERANGE;
oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes;
oobregion->length = chip->ecc.bytes;
return 0;
}
static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_cfg *cfg = &host->hwcfg;
int sas = cfg->spare_area_size << cfg->sector_size_1k;
int sectors = cfg->page_size / (512 << cfg->sector_size_1k);
if (section >= sectors)
return -ERANGE;
if (sas <= chip->ecc.bytes)
return 0;
oobregion->offset = section * sas;
oobregion->length = sas - chip->ecc.bytes;
if (!section) {
oobregion->offset++;
oobregion->length--;
}
return 0;
}
static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_cfg *cfg = &host->hwcfg;
int sas = cfg->spare_area_size << cfg->sector_size_1k;
if (section > 1 || sas - chip->ecc.bytes < 6 ||
(section && sas - chip->ecc.bytes == 6))
return -ERANGE;
if (!section) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 6;
oobregion->length = sas - chip->ecc.bytes - 6;
}
return 0;
}
static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = {
.ecc = brcmnand_bch_ooblayout_ecc,
.free = brcmnand_bch_ooblayout_free_lp,
};
static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = {
.ecc = brcmnand_bch_ooblayout_ecc,
.free = brcmnand_bch_ooblayout_free_sp,
};
static int brcmstb_choose_ecc_layout(struct brcmnand_host *host)
{
struct brcmnand_cfg *p = &host->hwcfg;
struct mtd_info *mtd = nand_to_mtd(&host->chip);
struct nand_ecc_ctrl *ecc = &host->chip.ecc;
unsigned int ecc_level = p->ecc_level;
int sas = p->spare_area_size << p->sector_size_1k;
int sectors = p->page_size / (512 << p->sector_size_1k);
if (p->sector_size_1k)
ecc_level <<= 1;
if (is_hamming_ecc(host->ctrl, p)) {
ecc->bytes = 3 * sectors;
mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops);
return 0;
}
/*
* CONTROLLER_VERSION:
* < v5.0: ECC_REQ = ceil(BCH_T * 13/8)
* >= v5.0: ECC_REQ = ceil(BCH_T * 14/8)
* But we will just be conservative.
*/
ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8);
if (p->page_size == 512)
mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops);
else
mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops);
if (ecc->bytes >= sas) {
dev_err(&host->pdev->dev,
"error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n",
ecc->bytes, sas);
return -EINVAL;
}
return 0;
}
static void brcmnand_wp(struct mtd_info *mtd, int wp)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) {
static int old_wp = -1;
int ret;
if (old_wp != wp) {
dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off");
old_wp = wp;
}
/*
* make sure ctrl/flash ready before and after
* changing state of #WP pin
*/
ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY |
NAND_STATUS_READY,
NAND_CTRL_RDY |
NAND_STATUS_READY, 0);
if (ret)
return;
brcmnand_set_wp(ctrl, wp);
nand_status_op(chip, NULL);
/* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */
ret = bcmnand_ctrl_poll_status(ctrl,
NAND_CTRL_RDY |
NAND_STATUS_READY |
NAND_STATUS_WP,
NAND_CTRL_RDY |
NAND_STATUS_READY |
(wp ? 0 : NAND_STATUS_WP), 0);
if (ret)
dev_err_ratelimited(&host->pdev->dev,
"nand #WP expected %s\n",
wp ? "on" : "off");
}
}
/* Helper functions for reading and writing OOB registers */
static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs)
{
u16 offset0, offset10, reg_offs;
offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE];
offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE];
if (offs >= ctrl->max_oob)
return 0x77;
if (offs >= 16 && offset10)
reg_offs = offset10 + ((offs - 0x10) & ~0x03);
else
reg_offs = offset0 + (offs & ~0x03);
return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3));
}
static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs,
u32 data)
{
u16 offset0, offset10, reg_offs;
offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE];
offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE];
if (offs >= ctrl->max_oob)
return;
if (offs >= 16 && offset10)
reg_offs = offset10 + ((offs - 0x10) & ~0x03);
else
reg_offs = offset0 + (offs & ~0x03);
nand_writereg(ctrl, reg_offs, data);
}
/*
* read_oob_from_regs - read data from OOB registers
* @ctrl: NAND controller
* @i: sub-page sector index
* @oob: buffer to read to
* @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
* @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
*/
static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob,
int sas, int sector_1k)
{
int tbytes = sas << sector_1k;
int j;
/* Adjust OOB values for 1K sector size */
if (sector_1k && (i & 0x01))
tbytes = max(0, tbytes - (int)ctrl->max_oob);
tbytes = min_t(int, tbytes, ctrl->max_oob);
for (j = 0; j < tbytes; j++)
oob[j] = oob_reg_read(ctrl, j);
return tbytes;
}
/*
* write_oob_to_regs - write data to OOB registers
* @i: sub-page sector index
* @oob: buffer to write from
* @sas: spare area sector size (i.e., OOB size per FLASH_CACHE)
* @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal
*/
static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i,
const u8 *oob, int sas, int sector_1k)
{
int tbytes = sas << sector_1k;
2023-10-24 12:59:35 +02:00
int j, k = 0;
u32 last = 0xffffffff;
u8 *plast = (u8 *)&last;
2023-08-30 17:31:07 +02:00
/* Adjust OOB values for 1K sector size */
if (sector_1k && (i & 0x01))
tbytes = max(0, tbytes - (int)ctrl->max_oob);
tbytes = min_t(int, tbytes, ctrl->max_oob);
2023-10-24 12:59:35 +02:00
/*
* tbytes may not be multiple of words. Make sure we don't read out of
* the boundary and stop at last word.
*/
for (j = 0; (j + 3) < tbytes; j += 4)
2023-08-30 17:31:07 +02:00
oob_reg_write(ctrl, j,
(oob[j + 0] << 24) |
(oob[j + 1] << 16) |
(oob[j + 2] << 8) |
(oob[j + 3] << 0));
2023-10-24 12:59:35 +02:00
/* handle the remaing bytes */
while (j < tbytes)
plast[k++] = oob[j++];
if (tbytes & 0x3)
oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last));
2023-08-30 17:31:07 +02:00
return tbytes;
}
static void brcmnand_edu_init(struct brcmnand_controller *ctrl)
{
/* initialize edu */
edu_writel(ctrl, EDU_ERR_STATUS, 0);
edu_readl(ctrl, EDU_ERR_STATUS);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_writel(ctrl, EDU_DONE, 0);
edu_readl(ctrl, EDU_DONE);
}
/* edu irq */
static irqreturn_t brcmnand_edu_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
if (ctrl->edu_count) {
ctrl->edu_count--;
while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK))
udelay(1);
edu_writel(ctrl, EDU_DONE, 0);
edu_readl(ctrl, EDU_DONE);
}
if (ctrl->edu_count) {
ctrl->edu_dram_addr += FC_BYTES;
ctrl->edu_ext_addr += FC_BYTES;
edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
edu_readl(ctrl, EDU_DRAM_ADDR);
edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
edu_readl(ctrl, EDU_EXT_ADDR);
if (ctrl->oob) {
if (ctrl->edu_cmd == EDU_CMD_READ) {
ctrl->oob += read_oob_from_regs(ctrl,
ctrl->edu_count + 1,
ctrl->oob, ctrl->sas,
ctrl->sector_size_1k);
} else {
brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
ctrl->edu_ext_addr);
brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
ctrl->oob += write_oob_to_regs(ctrl,
ctrl->edu_count,
ctrl->oob, ctrl->sas,
ctrl->sector_size_1k);
}
}
mb(); /* flush previous writes */
edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
edu_readl(ctrl, EDU_CMD);
return IRQ_HANDLED;
}
complete(&ctrl->edu_done);
return IRQ_HANDLED;
}
static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
/* Discard all NAND_CTLRDY interrupts during DMA */
if (ctrl->dma_pending)
return IRQ_HANDLED;
/* check if you need to piggy back on the ctrlrdy irq */
if (ctrl->edu_pending) {
if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0))
/* Discard interrupts while using dedicated edu irq */
return IRQ_HANDLED;
/* no registered edu irq, call handler */
return brcmnand_edu_irq(irq, data);
}
complete(&ctrl->done);
return IRQ_HANDLED;
}
/* Handle SoC-specific interrupt hardware */
static irqreturn_t brcmnand_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
if (ctrl->soc->ctlrdy_ack(ctrl->soc))
return brcmnand_ctlrdy_irq(irq, data);
return IRQ_NONE;
}
static irqreturn_t brcmnand_dma_irq(int irq, void *data)
{
struct brcmnand_controller *ctrl = data;
complete(&ctrl->dma_done);
return IRQ_HANDLED;
}
static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
int ret;
u64 cmd_addr;
cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr);
2023-10-24 12:59:35 +02:00
/*
* If we came here through _panic_write and there is a pending
* command, try to wait for it. If it times out, rather than
* hitting BUG_ON, just return so we don't crash while crashing.
*/
if (oops_in_progress) {
if (ctrl->cmd_pending &&
bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0))
return;
} else
BUG_ON(ctrl->cmd_pending != 0);
2023-08-30 17:31:07 +02:00
ctrl->cmd_pending = cmd;
ret = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY, NAND_CTRL_RDY, 0);
WARN_ON(ret);
mb(); /* flush previous writes */
brcmnand_write_reg(ctrl, BRCMNAND_CMD_START,
cmd << brcmnand_cmd_shift(ctrl));
}
/***********************************************************************
* NAND MTD API: read/program/erase
***********************************************************************/
static void brcmnand_cmd_ctrl(struct nand_chip *chip, int dat,
unsigned int ctrl)
{
/* intentionally left blank */
}
static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
struct mtd_info *mtd = nand_to_mtd(chip);
bool err = false;
int sts;
if (mtd->oops_panic_write || ctrl->irq < 0) {
/* switch to interrupt polling and PIO mode */
disable_ctrl_irqs(ctrl);
sts = bcmnand_ctrl_poll_status(ctrl, NAND_CTRL_RDY,
NAND_CTRL_RDY, 0);
err = (sts < 0) ? true : false;
} else {
unsigned long timeo = msecs_to_jiffies(
NAND_POLL_STATUS_TIMEOUT_MS);
/* wait for completion interrupt */
sts = wait_for_completion_timeout(&ctrl->done, timeo);
err = (sts <= 0) ? true : false;
}
return err;
}
static int brcmnand_waitfunc(struct nand_chip *chip)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
bool err = false;
dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending);
if (ctrl->cmd_pending)
err = brcmstb_nand_wait_for_completion(chip);
if (err) {
u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START)
>> brcmnand_cmd_shift(ctrl);
dev_err_ratelimited(ctrl->dev,
"timeout waiting for command %#02x\n", cmd);
dev_err_ratelimited(ctrl->dev, "intfc status %08x\n",
brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS));
}
ctrl->cmd_pending = 0;
return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
INTFC_FLASH_STATUS;
}
enum {
LLOP_RE = BIT(16),
LLOP_WE = BIT(17),
LLOP_ALE = BIT(18),
LLOP_CLE = BIT(19),
LLOP_RETURN_IDLE = BIT(31),
LLOP_DATA_MASK = GENMASK(15, 0),
};
static int brcmnand_low_level_op(struct brcmnand_host *host,
enum brcmnand_llop_type type, u32 data,
bool last_op)
{
struct nand_chip *chip = &host->chip;
struct brcmnand_controller *ctrl = host->ctrl;
u32 tmp;
tmp = data & LLOP_DATA_MASK;
switch (type) {
case LL_OP_CMD:
tmp |= LLOP_WE | LLOP_CLE;
break;
case LL_OP_ADDR:
/* WE | ALE */
tmp |= LLOP_WE | LLOP_ALE;
break;
case LL_OP_WR:
/* WE */
tmp |= LLOP_WE;
break;
case LL_OP_RD:
/* RE */
tmp |= LLOP_RE;
break;
}
if (last_op)
/* RETURN_IDLE */
tmp |= LLOP_RETURN_IDLE;
dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp);
brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp);
(void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP);
brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP);
return brcmnand_waitfunc(chip);
}
static void brcmnand_cmdfunc(struct nand_chip *chip, unsigned command,
int column, int page_addr)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
u64 addr = (u64)page_addr << chip->page_shift;
int native_cmd = 0;
if (command == NAND_CMD_READID || command == NAND_CMD_PARAM ||
command == NAND_CMD_RNDOUT)
addr = (u64)column;
/* Avoid propagating a negative, don't-care address */
else if (page_addr < 0)
addr = 0;
dev_dbg(ctrl->dev, "cmd 0x%x addr 0x%llx\n", command,
(unsigned long long)addr);
host->last_cmd = command;
host->last_byte = 0;
host->last_addr = addr;
switch (command) {
case NAND_CMD_RESET:
native_cmd = CMD_FLASH_RESET;
break;
case NAND_CMD_STATUS:
native_cmd = CMD_STATUS_READ;
break;
case NAND_CMD_READID:
native_cmd = CMD_DEVICE_ID_READ;
break;
case NAND_CMD_READOOB:
native_cmd = CMD_SPARE_AREA_READ;
break;
case NAND_CMD_ERASE1:
native_cmd = CMD_BLOCK_ERASE;
brcmnand_wp(mtd, 0);
break;
case NAND_CMD_PARAM:
native_cmd = CMD_PARAMETER_READ;
break;
case NAND_CMD_SET_FEATURES:
case NAND_CMD_GET_FEATURES:
brcmnand_low_level_op(host, LL_OP_CMD, command, false);
brcmnand_low_level_op(host, LL_OP_ADDR, column, false);
break;
case NAND_CMD_RNDOUT:
native_cmd = CMD_PARAMETER_CHANGE_COL;
addr &= ~((u64)(FC_BYTES - 1));
/*
* HW quirk: PARAMETER_CHANGE_COL requires SECTOR_SIZE_1K=0
* NB: hwcfg.sector_size_1k may not be initialized yet
*/
if (brcmnand_get_sector_size_1k(host)) {
host->hwcfg.sector_size_1k =
brcmnand_get_sector_size_1k(host);
brcmnand_set_sector_size_1k(host, 0);
}
break;
}
if (!native_cmd)
return;
brcmnand_set_cmd_addr(mtd, addr);
brcmnand_send_cmd(host, native_cmd);
brcmnand_waitfunc(chip);
if (native_cmd == CMD_PARAMETER_READ ||
native_cmd == CMD_PARAMETER_CHANGE_COL) {
/* Copy flash cache word-wise */
u32 *flash_cache = (u32 *)ctrl->flash_cache;
int i;
brcmnand_soc_data_bus_prepare(ctrl->soc, true);
/*
* Must cache the FLASH_CACHE now, since changes in
* SECTOR_SIZE_1K may invalidate it
*/
for (i = 0; i < FC_WORDS; i++)
/*
* Flash cache is big endian for parameter pages, at
* least on STB SoCs
*/
flash_cache[i] = be32_to_cpu(brcmnand_read_fc(ctrl, i));
brcmnand_soc_data_bus_unprepare(ctrl->soc, true);
/* Cleanup from HW quirk: restore SECTOR_SIZE_1K */
if (host->hwcfg.sector_size_1k)
brcmnand_set_sector_size_1k(host,
host->hwcfg.sector_size_1k);
}
/* Re-enable protection is necessary only after erase */
if (command == NAND_CMD_ERASE1)
brcmnand_wp(mtd, 1);
}
static uint8_t brcmnand_read_byte(struct nand_chip *chip)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
uint8_t ret = 0;
int addr, offs;
switch (host->last_cmd) {
case NAND_CMD_READID:
if (host->last_byte < 4)
ret = brcmnand_read_reg(ctrl, BRCMNAND_ID) >>
(24 - (host->last_byte << 3));
else if (host->last_byte < 8)
ret = brcmnand_read_reg(ctrl, BRCMNAND_ID_EXT) >>
(56 - (host->last_byte << 3));
break;
case NAND_CMD_READOOB:
ret = oob_reg_read(ctrl, host->last_byte);
break;
case NAND_CMD_STATUS:
ret = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
INTFC_FLASH_STATUS;
if (wp_on) /* hide WP status */
ret |= NAND_STATUS_WP;
break;
case NAND_CMD_PARAM:
case NAND_CMD_RNDOUT:
addr = host->last_addr + host->last_byte;
offs = addr & (FC_BYTES - 1);
/* At FC_BYTES boundary, switch to next column */
if (host->last_byte > 0 && offs == 0)
nand_change_read_column_op(chip, addr, NULL, 0, false);
ret = ctrl->flash_cache[offs];
break;
case NAND_CMD_GET_FEATURES:
if (host->last_byte >= ONFI_SUBFEATURE_PARAM_LEN) {
ret = 0;
} else {
bool last = host->last_byte ==
ONFI_SUBFEATURE_PARAM_LEN - 1;
brcmnand_low_level_op(host, LL_OP_RD, 0, last);
ret = brcmnand_read_reg(ctrl, BRCMNAND_LL_RDATA) & 0xff;
}
}
dev_dbg(ctrl->dev, "read byte = 0x%02x\n", ret);
host->last_byte++;
return ret;
}
static void brcmnand_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
{
int i;
for (i = 0; i < len; i++, buf++)
*buf = brcmnand_read_byte(chip);
}
static void brcmnand_write_buf(struct nand_chip *chip, const uint8_t *buf,
int len)
{
int i;
struct brcmnand_host *host = nand_get_controller_data(chip);
switch (host->last_cmd) {
case NAND_CMD_SET_FEATURES:
for (i = 0; i < len; i++)
brcmnand_low_level_op(host, LL_OP_WR, buf[i],
(i + 1) == len);
break;
default:
BUG();
break;
}
}
/*
* Kick EDU engine
*/
static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
u8 *oob, u32 len, u8 cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
struct brcmnand_cfg *cfg = &host->hwcfg;
unsigned long timeo = msecs_to_jiffies(200);
int ret = 0;
int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE);
unsigned int trans = len >> FC_SHIFT;
dma_addr_t pa;
dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ?
"read" : "write"), buf, oob);
pa = dma_map_single(ctrl->dev, buf, len, dir);
if (dma_mapping_error(ctrl->dev, pa)) {
dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n");
return -ENOMEM;
}
ctrl->edu_pending = true;
ctrl->edu_dram_addr = pa;
ctrl->edu_ext_addr = addr;
ctrl->edu_cmd = edu_cmd;
ctrl->edu_count = trans;
ctrl->sas = cfg->spare_area_size;
ctrl->oob = oob;
edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr);
edu_readl(ctrl, EDU_DRAM_ADDR);
edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr);
edu_readl(ctrl, EDU_EXT_ADDR);
edu_writel(ctrl, EDU_LENGTH, FC_BYTES);
edu_readl(ctrl, EDU_LENGTH);
if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) {
brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS,
ctrl->edu_ext_addr);
brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS);
ctrl->oob += write_oob_to_regs(ctrl,
1,
ctrl->oob, ctrl->sas,
ctrl->sector_size_1k);
}
/* Start edu engine */
mb(); /* flush previous writes */
edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd);
edu_readl(ctrl, EDU_CMD);
if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) {
dev_err(ctrl->dev,
"timeout waiting for EDU; status %#x, error status %#x\n",
edu_readl(ctrl, EDU_STATUS),
edu_readl(ctrl, EDU_ERR_STATUS));
}
dma_unmap_single(ctrl->dev, pa, len, dir);
/* read last subpage oob */
if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) {
ctrl->oob += read_oob_from_regs(ctrl,
1,
ctrl->oob, ctrl->sas,
ctrl->sector_size_1k);
}
/* for program page check NAND status */
if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) &
INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) &&
edu_cmd == EDU_CMD_WRITE) {
dev_info(ctrl->dev, "program failed at %llx\n",
(unsigned long long)addr);
ret = -EIO;
}
/* Make sure the EDU status is clean */
if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE)
dev_warn(ctrl->dev, "EDU still active: %#x\n",
edu_readl(ctrl, EDU_STATUS));
if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) {
dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n",
(unsigned long long)addr);
ret = -EIO;
}
ctrl->edu_pending = false;
brcmnand_edu_init(ctrl);
edu_writel(ctrl, EDU_STOP, 0); /* force stop */
edu_readl(ctrl, EDU_STOP);
if (!ret && edu_cmd == EDU_CMD_READ) {
u64 err_addr = 0;
/*
* check for ECC errors here, subpage ECC errors are
* retained in ECC error address register
*/
err_addr = brcmnand_get_uncorrecc_addr(ctrl);
if (!err_addr) {
err_addr = brcmnand_get_correcc_addr(ctrl);
if (err_addr)
ret = -EUCLEAN;
} else
ret = -EBADMSG;
}
return ret;
}
/*
* Construct a FLASH_DMA descriptor as part of a linked list. You must know the
* following ahead of time:
* - Is this descriptor the beginning or end of a linked list?
* - What is the (DMA) address of the next descriptor in the linked list?
*/
static int brcmnand_fill_dma_desc(struct brcmnand_host *host,
struct brcm_nand_dma_desc *desc, u64 addr,
dma_addr_t buf, u32 len, u8 dma_cmd,
bool begin, bool end,
dma_addr_t next_desc)
{
memset(desc, 0, sizeof(*desc));
/* Descriptors are written in native byte order (wordwise) */
desc->next_desc = lower_32_bits(next_desc);
desc->next_desc_ext = upper_32_bits(next_desc);
desc->cmd_irq = (dma_cmd << 24) |
(end ? (0x03 << 8) : 0) | /* IRQ | STOP */
(!!begin) | ((!!end) << 1); /* head, tail */
#ifdef CONFIG_CPU_BIG_ENDIAN
desc->cmd_irq |= 0x01 << 12;
#endif
desc->dram_addr = lower_32_bits(buf);
desc->dram_addr_ext = upper_32_bits(buf);
desc->tfr_len = len;
desc->total_len = len;
desc->flash_addr = lower_32_bits(addr);
desc->flash_addr_ext = upper_32_bits(addr);
desc->cs = host->cs;
desc->status_valid = 0x01;
return 0;
}
/*
* Kick the FLASH_DMA engine, with a given DMA descriptor
*/
static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc)
{
struct brcmnand_controller *ctrl = host->ctrl;
unsigned long timeo = msecs_to_jiffies(100);
flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc));
(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC);
if (ctrl->nand_version > 0x0602) {
flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT,
upper_32_bits(desc));
(void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT);
}
/* Start FLASH_DMA engine */
ctrl->dma_pending = true;
mb(); /* flush previous writes */
flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */
if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) {
dev_err(ctrl->dev,
"timeout waiting for DMA; status %#x, error status %#x\n",
flash_dma_readl(ctrl, FLASH_DMA_STATUS),
flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS));
}
ctrl->dma_pending = false;
flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */
}
static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf,
u8 *oob, u32 len, u8 dma_cmd)
{
struct brcmnand_controller *ctrl = host->ctrl;
dma_addr_t buf_pa;
int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
buf_pa = dma_map_single(ctrl->dev, buf, len, dir);
if (dma_mapping_error(ctrl->dev, buf_pa)) {
dev_err(ctrl->dev, "unable to map buffer for DMA\n");
return -ENOMEM;
}
brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len,
dma_cmd, true, true, 0);
brcmnand_dma_run(host, ctrl->dma_pa);
dma_unmap_single(ctrl->dev, buf_pa, len, dir);
if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR)
return -EBADMSG;
else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR)
return -EUCLEAN;
return 0;
}
/*
* Assumes proper CS is already set
*/
static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip,
u64 addr, unsigned int trans, u32 *buf,
u8 *oob, u64 *err_addr)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
int i, j, ret = 0;
brcmnand_clear_ecc_addr(ctrl);
for (i = 0; i < trans; i++, addr += FC_BYTES) {
brcmnand_set_cmd_addr(mtd, addr);
/* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */
brcmnand_send_cmd(host, CMD_PAGE_READ);
brcmnand_waitfunc(chip);
if (likely(buf)) {
brcmnand_soc_data_bus_prepare(ctrl->soc, false);
for (j = 0; j < FC_WORDS; j++, buf++)
*buf = brcmnand_read_fc(ctrl, j);
brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
}
if (oob)
oob += read_oob_from_regs(ctrl, i, oob,
mtd->oobsize / trans,
host->hwcfg.sector_size_1k);
if (ret != -EBADMSG) {
*err_addr = brcmnand_get_uncorrecc_addr(ctrl);
if (*err_addr)
ret = -EBADMSG;
}
if (!ret) {
*err_addr = brcmnand_get_correcc_addr(ctrl);
if (*err_addr)
ret = -EUCLEAN;
}
}
return ret;
}
/*
* Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC
* error
*
* Because the HW ECC signals an ECC error if an erase paged has even a single
* bitflip, we must check each ECC error to see if it is actually an erased
* page with bitflips, not a truly corrupted page.
*
* On a real error, return a negative error code (-EBADMSG for ECC error), and
* buf will contain raw data.
* Otherwise, buf gets filled with 0xffs and return the maximum number of
* bitflips-per-ECC-sector to the caller.
*
*/
static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd,
struct nand_chip *chip, void *buf, u64 addr)
{
struct mtd_oob_region ecc;
int i;
int bitflips = 0;
int page = addr >> chip->page_shift;
int ret;
void *ecc_bytes;
void *ecc_chunk;
if (!buf)
buf = nand_get_data_buf(chip);
/* read without ecc for verification */
ret = chip->ecc.read_page_raw(chip, buf, true, page);
if (ret)
return ret;
for (i = 0; i < chip->ecc.steps; i++) {
ecc_chunk = buf + chip->ecc.size * i;
mtd_ooblayout_ecc(mtd, i, &ecc);
ecc_bytes = chip->oob_poi + ecc.offset;
ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size,
ecc_bytes, ecc.length,
NULL, 0,
chip->ecc.strength);
if (ret < 0)
return ret;
bitflips = max(bitflips, ret);
}
return bitflips;
}
static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip,
u64 addr, unsigned int trans, u32 *buf, u8 *oob)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
u64 err_addr = 0;
int err;
bool retry = true;
bool edu_err = false;
dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf);
try_dmaread:
brcmnand_clear_ecc_addr(ctrl);
if (ctrl->dma_trans && (has_edu(ctrl) || !oob) &&
flash_dma_buf_ok(buf)) {
err = ctrl->dma_trans(host, addr, buf, oob,
trans * FC_BYTES,
CMD_PAGE_READ);
if (err) {
if (mtd_is_bitflip_or_eccerr(err))
err_addr = addr;
else
return -EIO;
}
if (has_edu(ctrl) && err_addr)
edu_err = true;
} else {
if (oob)
memset(oob, 0x99, mtd->oobsize);
err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
oob, &err_addr);
}
if (mtd_is_eccerr(err)) {
/*
* On controller version and 7.0, 7.1 , DMA read after a
* prior PIO read that reported uncorrectable error,
* the DMA engine captures this error following DMA read
* cleared only on subsequent DMA read, so just retry once
* to clear a possible false error reported for current DMA
* read
*/
if ((ctrl->nand_version == 0x0700) ||
(ctrl->nand_version == 0x0701)) {
if (retry) {
retry = false;
goto try_dmaread;
}
}
/*
* Controller version 7.2 has hw encoder to detect erased page
* bitflips, apply sw verification for older controllers only
*/
if (ctrl->nand_version < 0x0702) {
err = brcmstb_nand_verify_erased_page(mtd, chip, buf,
addr);
/* erased page bitflips corrected */
if (err >= 0)
return err;
}
dev_dbg(ctrl->dev, "uncorrectable error at 0x%llx\n",
(unsigned long long)err_addr);
mtd->ecc_stats.failed++;
/* NAND layer expects zero on ECC errors */
return 0;
}
if (mtd_is_bitflip(err)) {
unsigned int corrected = brcmnand_count_corrected(ctrl);
/* in case of EDU correctable error we read again using PIO */
if (edu_err)
err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf,
oob, &err_addr);
dev_dbg(ctrl->dev, "corrected error at 0x%llx\n",
(unsigned long long)err_addr);
mtd->ecc_stats.corrected += corrected;
/* Always exceed the software-imposed threshold */
return max(mtd->bitflip_threshold, corrected);
}
return 0;
}
static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
nand_read_page_op(chip, page, 0, NULL, 0);
return brcmnand_read(mtd, chip, host->last_addr,
mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
}
static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL;
int ret;
nand_read_page_op(chip, page, 0, NULL, 0);
brcmnand_set_ecc_enabled(host, 0);
ret = brcmnand_read(mtd, chip, host->last_addr,
mtd->writesize >> FC_SHIFT, (u32 *)buf, oob);
brcmnand_set_ecc_enabled(host, 1);
return ret;
}
static int brcmnand_read_oob(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
return brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
mtd->writesize >> FC_SHIFT,
NULL, (u8 *)chip->oob_poi);
}
static int brcmnand_read_oob_raw(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
brcmnand_set_ecc_enabled(host, 0);
brcmnand_read(mtd, chip, (u64)page << chip->page_shift,
mtd->writesize >> FC_SHIFT,
NULL, (u8 *)chip->oob_poi);
brcmnand_set_ecc_enabled(host, 1);
return 0;
}
static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip,
u64 addr, const u32 *buf, u8 *oob)
{
struct brcmnand_host *host = nand_get_controller_data(chip);
struct brcmnand_controller *ctrl = host->ctrl;
unsigned int i, j, trans = mtd->writesize >> FC_SHIFT;
int status, ret = 0;
dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf);
if (unlikely((unsigned long)buf & 0x03)) {
dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf);
buf = (u32 *)((unsigned long)buf & ~0x03);
}
brcmnand_wp(mtd, 0);
for (i = 0; i < ctrl->max_oob; i += 4)
oob_reg_write(ctrl, i, 0xffffffff);
if (mtd->oops_panic_write)
/* switch to interrupt polling and PIO mode */
disable_ctrl_irqs(ctrl);
if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) {
if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize,
CMD_PROGRAM_PAGE))
ret = -EIO;
goto out;
}
for (i = 0; i < trans; i++, addr += FC_BYTES) {
/* full address MUST be set before populating FC */
brcmnand_set_cmd_addr(mtd, addr);
if (buf) {
brcmnand_soc_data_bus_prepare(ctrl->soc, false);
for (j = 0; j < FC_WORDS; j++, buf++)
brcmnand_write_fc(ctrl, j, *buf);
brcmnand_soc_data_bus_unprepare(ctrl->soc, false);
} else if (oob) {
for (j = 0; j < FC_WORDS; j++)
brcmnand_write_fc(ctrl, j, 0xffffffff);
}
if (oob) {
oob += write_oob_to_regs(ctrl, i, oob,
mtd->oobsize / trans,
host->hwcfg.sector_size_1k);
}
/* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */
brcmnand_send_cmd(host, CMD_PROGRAM_PAGE);
status = brcmnand_waitfunc(chip);
if (status & NAND_STATUS_FAIL) {
dev_info(ctrl->dev, "program failed at %llx\n",
(unsigned long long)addr);
ret = -EIO;
goto out;
}
}
out:
brcmnand_wp(mtd, 1);
return ret;
}
static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
void *oob = oob_required ? chip->oob_poi : NULL;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
return nand_prog_page_end_op(chip);
}
static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
void *oob = oob_required ? chip->oob_poi : NULL;
nand_prog_page_begin_op(chip, page, 0, NULL, 0);
brcmnand_set_ecc_enabled(host, 0);
brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob);
brcmnand_set_ecc_enabled(host, 1);
return nand_prog_page_end_op(chip);
}
static int brcmnand_write_oob(struct nand_chip *chip, int page)
{
return brcmnand_write(nand_to_mtd(chip), chip,
(u64)page << chip->page_shift, NULL,
chip->oob_poi);
}
static int brcmnand_write_oob_raw(struct nand_chip *chip, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
int ret;
brcmnand_set_ecc_enabled(host, 0);
ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL,
(u8 *)chip->oob_poi);
brcmnand_set_ecc_enabled(host, 1);
return ret;
}
/***********************************************************************
* Per-CS setup (1 NAND device)
***********************************************************************/
static int brcmnand_set_cfg(struct brcmnand_host *host,
struct brcmnand_cfg *cfg)
{
struct brcmnand_controller *ctrl = host->ctrl;
struct nand_chip *chip = &host->chip;
u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_CFG_EXT);
u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_ACC_CONTROL);
u8 block_size = 0, page_size = 0, device_size = 0;
u32 tmp;
if (ctrl->block_sizes) {
int i, found;
for (i = 0, found = 0; ctrl->block_sizes[i]; i++)
if (ctrl->block_sizes[i] * 1024 == cfg->block_size) {
block_size = i;
found = 1;
}
if (!found) {
dev_warn(ctrl->dev, "invalid block size %u\n",
cfg->block_size);
return -EINVAL;
}
} else {
block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE);
}
if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size &&
cfg->block_size > ctrl->max_block_size)) {
dev_warn(ctrl->dev, "invalid block size %u\n",
cfg->block_size);
block_size = 0;
}
if (ctrl->page_sizes) {
int i, found;
for (i = 0, found = 0; ctrl->page_sizes[i]; i++)
if (ctrl->page_sizes[i] == cfg->page_size) {
page_size = i;
found = 1;
}
if (!found) {
dev_warn(ctrl->dev, "invalid page size %u\n",
cfg->page_size);
return -EINVAL;
}
} else {
page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE);
}
if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size &&
cfg->page_size > ctrl->max_page_size)) {
dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size);
return -EINVAL;
}
if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) {
dev_warn(ctrl->dev, "invalid device size 0x%llx\n",
(unsigned long long)cfg->device_size);
return -EINVAL;
}
device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE);
tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) |
(cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) |
(cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) |
(!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) |
(device_size << CFG_DEVICE_SIZE_SHIFT);
if (cfg_offs == cfg_ext_offs) {
tmp |= (page_size << ctrl->page_size_shift) |
(block_size << CFG_BLK_SIZE_SHIFT);
nand_writereg(ctrl, cfg_offs, tmp);
} else {
nand_writereg(ctrl, cfg_offs, tmp);
tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) |
(block_size << CFG_EXT_BLK_SIZE_SHIFT);
nand_writereg(ctrl, cfg_ext_offs, tmp);
}
tmp = nand_readreg(ctrl, acc_control_offs);
tmp &= ~brcmnand_ecc_level_mask(ctrl);
tmp &= ~brcmnand_spare_area_mask(ctrl);
if (ctrl->nand_version >= 0x0302) {
2023-10-24 12:59:35 +02:00
tmp |= cfg->ecc_level << ctrl->ecc_level_shift;
2023-08-30 17:31:07 +02:00
tmp |= cfg->spare_area_size;
}
nand_writereg(ctrl, acc_control_offs, tmp);
brcmnand_set_sector_size_1k(host, cfg->sector_size_1k);
/* threshold = ceil(BCH-level * 0.75) */
brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4));
return 0;
}
static void brcmnand_print_cfg(struct brcmnand_host *host,
char *buf, struct brcmnand_cfg *cfg)
{
buf += sprintf(buf,
"%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit",
(unsigned long long)cfg->device_size >> 20,
cfg->block_size >> 10,
cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size,
cfg->page_size >= 1024 ? "KiB" : "B",
cfg->spare_area_size, cfg->device_width);
/* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */
if (is_hamming_ecc(host->ctrl, cfg))
sprintf(buf, ", Hamming ECC");
else if (cfg->sector_size_1k)
sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1);
else
sprintf(buf, ", BCH-%u", cfg->ecc_level);
}
/*
* Minimum number of bytes to address a page. Calculated as:
* roundup(log2(size / page-size) / 8)
*
* NB: the following does not "round up" for non-power-of-2 'size'; but this is
* OK because many other things will break if 'size' is irregular...
*/
static inline int get_blk_adr_bytes(u64 size, u32 writesize)
{
return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3;
}
static int brcmnand_setup_dev(struct brcmnand_host *host)
{
struct mtd_info *mtd = nand_to_mtd(&host->chip);
struct nand_chip *chip = &host->chip;
const struct nand_ecc_props *requirements =
nanddev_get_ecc_requirements(&chip->base);
2023-10-24 12:59:35 +02:00
struct nand_memory_organization *memorg =
nanddev_get_memorg(&chip->base);
2023-08-30 17:31:07 +02:00
struct brcmnand_controller *ctrl = host->ctrl;
struct brcmnand_cfg *cfg = &host->hwcfg;
char msg[128];
u32 offs, tmp, oob_sector;
int ret;
memset(cfg, 0, sizeof(*cfg));
ret = of_property_read_u32(nand_get_flash_node(chip),
"brcm,nand-oob-sector-size",
&oob_sector);
if (ret) {
/* Use detected size */
cfg->spare_area_size = mtd->oobsize /
(mtd->writesize >> FC_SHIFT);
} else {
cfg->spare_area_size = oob_sector;
}
if (cfg->spare_area_size > ctrl->max_oob)
cfg->spare_area_size = ctrl->max_oob;
/*
2023-10-24 12:59:35 +02:00
* Set mtd and memorg oobsize to be consistent with controller's
* spare_area_size, as the rest is inaccessible.
2023-08-30 17:31:07 +02:00
*/
mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT);
2023-10-24 12:59:35 +02:00
memorg->oobsize = mtd->oobsize;
2023-08-30 17:31:07 +02:00
cfg->device_size = mtd->size;
cfg->block_size = mtd->erasesize;
cfg->page_size = mtd->writesize;
cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8;
cfg->col_adr_bytes = 2;
cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize);
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n",
chip->ecc.engine_type);
return -EINVAL;
}
if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) {
if (chip->ecc.strength == 1 && chip->ecc.size == 512)
/* Default to Hamming for 1-bit ECC, if unspecified */
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
else
/* Otherwise, BCH */
chip->ecc.algo = NAND_ECC_ALGO_BCH;
}
if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING &&
(chip->ecc.strength != 1 || chip->ecc.size != 512)) {
dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n",
chip->ecc.strength, chip->ecc.size);
return -EINVAL;
}
if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE &&
(!chip->ecc.size || !chip->ecc.strength)) {
if (requirements->step_size && requirements->strength) {
/* use detected ECC parameters */
chip->ecc.size = requirements->step_size;
chip->ecc.strength = requirements->strength;
dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n",
chip->ecc.size, chip->ecc.strength);
}
}
switch (chip->ecc.size) {
case 512:
if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
cfg->ecc_level = 15;
else
cfg->ecc_level = chip->ecc.strength;
cfg->sector_size_1k = 0;
break;
case 1024:
if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) {
dev_err(ctrl->dev, "1KB sectors not supported\n");
return -EINVAL;
}
if (chip->ecc.strength & 0x1) {
dev_err(ctrl->dev,
"odd ECC not supported with 1KB sectors\n");
return -EINVAL;
}
cfg->ecc_level = chip->ecc.strength >> 1;
cfg->sector_size_1k = 1;
break;
default:
dev_err(ctrl->dev, "unsupported ECC size: %d\n",
chip->ecc.size);
return -EINVAL;
}
cfg->ful_adr_bytes = cfg->blk_adr_bytes;
if (mtd->writesize > 512)
cfg->ful_adr_bytes += cfg->col_adr_bytes;
else
cfg->ful_adr_bytes += 1;
ret = brcmnand_set_cfg(host, cfg);
if (ret)
return ret;
brcmnand_set_ecc_enabled(host, 1);
brcmnand_print_cfg(host, msg, cfg);
dev_info(ctrl->dev, "detected %s\n", msg);
/* Configure ACC_CONTROL */
offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL);
tmp = nand_readreg(ctrl, offs);
tmp &= ~ACC_CONTROL_PARTIAL_PAGE;
tmp &= ~ACC_CONTROL_RD_ERASED;
/* We need to turn on Read from erased paged protected by ECC */
if (ctrl->nand_version >= 0x0702)
tmp |= ACC_CONTROL_RD_ERASED;
tmp &= ~ACC_CONTROL_FAST_PGM_RDIN;
if (ctrl->features & BRCMNAND_HAS_PREFETCH)
tmp &= ~ACC_CONTROL_PREFETCH;
nand_writereg(ctrl, offs, tmp);
return 0;
}
static int brcmnand_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct brcmnand_host *host = nand_get_controller_data(chip);
int ret;
chip->options |= NAND_NO_SUBPAGE_WRITE;
/*
* Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA
* to/from, and have nand_base pass us a bounce buffer instead, as
* needed.
*/
chip->options |= NAND_USES_DMA;
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
if (brcmnand_setup_dev(host))
return -ENXIO;
chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512;
/* only use our internal HW threshold */
mtd->bitflip_threshold = 1;
ret = brcmstb_choose_ecc_layout(host);
/* If OOB is written with ECC enabled it will cause ECC errors */
if (is_hamming_ecc(host->ctrl, &host->hwcfg)) {
chip->ecc.write_oob = brcmnand_write_oob_raw;
chip->ecc.read_oob = brcmnand_read_oob_raw;
}
return ret;
}
static const struct nand_controller_ops brcmnand_controller_ops = {
.attach_chip = brcmnand_attach_chip,
};
static int brcmnand_init_cs(struct brcmnand_host *host,
const char * const *part_probe_types)
{
struct brcmnand_controller *ctrl = host->ctrl;
struct device *dev = ctrl->dev;
struct mtd_info *mtd;
struct nand_chip *chip;
int ret;
u16 cfg_offs;
mtd = nand_to_mtd(&host->chip);
chip = &host->chip;
nand_set_controller_data(chip, host);
mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d",
host->cs);
if (!mtd->name)
return -ENOMEM;
mtd->owner = THIS_MODULE;
mtd->dev.parent = dev;
chip->legacy.cmd_ctrl = brcmnand_cmd_ctrl;
chip->legacy.cmdfunc = brcmnand_cmdfunc;
chip->legacy.waitfunc = brcmnand_waitfunc;
chip->legacy.read_byte = brcmnand_read_byte;
chip->legacy.read_buf = brcmnand_read_buf;
chip->legacy.write_buf = brcmnand_write_buf;
chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
chip->ecc.read_page = brcmnand_read_page;
chip->ecc.write_page = brcmnand_write_page;
chip->ecc.read_page_raw = brcmnand_read_page_raw;
chip->ecc.write_page_raw = brcmnand_write_page_raw;
chip->ecc.write_oob_raw = brcmnand_write_oob_raw;
chip->ecc.read_oob_raw = brcmnand_read_oob_raw;
chip->ecc.read_oob = brcmnand_read_oob;
chip->ecc.write_oob = brcmnand_write_oob;
chip->controller = &ctrl->controller;
/*
* The bootloader might have configured 16bit mode but
* NAND READID command only works in 8bit mode. We force
* 8bit mode here to ensure that NAND READID commands works.
*/
cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
nand_writereg(ctrl, cfg_offs,
nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH);
ret = nand_scan(chip, 1);
if (ret)
return ret;
ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
if (ret)
nand_cleanup(chip);
return ret;
}
static void brcmnand_save_restore_cs_config(struct brcmnand_host *host,
int restore)
{
struct brcmnand_controller *ctrl = host->ctrl;
u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG);
u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_CFG_EXT);
u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs,
BRCMNAND_CS_ACC_CONTROL);
u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1);
u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2);
if (restore) {
nand_writereg(ctrl, cfg_offs, host->hwcfg.config);
if (cfg_offs != cfg_ext_offs)
nand_writereg(ctrl, cfg_ext_offs,
host->hwcfg.config_ext);
nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control);
nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1);
nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2);
} else {
host->hwcfg.config = nand_readreg(ctrl, cfg_offs);
if (cfg_offs != cfg_ext_offs)
host->hwcfg.config_ext =
nand_readreg(ctrl, cfg_ext_offs);
host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs);
host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs);
host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs);
}
}
static int brcmnand_suspend(struct device *dev)
{
struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
struct brcmnand_host *host;
list_for_each_entry(host, &ctrl->host_list, node)
brcmnand_save_restore_cs_config(host, 0);
ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT);
ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR);
ctrl->corr_stat_threshold =
brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD);
if (has_flash_dma(ctrl))
ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE);
else if (has_edu(ctrl))
ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
return 0;
}
static int brcmnand_resume(struct device *dev)
{
struct brcmnand_controller *ctrl = dev_get_drvdata(dev);
struct brcmnand_host *host;
if (has_flash_dma(ctrl)) {
flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode);
flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
}
if (has_edu(ctrl)) {
ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG);
edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config);
edu_readl(ctrl, EDU_CONFIG);
brcmnand_edu_init(ctrl);
}
brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select);
brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor);
brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD,
ctrl->corr_stat_threshold);
if (ctrl->soc) {
/* Clear/re-enable interrupt */
ctrl->soc->ctlrdy_ack(ctrl->soc);
ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
}
list_for_each_entry(host, &ctrl->host_list, node) {
struct nand_chip *chip = &host->chip;
brcmnand_save_restore_cs_config(host, 1);
/* Reset the chip, required by some chips after power-up */
nand_reset_op(chip);
}
return 0;
}
const struct dev_pm_ops brcmnand_pm_ops = {
.suspend = brcmnand_suspend,
.resume = brcmnand_resume,
};
EXPORT_SYMBOL_GPL(brcmnand_pm_ops);
static const struct of_device_id __maybe_unused brcmnand_of_match[] = {
{ .compatible = "brcm,brcmnand-v2.1" },
{ .compatible = "brcm,brcmnand-v2.2" },
{ .compatible = "brcm,brcmnand-v4.0" },
{ .compatible = "brcm,brcmnand-v5.0" },
{ .compatible = "brcm,brcmnand-v6.0" },
{ .compatible = "brcm,brcmnand-v6.1" },
{ .compatible = "brcm,brcmnand-v6.2" },
{ .compatible = "brcm,brcmnand-v7.0" },
{ .compatible = "brcm,brcmnand-v7.1" },
{ .compatible = "brcm,brcmnand-v7.2" },
{ .compatible = "brcm,brcmnand-v7.3" },
{},
};
MODULE_DEVICE_TABLE(of, brcmnand_of_match);
/***********************************************************************
* Platform driver setup (per controller)
***********************************************************************/
static int brcmnand_edu_setup(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
struct resource *res;
int ret;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu");
if (res) {
ctrl->edu_base = devm_ioremap_resource(dev, res);
if (IS_ERR(ctrl->edu_base))
return PTR_ERR(ctrl->edu_base);
ctrl->edu_offsets = edu_regs;
edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND |
EDU_CONFIG_SWAP_CFG);
edu_readl(ctrl, EDU_CONFIG);
/* initialize edu */
brcmnand_edu_init(ctrl);
ctrl->edu_irq = platform_get_irq_optional(pdev, 1);
if (ctrl->edu_irq < 0) {
dev_warn(dev,
"FLASH EDU enabled, using ctlrdy irq\n");
} else {
ret = devm_request_irq(dev, ctrl->edu_irq,
brcmnand_edu_irq, 0,
"brcmnand-edu", ctrl);
if (ret < 0) {
dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n",
ctrl->edu_irq, ret);
return ret;
}
dev_info(dev, "FLASH EDU enabled using irq %u\n",
ctrl->edu_irq);
}
}
return 0;
}
int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc)
{
struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev);
struct device *dev = &pdev->dev;
struct device_node *dn = dev->of_node, *child;
struct brcmnand_controller *ctrl;
struct brcmnand_host *host;
struct resource *res;
int ret;
if (dn && !of_match_node(brcmnand_of_match, dn))
return -ENODEV;
ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return -ENOMEM;
dev_set_drvdata(dev, ctrl);
ctrl->dev = dev;
ctrl->soc = soc;
/* Enable the static key if the soc provides I/O operations indicating
* that a non-memory mapped IO access path must be used
*/
if (brcmnand_soc_has_ops(ctrl->soc))
static_branch_enable(&brcmnand_soc_has_ops_key);
init_completion(&ctrl->done);
init_completion(&ctrl->dma_done);
init_completion(&ctrl->edu_done);
nand_controller_init(&ctrl->controller);
ctrl->controller.ops = &brcmnand_controller_ops;
INIT_LIST_HEAD(&ctrl->host_list);
/* NAND register range */
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctrl->nand_base = devm_ioremap_resource(dev, res);
if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc))
return PTR_ERR(ctrl->nand_base);
/* Enable clock before using NAND registers */
ctrl->clk = devm_clk_get(dev, "nand");
if (!IS_ERR(ctrl->clk)) {
ret = clk_prepare_enable(ctrl->clk);
if (ret)
return ret;
} else {
ret = PTR_ERR(ctrl->clk);
if (ret == -EPROBE_DEFER)
return ret;
ctrl->clk = NULL;
}
/* Initialize NAND revision */
ret = brcmnand_revision_init(ctrl);
if (ret)
goto err;
/*
* Most chips have this cache at a fixed offset within 'nand' block.
* Some must specify this region separately.
*/
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache");
if (res) {
ctrl->nand_fc = devm_ioremap_resource(dev, res);
if (IS_ERR(ctrl->nand_fc)) {
ret = PTR_ERR(ctrl->nand_fc);
goto err;
}
} else {
ctrl->nand_fc = ctrl->nand_base +
ctrl->reg_offsets[BRCMNAND_FC_BASE];
}
/* FLASH_DMA */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma");
if (res) {
ctrl->flash_dma_base = devm_ioremap_resource(dev, res);
if (IS_ERR(ctrl->flash_dma_base)) {
ret = PTR_ERR(ctrl->flash_dma_base);
goto err;
}
/* initialize the dma version */
brcmnand_flash_dma_revision_init(ctrl);
ret = -EIO;
if (ctrl->nand_version >= 0x0700)
ret = dma_set_mask_and_coherent(&pdev->dev,
DMA_BIT_MASK(40));
if (ret)
ret = dma_set_mask_and_coherent(&pdev->dev,
DMA_BIT_MASK(32));
if (ret)
goto err;
/* linked-list and stop on error */
flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK);
flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0);
/* Allocate descriptor(s) */
ctrl->dma_desc = dmam_alloc_coherent(dev,
sizeof(*ctrl->dma_desc),
&ctrl->dma_pa, GFP_KERNEL);
if (!ctrl->dma_desc) {
ret = -ENOMEM;
goto err;
}
ctrl->dma_irq = platform_get_irq(pdev, 1);
if ((int)ctrl->dma_irq < 0) {
dev_err(dev, "missing FLASH_DMA IRQ\n");
ret = -ENODEV;
goto err;
}
ret = devm_request_irq(dev, ctrl->dma_irq,
brcmnand_dma_irq, 0, DRV_NAME,
ctrl);
if (ret < 0) {
dev_err(dev, "can't allocate IRQ %d: error %d\n",
ctrl->dma_irq, ret);
goto err;
}
dev_info(dev, "enabling FLASH_DMA\n");
/* set flash dma transfer function to call */
ctrl->dma_trans = brcmnand_dma_trans;
} else {
ret = brcmnand_edu_setup(pdev);
if (ret < 0)
goto err;
if (has_edu(ctrl))
/* set edu transfer function to call */
ctrl->dma_trans = brcmnand_edu_trans;
}
/* Disable automatic device ID config, direct addressing */
brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT,
CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0);
/* Disable XOR addressing */
brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0);
if (ctrl->features & BRCMNAND_HAS_WP) {
/* Permanently disable write protection */
if (wp_on == 2)
brcmnand_set_wp(ctrl, false);
} else {
wp_on = 0;
}
/* IRQ */
ctrl->irq = platform_get_irq_optional(pdev, 0);
if (ctrl->irq > 0) {
/*
* Some SoCs integrate this controller (e.g., its interrupt bits) in
* interesting ways
*/
if (soc) {
ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0,
DRV_NAME, ctrl);
/* Enable interrupt */
ctrl->soc->ctlrdy_ack(ctrl->soc);
ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true);
} else {
/* Use standard interrupt infrastructure */
ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0,
DRV_NAME, ctrl);
}
if (ret < 0) {
dev_err(dev, "can't allocate IRQ %d: error %d\n",
ctrl->irq, ret);
goto err;
}
}
for_each_available_child_of_node(dn, child) {
if (of_device_is_compatible(child, "brcm,nandcs")) {
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
of_node_put(child);
ret = -ENOMEM;
goto err;
}
host->pdev = pdev;
host->ctrl = ctrl;
ret = of_property_read_u32(child, "reg", &host->cs);
if (ret) {
dev_err(dev, "can't get chip-select\n");
devm_kfree(dev, host);
continue;
}
nand_set_flash_node(&host->chip, child);
ret = brcmnand_init_cs(host, NULL);
if (ret) {
devm_kfree(dev, host);
continue; /* Try all chip-selects */
}
list_add_tail(&host->node, &ctrl->host_list);
}
}
if (!list_empty(&ctrl->host_list))
return 0;
if (!pd) {
ret = -ENODEV;
goto err;
}
/* If we got there we must have been probing via platform data */
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host) {
ret = -ENOMEM;
goto err;
}
host->pdev = pdev;
host->ctrl = ctrl;
host->cs = pd->chip_select;
host->chip.ecc.size = pd->ecc_stepsize;
host->chip.ecc.strength = pd->ecc_strength;
ret = brcmnand_init_cs(host, pd->part_probe_types);
if (ret)
goto err;
list_add_tail(&host->node, &ctrl->host_list);
/* No chip-selects could initialize properly */
if (list_empty(&ctrl->host_list)) {
ret = -ENODEV;
goto err;
}
return 0;
err:
clk_disable_unprepare(ctrl->clk);
return ret;
}
EXPORT_SYMBOL_GPL(brcmnand_probe);
int brcmnand_remove(struct platform_device *pdev)
{
struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev);
struct brcmnand_host *host;
struct nand_chip *chip;
int ret;
list_for_each_entry(host, &ctrl->host_list, node) {
chip = &host->chip;
ret = mtd_device_unregister(nand_to_mtd(chip));
WARN_ON(ret);
nand_cleanup(chip);
}
clk_disable_unprepare(ctrl->clk);
dev_set_drvdata(&pdev->dev, NULL);
return 0;
}
EXPORT_SYMBOL_GPL(brcmnand_remove);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Kevin Cernekee");
MODULE_AUTHOR("Brian Norris");
MODULE_DESCRIPTION("NAND driver for Broadcom chips");
MODULE_ALIAS("platform:brcmnand");