linux-zen-desktop/drivers/net/ethernet/chelsio/cxgb4/sched.c

694 lines
16 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
/*
* This file is part of the Chelsio T4 Ethernet driver for Linux.
*
* Copyright (c) 2016 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/module.h>
#include <linux/netdevice.h>
#include "cxgb4.h"
#include "sched.h"
static int t4_sched_class_fw_cmd(struct port_info *pi,
struct ch_sched_params *p,
enum sched_fw_ops op)
{
struct adapter *adap = pi->adapter;
struct sched_table *s = pi->sched_tbl;
struct sched_class *e;
int err = 0;
e = &s->tab[p->u.params.class];
switch (op) {
case SCHED_FW_OP_ADD:
case SCHED_FW_OP_DEL:
err = t4_sched_params(adap, p->type,
p->u.params.level, p->u.params.mode,
p->u.params.rateunit,
p->u.params.ratemode,
p->u.params.channel, e->idx,
p->u.params.minrate, p->u.params.maxrate,
p->u.params.weight, p->u.params.pktsize,
p->u.params.burstsize);
break;
default:
err = -ENOTSUPP;
break;
}
return err;
}
static int t4_sched_bind_unbind_op(struct port_info *pi, void *arg,
enum sched_bind_type type, bool bind)
{
struct adapter *adap = pi->adapter;
u32 fw_mnem, fw_class, fw_param;
unsigned int pf = adap->pf;
unsigned int vf = 0;
int err = 0;
switch (type) {
case SCHED_QUEUE: {
struct sched_queue_entry *qe;
qe = (struct sched_queue_entry *)arg;
/* Create a template for the FW_PARAMS_CMD mnemonic and
* value (TX Scheduling Class in this case).
*/
fw_mnem = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
FW_PARAMS_PARAM_X_V(
FW_PARAMS_PARAM_DMAQ_EQ_SCHEDCLASS_ETH));
fw_class = bind ? qe->param.class : FW_SCHED_CLS_NONE;
fw_param = (fw_mnem | FW_PARAMS_PARAM_YZ_V(qe->cntxt_id));
pf = adap->pf;
vf = 0;
err = t4_set_params(adap, adap->mbox, pf, vf, 1,
&fw_param, &fw_class);
break;
}
case SCHED_FLOWC: {
struct sched_flowc_entry *fe;
fe = (struct sched_flowc_entry *)arg;
fw_class = bind ? fe->param.class : FW_SCHED_CLS_NONE;
err = cxgb4_ethofld_send_flowc(adap->port[pi->port_id],
fe->param.tid, fw_class);
break;
}
default:
err = -ENOTSUPP;
break;
}
return err;
}
static void *t4_sched_entry_lookup(struct port_info *pi,
enum sched_bind_type type,
const u32 val)
{
struct sched_table *s = pi->sched_tbl;
struct sched_class *e, *end;
void *found = NULL;
/* Look for an entry with matching @val */
end = &s->tab[s->sched_size];
for (e = &s->tab[0]; e != end; ++e) {
if (e->state == SCHED_STATE_UNUSED ||
e->bind_type != type)
continue;
switch (type) {
case SCHED_QUEUE: {
struct sched_queue_entry *qe;
list_for_each_entry(qe, &e->entry_list, list) {
if (qe->cntxt_id == val) {
found = qe;
break;
}
}
break;
}
case SCHED_FLOWC: {
struct sched_flowc_entry *fe;
list_for_each_entry(fe, &e->entry_list, list) {
if (fe->param.tid == val) {
found = fe;
break;
}
}
break;
}
default:
return NULL;
}
if (found)
break;
}
return found;
}
struct sched_class *cxgb4_sched_queue_lookup(struct net_device *dev,
struct ch_sched_queue *p)
{
struct port_info *pi = netdev2pinfo(dev);
struct sched_queue_entry *qe = NULL;
struct adapter *adap = pi->adapter;
struct sge_eth_txq *txq;
if (p->queue < 0 || p->queue >= pi->nqsets)
return NULL;
txq = &adap->sge.ethtxq[pi->first_qset + p->queue];
qe = t4_sched_entry_lookup(pi, SCHED_QUEUE, txq->q.cntxt_id);
return qe ? &pi->sched_tbl->tab[qe->param.class] : NULL;
}
static int t4_sched_queue_unbind(struct port_info *pi, struct ch_sched_queue *p)
{
struct sched_queue_entry *qe = NULL;
struct adapter *adap = pi->adapter;
struct sge_eth_txq *txq;
struct sched_class *e;
int err = 0;
if (p->queue < 0 || p->queue >= pi->nqsets)
return -ERANGE;
txq = &adap->sge.ethtxq[pi->first_qset + p->queue];
/* Find the existing entry that the queue is bound to */
qe = t4_sched_entry_lookup(pi, SCHED_QUEUE, txq->q.cntxt_id);
if (qe) {
err = t4_sched_bind_unbind_op(pi, (void *)qe, SCHED_QUEUE,
false);
if (err)
return err;
e = &pi->sched_tbl->tab[qe->param.class];
list_del(&qe->list);
kvfree(qe);
if (atomic_dec_and_test(&e->refcnt))
cxgb4_sched_class_free(adap->port[pi->port_id], e->idx);
}
return err;
}
static int t4_sched_queue_bind(struct port_info *pi, struct ch_sched_queue *p)
{
struct sched_table *s = pi->sched_tbl;
struct sched_queue_entry *qe = NULL;
struct adapter *adap = pi->adapter;
struct sge_eth_txq *txq;
struct sched_class *e;
unsigned int qid;
int err = 0;
if (p->queue < 0 || p->queue >= pi->nqsets)
return -ERANGE;
qe = kvzalloc(sizeof(struct sched_queue_entry), GFP_KERNEL);
if (!qe)
return -ENOMEM;
txq = &adap->sge.ethtxq[pi->first_qset + p->queue];
qid = txq->q.cntxt_id;
/* Unbind queue from any existing class */
err = t4_sched_queue_unbind(pi, p);
if (err)
goto out_err;
/* Bind queue to specified class */
qe->cntxt_id = qid;
memcpy(&qe->param, p, sizeof(qe->param));
e = &s->tab[qe->param.class];
err = t4_sched_bind_unbind_op(pi, (void *)qe, SCHED_QUEUE, true);
if (err)
goto out_err;
list_add_tail(&qe->list, &e->entry_list);
e->bind_type = SCHED_QUEUE;
atomic_inc(&e->refcnt);
return err;
out_err:
kvfree(qe);
return err;
}
static int t4_sched_flowc_unbind(struct port_info *pi, struct ch_sched_flowc *p)
{
struct sched_flowc_entry *fe = NULL;
struct adapter *adap = pi->adapter;
struct sched_class *e;
int err = 0;
if (p->tid < 0 || p->tid >= adap->tids.neotids)
return -ERANGE;
/* Find the existing entry that the flowc is bound to */
fe = t4_sched_entry_lookup(pi, SCHED_FLOWC, p->tid);
if (fe) {
err = t4_sched_bind_unbind_op(pi, (void *)fe, SCHED_FLOWC,
false);
if (err)
return err;
e = &pi->sched_tbl->tab[fe->param.class];
list_del(&fe->list);
kvfree(fe);
if (atomic_dec_and_test(&e->refcnt))
cxgb4_sched_class_free(adap->port[pi->port_id], e->idx);
}
return err;
}
static int t4_sched_flowc_bind(struct port_info *pi, struct ch_sched_flowc *p)
{
struct sched_table *s = pi->sched_tbl;
struct sched_flowc_entry *fe = NULL;
struct adapter *adap = pi->adapter;
struct sched_class *e;
int err = 0;
if (p->tid < 0 || p->tid >= adap->tids.neotids)
return -ERANGE;
fe = kvzalloc(sizeof(*fe), GFP_KERNEL);
if (!fe)
return -ENOMEM;
/* Unbind flowc from any existing class */
err = t4_sched_flowc_unbind(pi, p);
if (err)
goto out_err;
/* Bind flowc to specified class */
memcpy(&fe->param, p, sizeof(fe->param));
e = &s->tab[fe->param.class];
err = t4_sched_bind_unbind_op(pi, (void *)fe, SCHED_FLOWC, true);
if (err)
goto out_err;
list_add_tail(&fe->list, &e->entry_list);
e->bind_type = SCHED_FLOWC;
atomic_inc(&e->refcnt);
return err;
out_err:
kvfree(fe);
return err;
}
static void t4_sched_class_unbind_all(struct port_info *pi,
struct sched_class *e,
enum sched_bind_type type)
{
if (!e)
return;
switch (type) {
case SCHED_QUEUE: {
struct sched_queue_entry *qe;
list_for_each_entry(qe, &e->entry_list, list)
t4_sched_queue_unbind(pi, &qe->param);
break;
}
case SCHED_FLOWC: {
struct sched_flowc_entry *fe;
list_for_each_entry(fe, &e->entry_list, list)
t4_sched_flowc_unbind(pi, &fe->param);
break;
}
default:
break;
}
}
static int t4_sched_class_bind_unbind_op(struct port_info *pi, void *arg,
enum sched_bind_type type, bool bind)
{
int err = 0;
if (!arg)
return -EINVAL;
switch (type) {
case SCHED_QUEUE: {
struct ch_sched_queue *qe = (struct ch_sched_queue *)arg;
if (bind)
err = t4_sched_queue_bind(pi, qe);
else
err = t4_sched_queue_unbind(pi, qe);
break;
}
case SCHED_FLOWC: {
struct ch_sched_flowc *fe = (struct ch_sched_flowc *)arg;
if (bind)
err = t4_sched_flowc_bind(pi, fe);
else
err = t4_sched_flowc_unbind(pi, fe);
break;
}
default:
err = -ENOTSUPP;
break;
}
return err;
}
/**
* cxgb4_sched_class_bind - Bind an entity to a scheduling class
* @dev: net_device pointer
* @arg: Entity opaque data
* @type: Entity type (Queue)
*
* Binds an entity (queue) to a scheduling class. If the entity
* is bound to another class, it will be unbound from the other class
* and bound to the class specified in @arg.
*/
int cxgb4_sched_class_bind(struct net_device *dev, void *arg,
enum sched_bind_type type)
{
struct port_info *pi = netdev2pinfo(dev);
u8 class_id;
if (!can_sched(dev))
return -ENOTSUPP;
if (!arg)
return -EINVAL;
switch (type) {
case SCHED_QUEUE: {
struct ch_sched_queue *qe = (struct ch_sched_queue *)arg;
class_id = qe->class;
break;
}
case SCHED_FLOWC: {
struct ch_sched_flowc *fe = (struct ch_sched_flowc *)arg;
class_id = fe->class;
break;
}
default:
return -ENOTSUPP;
}
if (!valid_class_id(dev, class_id))
return -EINVAL;
if (class_id == SCHED_CLS_NONE)
return -ENOTSUPP;
return t4_sched_class_bind_unbind_op(pi, arg, type, true);
}
/**
* cxgb4_sched_class_unbind - Unbind an entity from a scheduling class
* @dev: net_device pointer
* @arg: Entity opaque data
* @type: Entity type (Queue)
*
* Unbinds an entity (queue) from a scheduling class.
*/
int cxgb4_sched_class_unbind(struct net_device *dev, void *arg,
enum sched_bind_type type)
{
struct port_info *pi = netdev2pinfo(dev);
u8 class_id;
if (!can_sched(dev))
return -ENOTSUPP;
if (!arg)
return -EINVAL;
switch (type) {
case SCHED_QUEUE: {
struct ch_sched_queue *qe = (struct ch_sched_queue *)arg;
class_id = qe->class;
break;
}
case SCHED_FLOWC: {
struct ch_sched_flowc *fe = (struct ch_sched_flowc *)arg;
class_id = fe->class;
break;
}
default:
return -ENOTSUPP;
}
if (!valid_class_id(dev, class_id))
return -EINVAL;
return t4_sched_class_bind_unbind_op(pi, arg, type, false);
}
/* If @p is NULL, fetch any available unused class */
static struct sched_class *t4_sched_class_lookup(struct port_info *pi,
const struct ch_sched_params *p)
{
struct sched_table *s = pi->sched_tbl;
struct sched_class *found = NULL;
struct sched_class *e, *end;
if (!p) {
/* Get any available unused class */
end = &s->tab[s->sched_size];
for (e = &s->tab[0]; e != end; ++e) {
if (e->state == SCHED_STATE_UNUSED) {
found = e;
break;
}
}
} else {
/* Look for a class with matching scheduling parameters */
struct ch_sched_params info;
struct ch_sched_params tp;
memcpy(&tp, p, sizeof(tp));
/* Don't try to match class parameter */
tp.u.params.class = SCHED_CLS_NONE;
end = &s->tab[s->sched_size];
for (e = &s->tab[0]; e != end; ++e) {
if (e->state == SCHED_STATE_UNUSED)
continue;
memcpy(&info, &e->info, sizeof(info));
/* Don't try to match class parameter */
info.u.params.class = SCHED_CLS_NONE;
if ((info.type == tp.type) &&
(!memcmp(&info.u.params, &tp.u.params,
sizeof(info.u.params)))) {
found = e;
break;
}
}
}
return found;
}
static struct sched_class *t4_sched_class_alloc(struct port_info *pi,
struct ch_sched_params *p)
{
struct sched_class *e = NULL;
u8 class_id;
int err;
if (!p)
return NULL;
class_id = p->u.params.class;
/* Only accept search for existing class with matching params
* or allocation of new class with specified params
*/
if (class_id != SCHED_CLS_NONE)
return NULL;
/* See if there's an exisiting class with same requested sched
* params. Classes can only be shared among FLOWC types. For
* other types, always request a new class.
*/
if (p->u.params.mode == SCHED_CLASS_MODE_FLOW)
e = t4_sched_class_lookup(pi, p);
if (!e) {
struct ch_sched_params np;
/* Fetch any available unused class */
e = t4_sched_class_lookup(pi, NULL);
if (!e)
return NULL;
memcpy(&np, p, sizeof(np));
np.u.params.class = e->idx;
/* New class */
err = t4_sched_class_fw_cmd(pi, &np, SCHED_FW_OP_ADD);
if (err)
return NULL;
memcpy(&e->info, &np, sizeof(e->info));
atomic_set(&e->refcnt, 0);
e->state = SCHED_STATE_ACTIVE;
}
return e;
}
/**
* cxgb4_sched_class_alloc - allocate a scheduling class
* @dev: net_device pointer
* @p: new scheduling class to create.
*
* Returns pointer to the scheduling class created. If @p is NULL, then
* it allocates and returns any available unused scheduling class. If a
* scheduling class with matching @p is found, then the matching class is
* returned.
*/
struct sched_class *cxgb4_sched_class_alloc(struct net_device *dev,
struct ch_sched_params *p)
{
struct port_info *pi = netdev2pinfo(dev);
u8 class_id;
if (!can_sched(dev))
return NULL;
class_id = p->u.params.class;
if (!valid_class_id(dev, class_id))
return NULL;
return t4_sched_class_alloc(pi, p);
}
/**
* cxgb4_sched_class_free - free a scheduling class
* @dev: net_device pointer
* @classid: scheduling class id to free
*
* Frees a scheduling class if there are no users.
*/
void cxgb4_sched_class_free(struct net_device *dev, u8 classid)
{
struct port_info *pi = netdev2pinfo(dev);
struct sched_table *s = pi->sched_tbl;
struct ch_sched_params p;
struct sched_class *e;
u32 speed;
int ret;
e = &s->tab[classid];
if (!atomic_read(&e->refcnt) && e->state != SCHED_STATE_UNUSED) {
/* Port based rate limiting needs explicit reset back
* to max rate. But, we'll do explicit reset for all
* types, instead of just port based type, to be on
* the safer side.
*/
memcpy(&p, &e->info, sizeof(p));
/* Always reset mode to 0. Otherwise, FLOWC mode will
* still be enabled even after resetting the traffic
* class.
*/
p.u.params.mode = 0;
p.u.params.minrate = 0;
p.u.params.pktsize = 0;
ret = t4_get_link_params(pi, NULL, &speed, NULL);
if (!ret)
p.u.params.maxrate = speed * 1000; /* Mbps to Kbps */
else
p.u.params.maxrate = SCHED_MAX_RATE_KBPS;
t4_sched_class_fw_cmd(pi, &p, SCHED_FW_OP_DEL);
e->state = SCHED_STATE_UNUSED;
memset(&e->info, 0, sizeof(e->info));
}
}
static void t4_sched_class_free(struct net_device *dev, struct sched_class *e)
{
struct port_info *pi = netdev2pinfo(dev);
t4_sched_class_unbind_all(pi, e, e->bind_type);
cxgb4_sched_class_free(dev, e->idx);
}
struct sched_table *t4_init_sched(unsigned int sched_size)
{
struct sched_table *s;
unsigned int i;
s = kvzalloc(struct_size(s, tab, sched_size), GFP_KERNEL);
if (!s)
return NULL;
s->sched_size = sched_size;
for (i = 0; i < s->sched_size; i++) {
memset(&s->tab[i], 0, sizeof(struct sched_class));
s->tab[i].idx = i;
s->tab[i].state = SCHED_STATE_UNUSED;
INIT_LIST_HEAD(&s->tab[i].entry_list);
atomic_set(&s->tab[i].refcnt, 0);
}
return s;
}
void t4_cleanup_sched(struct adapter *adap)
{
struct sched_table *s;
unsigned int j, i;
for_each_port(adap, j) {
struct port_info *pi = netdev2pinfo(adap->port[j]);
s = pi->sched_tbl;
if (!s)
continue;
for (i = 0; i < s->sched_size; i++) {
struct sched_class *e;
e = &s->tab[i];
if (e->state == SCHED_STATE_ACTIVE)
t4_sched_class_free(adap->port[j], e);
}
kvfree(s);
}
}