linux-zen-desktop/drivers/pci/endpoint/pci-epc-core.c

934 lines
25 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* PCI Endpoint *Controller* (EPC) library
*
* Copyright (C) 2017 Texas Instruments
* Author: Kishon Vijay Abraham I <kishon@ti.com>
*/
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/pci-epc.h>
#include <linux/pci-epf.h>
#include <linux/pci-ep-cfs.h>
static struct class *pci_epc_class;
static void devm_pci_epc_release(struct device *dev, void *res)
{
struct pci_epc *epc = *(struct pci_epc **)res;
pci_epc_destroy(epc);
}
static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
{
struct pci_epc **epc = res;
return *epc == match_data;
}
/**
* pci_epc_put() - release the PCI endpoint controller
* @epc: epc returned by pci_epc_get()
*
* release the refcount the caller obtained by invoking pci_epc_get()
*/
void pci_epc_put(struct pci_epc *epc)
{
if (!epc || IS_ERR(epc))
return;
module_put(epc->ops->owner);
put_device(&epc->dev);
}
EXPORT_SYMBOL_GPL(pci_epc_put);
/**
* pci_epc_get() - get the PCI endpoint controller
* @epc_name: device name of the endpoint controller
*
* Invoke to get struct pci_epc * corresponding to the device name of the
* endpoint controller
*/
struct pci_epc *pci_epc_get(const char *epc_name)
{
int ret = -EINVAL;
struct pci_epc *epc;
struct device *dev;
struct class_dev_iter iter;
class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
while ((dev = class_dev_iter_next(&iter))) {
if (strcmp(epc_name, dev_name(dev)))
continue;
epc = to_pci_epc(dev);
if (!try_module_get(epc->ops->owner)) {
ret = -EINVAL;
goto err;
}
class_dev_iter_exit(&iter);
get_device(&epc->dev);
return epc;
}
err:
class_dev_iter_exit(&iter);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(pci_epc_get);
/**
* pci_epc_get_first_free_bar() - helper to get first unreserved BAR
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
*
* Invoke to get the first unreserved BAR that can be used by the endpoint
* function. For any incorrect value in reserved_bar return '0'.
*/
enum pci_barno
pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
{
return pci_epc_get_next_free_bar(epc_features, BAR_0);
}
EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
/**
* pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
* @epc_features: pci_epc_features structure that holds the reserved bar bitmap
* @bar: the starting BAR number from where unreserved BAR should be searched
*
* Invoke to get the next unreserved BAR starting from @bar that can be used
* for endpoint function. For any incorrect value in reserved_bar return '0'.
*/
enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
*epc_features, enum pci_barno bar)
{
unsigned long free_bar;
if (!epc_features)
return BAR_0;
/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
bar++;
/* Find if the reserved BAR is also a 64-bit BAR */
free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
/* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
free_bar <<= 1;
free_bar |= epc_features->reserved_bar;
free_bar = find_next_zero_bit(&free_bar, 6, bar);
if (free_bar > 5)
return NO_BAR;
return free_bar;
}
EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
/**
* pci_epc_get_features() - get the features supported by EPC
* @epc: the features supported by *this* EPC device will be returned
* @func_no: the features supported by the EPC device specific to the
* endpoint function with func_no will be returned
* @vfunc_no: the features supported by the EPC device specific to the
* virtual endpoint function with vfunc_no will be returned
*
* Invoke to get the features provided by the EPC which may be
* specific to an endpoint function. Returns pci_epc_features on success
* and NULL for any failures.
*/
const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
u8 func_no, u8 vfunc_no)
{
const struct pci_epc_features *epc_features;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return NULL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return NULL;
if (!epc->ops->get_features)
return NULL;
mutex_lock(&epc->lock);
epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
mutex_unlock(&epc->lock);
return epc_features;
}
EXPORT_SYMBOL_GPL(pci_epc_get_features);
/**
* pci_epc_stop() - stop the PCI link
* @epc: the link of the EPC device that has to be stopped
*
* Invoke to stop the PCI link
*/
void pci_epc_stop(struct pci_epc *epc)
{
if (IS_ERR(epc) || !epc->ops->stop)
return;
mutex_lock(&epc->lock);
epc->ops->stop(epc);
mutex_unlock(&epc->lock);
}
EXPORT_SYMBOL_GPL(pci_epc_stop);
/**
* pci_epc_start() - start the PCI link
* @epc: the link of *this* EPC device has to be started
*
* Invoke to start the PCI link
*/
int pci_epc_start(struct pci_epc *epc)
{
int ret;
if (IS_ERR(epc))
return -EINVAL;
if (!epc->ops->start)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->start(epc);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_start);
/**
* pci_epc_raise_irq() - interrupt the host system
* @epc: the EPC device which has to interrupt the host
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @type: specify the type of interrupt; legacy, MSI or MSI-X
2023-10-24 12:59:35 +02:00
* @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
2023-08-30 17:31:07 +02:00
*
* Invoke to raise an legacy, MSI or MSI-X interrupt
*/
int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
enum pci_epc_irq_type type, u16 interrupt_num)
{
int ret;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->raise_irq)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
/**
* pci_epc_map_msi_irq() - Map physical address to MSI address and return
* MSI data
* @epc: the EPC device which has the MSI capability
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @phys_addr: the physical address of the outbound region
2023-10-24 12:59:35 +02:00
* @interrupt_num: the MSI interrupt number with range (1-N)
2023-08-30 17:31:07 +02:00
* @entry_size: Size of Outbound address region for each interrupt
* @msi_data: the data that should be written in order to raise MSI interrupt
* with interrupt number as 'interrupt num'
* @msi_addr_offset: Offset of MSI address from the aligned outbound address
* to which the MSI address is mapped
*
* Invoke to map physical address to MSI address and return MSI data. The
* physical address should be an address in the outbound region. This is
* required to implement doorbell functionality of NTB wherein EPC on either
* side of the interface (primary and secondary) can directly write to the
* physical address (in outbound region) of the other interface to ring
* doorbell.
*/
int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
u32 *msi_data, u32 *msi_addr_offset)
{
int ret;
if (IS_ERR_OR_NULL(epc))
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->map_msi_irq)
return -EINVAL;
mutex_lock(&epc->lock);
ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
interrupt_num, entry_size, msi_data,
msi_addr_offset);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
/**
* pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
* @epc: the EPC device to which MSI interrupts was requested
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
*
* Invoke to get the number of MSI interrupts allocated by the RC
*/
int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
{
int interrupt;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return 0;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return 0;
if (!epc->ops->get_msi)
return 0;
mutex_lock(&epc->lock);
interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
mutex_unlock(&epc->lock);
if (interrupt < 0)
return 0;
interrupt = 1 << interrupt;
return interrupt;
}
EXPORT_SYMBOL_GPL(pci_epc_get_msi);
/**
* pci_epc_set_msi() - set the number of MSI interrupt numbers required
* @epc: the EPC device on which MSI has to be configured
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @interrupts: number of MSI interrupts required by the EPF
*
* Invoke to set the required number of MSI interrupts.
*/
int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
{
int ret;
u8 encode_int;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
interrupts < 1 || interrupts > 32)
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->set_msi)
return 0;
encode_int = order_base_2(interrupts);
mutex_lock(&epc->lock);
ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_set_msi);
/**
* pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
* @epc: the EPC device to which MSI-X interrupts was requested
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
*
* Invoke to get the number of MSI-X interrupts allocated by the RC
*/
int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
{
int interrupt;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return 0;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return 0;
if (!epc->ops->get_msix)
return 0;
mutex_lock(&epc->lock);
interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
mutex_unlock(&epc->lock);
if (interrupt < 0)
return 0;
return interrupt + 1;
}
EXPORT_SYMBOL_GPL(pci_epc_get_msix);
/**
* pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
* @epc: the EPC device on which MSI-X has to be configured
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @interrupts: number of MSI-X interrupts required by the EPF
* @bir: BAR where the MSI-X table resides
* @offset: Offset pointing to the start of MSI-X table
*
* Invoke to set the required number of MSI-X interrupts.
*/
int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
u16 interrupts, enum pci_barno bir, u32 offset)
{
int ret;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
interrupts < 1 || interrupts > 2048)
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->set_msix)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
offset);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_set_msix);
/**
* pci_epc_unmap_addr() - unmap CPU address from PCI address
* @epc: the EPC device on which address is allocated
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @phys_addr: physical address of the local system
*
* Invoke to unmap the CPU address from PCI address.
*/
void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
phys_addr_t phys_addr)
{
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return;
if (!epc->ops->unmap_addr)
return;
mutex_lock(&epc->lock);
epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
mutex_unlock(&epc->lock);
}
EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
/**
* pci_epc_map_addr() - map CPU address to PCI address
* @epc: the EPC device on which address is allocated
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @phys_addr: physical address of the local system
* @pci_addr: PCI address to which the physical address should be mapped
* @size: the size of the allocation
*
* Invoke to map CPU address with PCI address.
*/
int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
phys_addr_t phys_addr, u64 pci_addr, size_t size)
{
int ret;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->map_addr)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
size);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_map_addr);
/**
* pci_epc_clear_bar() - reset the BAR
* @epc: the EPC device for which the BAR has to be cleared
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @epf_bar: the struct epf_bar that contains the BAR information
*
* Invoke to reset the BAR of the endpoint device.
*/
void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
struct pci_epf_bar *epf_bar)
{
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
(epf_bar->barno == BAR_5 &&
epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
return;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return;
if (!epc->ops->clear_bar)
return;
mutex_lock(&epc->lock);
epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
mutex_unlock(&epc->lock);
}
EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
/**
* pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
* @epc: the EPC device on which BAR has to be configured
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @epf_bar: the struct epf_bar that contains the BAR information
*
* Invoke to configure the BAR of the endpoint device.
*/
int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
struct pci_epf_bar *epf_bar)
{
int ret;
int flags = epf_bar->flags;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
(epf_bar->barno == BAR_5 &&
flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
(flags & PCI_BASE_ADDRESS_SPACE_IO &&
flags & PCI_BASE_ADDRESS_IO_MASK) ||
(upper_32_bits(epf_bar->size) &&
!(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
if (!epc->ops->set_bar)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_set_bar);
/**
* pci_epc_write_header() - write standard configuration header
* @epc: the EPC device to which the configuration header should be written
* @func_no: the physical endpoint function number in the EPC device
* @vfunc_no: the virtual endpoint function number in the physical function
* @header: standard configuration header fields
*
* Invoke to write the configuration header to the endpoint controller. Every
* endpoint controller will have a dedicated location to which the standard
* configuration header would be written. The callback function should write
* the header fields to this dedicated location.
*/
int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
struct pci_epf_header *header)
{
int ret;
if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
return -EINVAL;
if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
return -EINVAL;
/* Only Virtual Function #1 has deviceID */
if (vfunc_no > 1)
return -EINVAL;
if (!epc->ops->write_header)
return 0;
mutex_lock(&epc->lock);
ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
mutex_unlock(&epc->lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_write_header);
/**
* pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
* @epc: the EPC device to which the endpoint function should be added
* @epf: the endpoint function to be added
* @type: Identifies if the EPC is connected to the primary or secondary
* interface of EPF
*
* A PCI endpoint device can have one or more functions. In the case of PCIe,
* the specification allows up to 8 PCIe endpoint functions. Invoke
* pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
*/
int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type)
{
struct list_head *list;
u32 func_no;
int ret = 0;
if (IS_ERR_OR_NULL(epc) || epf->is_vf)
return -EINVAL;
if (type == PRIMARY_INTERFACE && epf->epc)
return -EBUSY;
if (type == SECONDARY_INTERFACE && epf->sec_epc)
return -EBUSY;
mutex_lock(&epc->list_lock);
func_no = find_first_zero_bit(&epc->function_num_map,
BITS_PER_LONG);
if (func_no >= BITS_PER_LONG) {
ret = -EINVAL;
goto ret;
}
if (func_no > epc->max_functions - 1) {
dev_err(&epc->dev, "Exceeding max supported Function Number\n");
ret = -EINVAL;
goto ret;
}
set_bit(func_no, &epc->function_num_map);
if (type == PRIMARY_INTERFACE) {
epf->func_no = func_no;
epf->epc = epc;
list = &epf->list;
} else {
epf->sec_epc_func_no = func_no;
epf->sec_epc = epc;
list = &epf->sec_epc_list;
}
list_add_tail(list, &epc->pci_epf);
ret:
mutex_unlock(&epc->list_lock);
return ret;
}
EXPORT_SYMBOL_GPL(pci_epc_add_epf);
/**
* pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
* @epc: the EPC device from which the endpoint function should be removed
* @epf: the endpoint function to be removed
* @type: identifies if the EPC is connected to the primary or secondary
* interface of EPF
*
* Invoke to remove PCI endpoint function from the endpoint controller.
*/
void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
enum pci_epc_interface_type type)
{
struct list_head *list;
u32 func_no = 0;
if (!epc || IS_ERR(epc) || !epf)
return;
if (type == PRIMARY_INTERFACE) {
func_no = epf->func_no;
list = &epf->list;
} else {
func_no = epf->sec_epc_func_no;
list = &epf->sec_epc_list;
}
mutex_lock(&epc->list_lock);
clear_bit(func_no, &epc->function_num_map);
list_del(list);
epf->epc = NULL;
mutex_unlock(&epc->list_lock);
}
EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
/**
* pci_epc_linkup() - Notify the EPF device that EPC device has established a
* connection with the Root Complex.
* @epc: the EPC device which has established link with the host
*
* Invoke to Notify the EPF device that the EPC device has established a
* connection with the Root Complex.
*/
void pci_epc_linkup(struct pci_epc *epc)
{
struct pci_epf *epf;
if (!epc || IS_ERR(epc))
return;
mutex_lock(&epc->list_lock);
list_for_each_entry(epf, &epc->pci_epf, list) {
mutex_lock(&epf->lock);
if (epf->event_ops && epf->event_ops->link_up)
epf->event_ops->link_up(epf);
mutex_unlock(&epf->lock);
}
mutex_unlock(&epc->list_lock);
}
EXPORT_SYMBOL_GPL(pci_epc_linkup);
2023-10-24 12:59:35 +02:00
/**
* pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
* connection with the Root Complex.
* @epc: the EPC device which has dropped the link with the host
*
* Invoke to Notify the EPF device that the EPC device has dropped the
* connection with the Root Complex.
*/
void pci_epc_linkdown(struct pci_epc *epc)
{
struct pci_epf *epf;
if (!epc || IS_ERR(epc))
return;
mutex_lock(&epc->list_lock);
list_for_each_entry(epf, &epc->pci_epf, list) {
mutex_lock(&epf->lock);
if (epf->event_ops && epf->event_ops->link_down)
epf->event_ops->link_down(epf);
mutex_unlock(&epf->lock);
}
mutex_unlock(&epc->list_lock);
}
EXPORT_SYMBOL_GPL(pci_epc_linkdown);
2023-08-30 17:31:07 +02:00
/**
* pci_epc_init_notify() - Notify the EPF device that EPC device's core
* initialization is completed.
* @epc: the EPC device whose core initialization is completed
*
* Invoke to Notify the EPF device that the EPC device's initialization
* is completed.
*/
void pci_epc_init_notify(struct pci_epc *epc)
{
struct pci_epf *epf;
if (!epc || IS_ERR(epc))
return;
mutex_lock(&epc->list_lock);
list_for_each_entry(epf, &epc->pci_epf, list) {
mutex_lock(&epf->lock);
if (epf->event_ops && epf->event_ops->core_init)
epf->event_ops->core_init(epf);
mutex_unlock(&epf->lock);
}
mutex_unlock(&epc->list_lock);
}
EXPORT_SYMBOL_GPL(pci_epc_init_notify);
2023-10-24 12:59:35 +02:00
/**
* pci_epc_bme_notify() - Notify the EPF device that the EPC device has received
* the BME event from the Root complex
* @epc: the EPC device that received the BME event
*
* Invoke to Notify the EPF device that the EPC device has received the Bus
* Master Enable (BME) event from the Root complex
*/
void pci_epc_bme_notify(struct pci_epc *epc)
{
struct pci_epf *epf;
if (!epc || IS_ERR(epc))
return;
mutex_lock(&epc->list_lock);
list_for_each_entry(epf, &epc->pci_epf, list) {
mutex_lock(&epf->lock);
if (epf->event_ops && epf->event_ops->bme)
epf->event_ops->bme(epf);
mutex_unlock(&epf->lock);
}
mutex_unlock(&epc->list_lock);
}
EXPORT_SYMBOL_GPL(pci_epc_bme_notify);
2023-08-30 17:31:07 +02:00
/**
* pci_epc_destroy() - destroy the EPC device
* @epc: the EPC device that has to be destroyed
*
* Invoke to destroy the PCI EPC device
*/
void pci_epc_destroy(struct pci_epc *epc)
{
pci_ep_cfs_remove_epc_group(epc->group);
device_unregister(&epc->dev);
}
EXPORT_SYMBOL_GPL(pci_epc_destroy);
/**
* devm_pci_epc_destroy() - destroy the EPC device
* @dev: device that wants to destroy the EPC
* @epc: the EPC device that has to be destroyed
*
* Invoke to destroy the devres associated with this
* pci_epc and destroy the EPC device.
*/
void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
{
int r;
r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
epc);
dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
}
EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
static void pci_epc_release(struct device *dev)
{
kfree(to_pci_epc(dev));
}
/**
* __pci_epc_create() - create a new endpoint controller (EPC) device
* @dev: device that is creating the new EPC
* @ops: function pointers for performing EPC operations
* @owner: the owner of the module that creates the EPC device
*
* Invoke to create a new EPC device and add it to pci_epc class.
*/
struct pci_epc *
__pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
struct module *owner)
{
int ret;
struct pci_epc *epc;
if (WARN_ON(!dev)) {
ret = -EINVAL;
goto err_ret;
}
epc = kzalloc(sizeof(*epc), GFP_KERNEL);
if (!epc) {
ret = -ENOMEM;
goto err_ret;
}
mutex_init(&epc->lock);
mutex_init(&epc->list_lock);
INIT_LIST_HEAD(&epc->pci_epf);
device_initialize(&epc->dev);
epc->dev.class = pci_epc_class;
epc->dev.parent = dev;
epc->dev.release = pci_epc_release;
epc->ops = ops;
ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
if (ret)
goto put_dev;
ret = device_add(&epc->dev);
if (ret)
goto put_dev;
epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
return epc;
put_dev:
put_device(&epc->dev);
kfree(epc);
err_ret:
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(__pci_epc_create);
/**
* __devm_pci_epc_create() - create a new endpoint controller (EPC) device
* @dev: device that is creating the new EPC
* @ops: function pointers for performing EPC operations
* @owner: the owner of the module that creates the EPC device
*
* Invoke to create a new EPC device and add it to pci_epc class.
* While at that, it also associates the device with the pci_epc using devres.
* On driver detach, release function is invoked on the devres data,
* then, devres data is freed.
*/
struct pci_epc *
__devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
struct module *owner)
{
struct pci_epc **ptr, *epc;
ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
epc = __pci_epc_create(dev, ops, owner);
if (!IS_ERR(epc)) {
*ptr = epc;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return epc;
}
EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
static int __init pci_epc_init(void)
{
2023-10-24 12:59:35 +02:00
pci_epc_class = class_create("pci_epc");
2023-08-30 17:31:07 +02:00
if (IS_ERR(pci_epc_class)) {
pr_err("failed to create pci epc class --> %ld\n",
PTR_ERR(pci_epc_class));
return PTR_ERR(pci_epc_class);
}
return 0;
}
module_init(pci_epc_init);
static void __exit pci_epc_exit(void)
{
class_destroy(pci_epc_class);
}
module_exit(pci_epc_exit);
MODULE_DESCRIPTION("PCI EPC Library");
MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");