2023-08-30 17:31:07 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
/*
|
|
|
|
* Driver for Broadcom BCM2835 SPI Controllers
|
|
|
|
*
|
|
|
|
* Copyright (C) 2012 Chris Boot
|
|
|
|
* Copyright (C) 2013 Stephen Warren
|
|
|
|
* Copyright (C) 2015 Martin Sperl
|
|
|
|
*
|
|
|
|
* This driver is inspired by:
|
|
|
|
* spi-ath79.c, Copyright (C) 2009-2011 Gabor Juhos <juhosg@openwrt.org>
|
|
|
|
* spi-atmel.c, Copyright (C) 2006 Atmel Corporation
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/completion.h>
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#include <linux/dmaengine.h>
|
|
|
|
#include <linux/err.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/io.h>
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/module.h>
|
|
|
|
#include <linux/of.h>
|
|
|
|
#include <linux/of_address.h>
|
|
|
|
#include <linux/of_device.h>
|
|
|
|
#include <linux/gpio/consumer.h>
|
|
|
|
#include <linux/gpio/machine.h> /* FIXME: using chip internals */
|
|
|
|
#include <linux/gpio/driver.h> /* FIXME: using chip internals */
|
|
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <linux/spi/spi.h>
|
|
|
|
|
|
|
|
/* SPI register offsets */
|
|
|
|
#define BCM2835_SPI_CS 0x00
|
|
|
|
#define BCM2835_SPI_FIFO 0x04
|
|
|
|
#define BCM2835_SPI_CLK 0x08
|
|
|
|
#define BCM2835_SPI_DLEN 0x0c
|
|
|
|
#define BCM2835_SPI_LTOH 0x10
|
|
|
|
#define BCM2835_SPI_DC 0x14
|
|
|
|
|
|
|
|
/* Bitfields in CS */
|
|
|
|
#define BCM2835_SPI_CS_LEN_LONG 0x02000000
|
|
|
|
#define BCM2835_SPI_CS_DMA_LEN 0x01000000
|
|
|
|
#define BCM2835_SPI_CS_CSPOL2 0x00800000
|
|
|
|
#define BCM2835_SPI_CS_CSPOL1 0x00400000
|
|
|
|
#define BCM2835_SPI_CS_CSPOL0 0x00200000
|
|
|
|
#define BCM2835_SPI_CS_RXF 0x00100000
|
|
|
|
#define BCM2835_SPI_CS_RXR 0x00080000
|
|
|
|
#define BCM2835_SPI_CS_TXD 0x00040000
|
|
|
|
#define BCM2835_SPI_CS_RXD 0x00020000
|
|
|
|
#define BCM2835_SPI_CS_DONE 0x00010000
|
|
|
|
#define BCM2835_SPI_CS_LEN 0x00002000
|
|
|
|
#define BCM2835_SPI_CS_REN 0x00001000
|
|
|
|
#define BCM2835_SPI_CS_ADCS 0x00000800
|
|
|
|
#define BCM2835_SPI_CS_INTR 0x00000400
|
|
|
|
#define BCM2835_SPI_CS_INTD 0x00000200
|
|
|
|
#define BCM2835_SPI_CS_DMAEN 0x00000100
|
|
|
|
#define BCM2835_SPI_CS_TA 0x00000080
|
|
|
|
#define BCM2835_SPI_CS_CSPOL 0x00000040
|
|
|
|
#define BCM2835_SPI_CS_CLEAR_RX 0x00000020
|
|
|
|
#define BCM2835_SPI_CS_CLEAR_TX 0x00000010
|
|
|
|
#define BCM2835_SPI_CS_CPOL 0x00000008
|
|
|
|
#define BCM2835_SPI_CS_CPHA 0x00000004
|
|
|
|
#define BCM2835_SPI_CS_CS_10 0x00000002
|
|
|
|
#define BCM2835_SPI_CS_CS_01 0x00000001
|
|
|
|
|
|
|
|
#define BCM2835_SPI_FIFO_SIZE 64
|
|
|
|
#define BCM2835_SPI_FIFO_SIZE_3_4 48
|
|
|
|
#define BCM2835_SPI_DMA_MIN_LENGTH 96
|
|
|
|
#define BCM2835_SPI_MODE_BITS (SPI_CPOL | SPI_CPHA | SPI_CS_HIGH \
|
|
|
|
| SPI_NO_CS | SPI_3WIRE)
|
|
|
|
|
|
|
|
#define DRV_NAME "spi-bcm2835"
|
|
|
|
|
|
|
|
/* define polling limits */
|
|
|
|
static unsigned int polling_limit_us = 30;
|
|
|
|
module_param(polling_limit_us, uint, 0664);
|
|
|
|
MODULE_PARM_DESC(polling_limit_us,
|
|
|
|
"time in us to run a transfer in polling mode\n");
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct bcm2835_spi - BCM2835 SPI controller
|
|
|
|
* @regs: base address of register map
|
|
|
|
* @clk: core clock, divided to calculate serial clock
|
|
|
|
* @clk_hz: core clock cached speed
|
|
|
|
* @irq: interrupt, signals TX FIFO empty or RX FIFO ¾ full
|
|
|
|
* @tfr: SPI transfer currently processed
|
|
|
|
* @ctlr: SPI controller reverse lookup
|
|
|
|
* @tx_buf: pointer whence next transmitted byte is read
|
|
|
|
* @rx_buf: pointer where next received byte is written
|
|
|
|
* @tx_len: remaining bytes to transmit
|
|
|
|
* @rx_len: remaining bytes to receive
|
|
|
|
* @tx_prologue: bytes transmitted without DMA if first TX sglist entry's
|
|
|
|
* length is not a multiple of 4 (to overcome hardware limitation)
|
|
|
|
* @rx_prologue: bytes received without DMA if first RX sglist entry's
|
|
|
|
* length is not a multiple of 4 (to overcome hardware limitation)
|
|
|
|
* @tx_spillover: whether @tx_prologue spills over to second TX sglist entry
|
|
|
|
* @debugfs_dir: the debugfs directory - neede to remove debugfs when
|
|
|
|
* unloading the module
|
|
|
|
* @count_transfer_polling: count of how often polling mode is used
|
|
|
|
* @count_transfer_irq: count of how often interrupt mode is used
|
|
|
|
* @count_transfer_irq_after_polling: count of how often we fall back to
|
|
|
|
* interrupt mode after starting in polling mode.
|
|
|
|
* These are counted as well in @count_transfer_polling and
|
|
|
|
* @count_transfer_irq
|
|
|
|
* @count_transfer_dma: count how often dma mode is used
|
|
|
|
* @slv: SPI slave currently selected
|
|
|
|
* (used by bcm2835_spi_dma_tx_done() to write @clear_rx_cs)
|
|
|
|
* @tx_dma_active: whether a TX DMA descriptor is in progress
|
|
|
|
* @rx_dma_active: whether a RX DMA descriptor is in progress
|
|
|
|
* (used by bcm2835_spi_dma_tx_done() to handle a race)
|
|
|
|
* @fill_tx_desc: preallocated TX DMA descriptor used for RX-only transfers
|
|
|
|
* (cyclically copies from zero page to TX FIFO)
|
|
|
|
* @fill_tx_addr: bus address of zero page
|
|
|
|
*/
|
|
|
|
struct bcm2835_spi {
|
|
|
|
void __iomem *regs;
|
|
|
|
struct clk *clk;
|
|
|
|
unsigned long clk_hz;
|
|
|
|
int irq;
|
|
|
|
struct spi_transfer *tfr;
|
|
|
|
struct spi_controller *ctlr;
|
|
|
|
const u8 *tx_buf;
|
|
|
|
u8 *rx_buf;
|
|
|
|
int tx_len;
|
|
|
|
int rx_len;
|
|
|
|
int tx_prologue;
|
|
|
|
int rx_prologue;
|
|
|
|
unsigned int tx_spillover;
|
|
|
|
|
|
|
|
struct dentry *debugfs_dir;
|
|
|
|
u64 count_transfer_polling;
|
|
|
|
u64 count_transfer_irq;
|
|
|
|
u64 count_transfer_irq_after_polling;
|
|
|
|
u64 count_transfer_dma;
|
|
|
|
|
|
|
|
struct bcm2835_spidev *slv;
|
|
|
|
unsigned int tx_dma_active;
|
|
|
|
unsigned int rx_dma_active;
|
|
|
|
struct dma_async_tx_descriptor *fill_tx_desc;
|
|
|
|
dma_addr_t fill_tx_addr;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct bcm2835_spidev - BCM2835 SPI slave
|
|
|
|
* @prepare_cs: precalculated CS register value for ->prepare_message()
|
|
|
|
* (uses slave-specific clock polarity and phase settings)
|
|
|
|
* @clear_rx_desc: preallocated RX DMA descriptor used for TX-only transfers
|
|
|
|
* (cyclically clears RX FIFO by writing @clear_rx_cs to CS register)
|
|
|
|
* @clear_rx_addr: bus address of @clear_rx_cs
|
|
|
|
* @clear_rx_cs: precalculated CS register value to clear RX FIFO
|
|
|
|
* (uses slave-specific clock polarity and phase settings)
|
|
|
|
*/
|
|
|
|
struct bcm2835_spidev {
|
|
|
|
u32 prepare_cs;
|
|
|
|
struct dma_async_tx_descriptor *clear_rx_desc;
|
|
|
|
dma_addr_t clear_rx_addr;
|
|
|
|
u32 clear_rx_cs ____cacheline_aligned;
|
|
|
|
};
|
|
|
|
|
|
|
|
#if defined(CONFIG_DEBUG_FS)
|
|
|
|
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
|
|
|
|
const char *dname)
|
|
|
|
{
|
|
|
|
char name[64];
|
|
|
|
struct dentry *dir;
|
|
|
|
|
|
|
|
/* get full name */
|
|
|
|
snprintf(name, sizeof(name), "spi-bcm2835-%s", dname);
|
|
|
|
|
|
|
|
/* the base directory */
|
|
|
|
dir = debugfs_create_dir(name, NULL);
|
|
|
|
bs->debugfs_dir = dir;
|
|
|
|
|
|
|
|
/* the counters */
|
|
|
|
debugfs_create_u64("count_transfer_polling", 0444, dir,
|
|
|
|
&bs->count_transfer_polling);
|
|
|
|
debugfs_create_u64("count_transfer_irq", 0444, dir,
|
|
|
|
&bs->count_transfer_irq);
|
|
|
|
debugfs_create_u64("count_transfer_irq_after_polling", 0444, dir,
|
|
|
|
&bs->count_transfer_irq_after_polling);
|
|
|
|
debugfs_create_u64("count_transfer_dma", 0444, dir,
|
|
|
|
&bs->count_transfer_dma);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
debugfs_remove_recursive(bs->debugfs_dir);
|
|
|
|
bs->debugfs_dir = NULL;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static void bcm2835_debugfs_create(struct bcm2835_spi *bs,
|
|
|
|
const char *dname)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_debugfs_remove(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_DEBUG_FS */
|
|
|
|
|
|
|
|
static inline u32 bcm2835_rd(struct bcm2835_spi *bs, unsigned int reg)
|
|
|
|
{
|
|
|
|
return readl(bs->regs + reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void bcm2835_wr(struct bcm2835_spi *bs, unsigned int reg, u32 val)
|
|
|
|
{
|
|
|
|
writel(val, bs->regs + reg);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void bcm2835_rd_fifo(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
u8 byte;
|
|
|
|
|
|
|
|
while ((bs->rx_len) &&
|
|
|
|
(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_RXD)) {
|
|
|
|
byte = bcm2835_rd(bs, BCM2835_SPI_FIFO);
|
|
|
|
if (bs->rx_buf)
|
|
|
|
*bs->rx_buf++ = byte;
|
|
|
|
bs->rx_len--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void bcm2835_wr_fifo(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
u8 byte;
|
|
|
|
|
|
|
|
while ((bs->tx_len) &&
|
|
|
|
(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_TXD)) {
|
|
|
|
byte = bs->tx_buf ? *bs->tx_buf++ : 0;
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_FIFO, byte);
|
|
|
|
bs->tx_len--;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_rd_fifo_count() - blindly read exactly @count bytes from RX FIFO
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @count: bytes to read from RX FIFO
|
|
|
|
*
|
|
|
|
* The caller must ensure that @bs->rx_len is greater than or equal to @count,
|
|
|
|
* that the RX FIFO contains at least @count bytes and that the DMA Enable flag
|
|
|
|
* in the CS register is set (such that a read from the FIFO register receives
|
|
|
|
* 32-bit instead of just 8-bit). Moreover @bs->rx_buf must not be %NULL.
|
|
|
|
*/
|
|
|
|
static inline void bcm2835_rd_fifo_count(struct bcm2835_spi *bs, int count)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
bs->rx_len -= count;
|
|
|
|
|
|
|
|
do {
|
|
|
|
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
|
|
|
|
len = min(count, 4);
|
|
|
|
memcpy(bs->rx_buf, &val, len);
|
|
|
|
bs->rx_buf += len;
|
|
|
|
count -= 4;
|
|
|
|
} while (count > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_wr_fifo_count() - blindly write exactly @count bytes to TX FIFO
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @count: bytes to write to TX FIFO
|
|
|
|
*
|
|
|
|
* The caller must ensure that @bs->tx_len is greater than or equal to @count,
|
|
|
|
* that the TX FIFO can accommodate @count bytes and that the DMA Enable flag
|
|
|
|
* in the CS register is set (such that a write to the FIFO register transmits
|
|
|
|
* 32-bit instead of just 8-bit).
|
|
|
|
*/
|
|
|
|
static inline void bcm2835_wr_fifo_count(struct bcm2835_spi *bs, int count)
|
|
|
|
{
|
|
|
|
u32 val;
|
|
|
|
int len;
|
|
|
|
|
|
|
|
bs->tx_len -= count;
|
|
|
|
|
|
|
|
do {
|
|
|
|
if (bs->tx_buf) {
|
|
|
|
len = min(count, 4);
|
|
|
|
memcpy(&val, bs->tx_buf, len);
|
|
|
|
bs->tx_buf += len;
|
|
|
|
} else {
|
|
|
|
val = 0;
|
|
|
|
}
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
|
|
|
|
count -= 4;
|
|
|
|
} while (count > 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_wait_tx_fifo_empty() - busy-wait for TX FIFO to empty
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
*
|
|
|
|
* The caller must ensure that the RX FIFO can accommodate as many bytes
|
|
|
|
* as have been written to the TX FIFO: Transmission is halted once the
|
|
|
|
* RX FIFO is full, causing this function to spin forever.
|
|
|
|
*/
|
|
|
|
static inline void bcm2835_wait_tx_fifo_empty(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
|
|
|
|
cpu_relax();
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_rd_fifo_blind() - blindly read up to @count bytes from RX FIFO
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @count: bytes available for reading in RX FIFO
|
|
|
|
*/
|
|
|
|
static inline void bcm2835_rd_fifo_blind(struct bcm2835_spi *bs, int count)
|
|
|
|
{
|
|
|
|
u8 val;
|
|
|
|
|
|
|
|
count = min(count, bs->rx_len);
|
|
|
|
bs->rx_len -= count;
|
|
|
|
|
|
|
|
do {
|
|
|
|
val = bcm2835_rd(bs, BCM2835_SPI_FIFO);
|
|
|
|
if (bs->rx_buf)
|
|
|
|
*bs->rx_buf++ = val;
|
|
|
|
} while (--count);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_wr_fifo_blind() - blindly write up to @count bytes to TX FIFO
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @count: bytes available for writing in TX FIFO
|
|
|
|
*/
|
|
|
|
static inline void bcm2835_wr_fifo_blind(struct bcm2835_spi *bs, int count)
|
|
|
|
{
|
|
|
|
u8 val;
|
|
|
|
|
|
|
|
count = min(count, bs->tx_len);
|
|
|
|
bs->tx_len -= count;
|
|
|
|
|
|
|
|
do {
|
|
|
|
val = bs->tx_buf ? *bs->tx_buf++ : 0;
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_FIFO, val);
|
|
|
|
} while (--count);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_spi_reset_hw(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
|
|
|
|
|
|
|
|
/* Disable SPI interrupts and transfer */
|
|
|
|
cs &= ~(BCM2835_SPI_CS_INTR |
|
|
|
|
BCM2835_SPI_CS_INTD |
|
|
|
|
BCM2835_SPI_CS_DMAEN |
|
|
|
|
BCM2835_SPI_CS_TA);
|
|
|
|
/*
|
|
|
|
* Transmission sometimes breaks unless the DONE bit is written at the
|
|
|
|
* end of every transfer. The spec says it's a RO bit. Either the
|
|
|
|
* spec is wrong and the bit is actually of type RW1C, or it's a
|
|
|
|
* hardware erratum.
|
|
|
|
*/
|
|
|
|
cs |= BCM2835_SPI_CS_DONE;
|
|
|
|
/* and reset RX/TX FIFOS */
|
|
|
|
cs |= BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX;
|
|
|
|
|
|
|
|
/* and reset the SPI_HW */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
|
|
|
|
/* as well as DLEN */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_DLEN, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t bcm2835_spi_interrupt(int irq, void *dev_id)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = dev_id;
|
|
|
|
u32 cs = bcm2835_rd(bs, BCM2835_SPI_CS);
|
|
|
|
|
|
|
|
/* Bail out early if interrupts are not enabled */
|
|
|
|
if (!(cs & BCM2835_SPI_CS_INTR))
|
|
|
|
return IRQ_NONE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* An interrupt is signaled either if DONE is set (TX FIFO empty)
|
|
|
|
* or if RXR is set (RX FIFO >= ¾ full).
|
|
|
|
*/
|
|
|
|
if (cs & BCM2835_SPI_CS_RXF)
|
|
|
|
bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
|
|
|
|
else if (cs & BCM2835_SPI_CS_RXR)
|
|
|
|
bcm2835_rd_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE_3_4);
|
|
|
|
|
|
|
|
if (bs->tx_len && cs & BCM2835_SPI_CS_DONE)
|
|
|
|
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
|
|
|
|
|
|
|
|
/* Read as many bytes as possible from FIFO */
|
|
|
|
bcm2835_rd_fifo(bs);
|
|
|
|
/* Write as many bytes as possible to FIFO */
|
|
|
|
bcm2835_wr_fifo(bs);
|
|
|
|
|
|
|
|
if (!bs->rx_len) {
|
|
|
|
/* Transfer complete - reset SPI HW */
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
/* wake up the framework */
|
|
|
|
spi_finalize_current_transfer(bs->ctlr);
|
|
|
|
}
|
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_transfer_one_irq(struct spi_controller *ctlr,
|
|
|
|
struct spi_device *spi,
|
|
|
|
struct spi_transfer *tfr,
|
|
|
|
u32 cs, bool fifo_empty)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
|
|
|
|
/* update usage statistics */
|
|
|
|
bs->count_transfer_irq++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Enable HW block, but with interrupts still disabled.
|
|
|
|
* Otherwise the empty TX FIFO would immediately trigger an interrupt.
|
|
|
|
*/
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
|
|
|
|
|
|
|
|
/* fill TX FIFO as much as possible */
|
|
|
|
if (fifo_empty)
|
|
|
|
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
|
|
|
|
bcm2835_wr_fifo(bs);
|
|
|
|
|
|
|
|
/* enable interrupts */
|
|
|
|
cs |= BCM2835_SPI_CS_INTR | BCM2835_SPI_CS_INTD | BCM2835_SPI_CS_TA;
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs);
|
|
|
|
|
|
|
|
/* signal that we need to wait for completion */
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_transfer_prologue() - transfer first few bytes without DMA
|
|
|
|
* @ctlr: SPI master controller
|
|
|
|
* @tfr: SPI transfer
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @cs: CS register
|
|
|
|
*
|
|
|
|
* A limitation in DMA mode is that the FIFO must be accessed in 4 byte chunks.
|
|
|
|
* Only the final write access is permitted to transmit less than 4 bytes, the
|
|
|
|
* SPI controller deduces its intended size from the DLEN register.
|
|
|
|
*
|
|
|
|
* If a TX or RX sglist contains multiple entries, one per page, and the first
|
|
|
|
* entry starts in the middle of a page, that first entry's length may not be
|
|
|
|
* a multiple of 4. Subsequent entries are fine because they span an entire
|
|
|
|
* page, hence do have a length that's a multiple of 4.
|
|
|
|
*
|
|
|
|
* This cannot happen with kmalloc'ed buffers (which is what most clients use)
|
|
|
|
* because they are contiguous in physical memory and therefore not split on
|
|
|
|
* page boundaries by spi_map_buf(). But it *can* happen with vmalloc'ed
|
|
|
|
* buffers.
|
|
|
|
*
|
|
|
|
* The DMA engine is incapable of combining sglist entries into a continuous
|
|
|
|
* stream of 4 byte chunks, it treats every entry separately: A TX entry is
|
|
|
|
* rounded up a to a multiple of 4 bytes by transmitting surplus bytes, an RX
|
|
|
|
* entry is rounded up by throwing away received bytes.
|
|
|
|
*
|
|
|
|
* Overcome this limitation by transferring the first few bytes without DMA:
|
|
|
|
* E.g. if the first TX sglist entry's length is 23 and the first RX's is 42,
|
|
|
|
* write 3 bytes to the TX FIFO but read only 2 bytes from the RX FIFO.
|
|
|
|
* The residue of 1 byte in the RX FIFO is picked up by DMA. Together with
|
|
|
|
* the rest of the first RX sglist entry it makes up a multiple of 4 bytes.
|
|
|
|
*
|
|
|
|
* Should the RX prologue be larger, say, 3 vis-à-vis a TX prologue of 1,
|
|
|
|
* write 1 + 4 = 5 bytes to the TX FIFO and read 3 bytes from the RX FIFO.
|
|
|
|
* Caution, the additional 4 bytes spill over to the second TX sglist entry
|
|
|
|
* if the length of the first is *exactly* 1.
|
|
|
|
*
|
|
|
|
* At most 6 bytes are written and at most 3 bytes read. Do we know the
|
|
|
|
* transfer has this many bytes? Yes, see BCM2835_SPI_DMA_MIN_LENGTH.
|
|
|
|
*
|
|
|
|
* The FIFO is normally accessed with 8-bit width by the CPU and 32-bit width
|
|
|
|
* by the DMA engine. Toggling the DMA Enable flag in the CS register switches
|
|
|
|
* the width but also garbles the FIFO's contents. The prologue must therefore
|
|
|
|
* be transmitted in 32-bit width to ensure that the following DMA transfer can
|
|
|
|
* pick up the residue in the RX FIFO in ungarbled form.
|
|
|
|
*/
|
|
|
|
static void bcm2835_spi_transfer_prologue(struct spi_controller *ctlr,
|
|
|
|
struct spi_transfer *tfr,
|
|
|
|
struct bcm2835_spi *bs,
|
|
|
|
u32 cs)
|
|
|
|
{
|
|
|
|
int tx_remaining;
|
|
|
|
|
|
|
|
bs->tfr = tfr;
|
|
|
|
bs->tx_prologue = 0;
|
|
|
|
bs->rx_prologue = 0;
|
|
|
|
bs->tx_spillover = false;
|
|
|
|
|
|
|
|
if (bs->tx_buf && !sg_is_last(&tfr->tx_sg.sgl[0]))
|
|
|
|
bs->tx_prologue = sg_dma_len(&tfr->tx_sg.sgl[0]) & 3;
|
|
|
|
|
|
|
|
if (bs->rx_buf && !sg_is_last(&tfr->rx_sg.sgl[0])) {
|
|
|
|
bs->rx_prologue = sg_dma_len(&tfr->rx_sg.sgl[0]) & 3;
|
|
|
|
|
|
|
|
if (bs->rx_prologue > bs->tx_prologue) {
|
|
|
|
if (!bs->tx_buf || sg_is_last(&tfr->tx_sg.sgl[0])) {
|
|
|
|
bs->tx_prologue = bs->rx_prologue;
|
|
|
|
} else {
|
|
|
|
bs->tx_prologue += 4;
|
|
|
|
bs->tx_spillover =
|
|
|
|
!(sg_dma_len(&tfr->tx_sg.sgl[0]) & ~3);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* rx_prologue > 0 implies tx_prologue > 0, so check only the latter */
|
|
|
|
if (!bs->tx_prologue)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Write and read RX prologue. Adjust first entry in RX sglist. */
|
|
|
|
if (bs->rx_prologue) {
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->rx_prologue);
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
|
|
|
|
| BCM2835_SPI_CS_DMAEN);
|
|
|
|
bcm2835_wr_fifo_count(bs, bs->rx_prologue);
|
|
|
|
bcm2835_wait_tx_fifo_empty(bs);
|
|
|
|
bcm2835_rd_fifo_count(bs, bs->rx_prologue);
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_RX
|
|
|
|
| BCM2835_SPI_CS_CLEAR_TX
|
|
|
|
| BCM2835_SPI_CS_DONE);
|
|
|
|
|
|
|
|
dma_sync_single_for_device(ctlr->dma_rx->device->dev,
|
|
|
|
sg_dma_address(&tfr->rx_sg.sgl[0]),
|
|
|
|
bs->rx_prologue, DMA_FROM_DEVICE);
|
|
|
|
|
|
|
|
sg_dma_address(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
|
|
|
|
sg_dma_len(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!bs->tx_buf)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write remaining TX prologue. Adjust first entry in TX sglist.
|
|
|
|
* Also adjust second entry if prologue spills over to it.
|
|
|
|
*/
|
|
|
|
tx_remaining = bs->tx_prologue - bs->rx_prologue;
|
|
|
|
if (tx_remaining) {
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_DLEN, tx_remaining);
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA
|
|
|
|
| BCM2835_SPI_CS_DMAEN);
|
|
|
|
bcm2835_wr_fifo_count(bs, tx_remaining);
|
|
|
|
bcm2835_wait_tx_fifo_empty(bs);
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_CLEAR_TX
|
|
|
|
| BCM2835_SPI_CS_DONE);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (likely(!bs->tx_spillover)) {
|
|
|
|
sg_dma_address(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
|
|
|
|
} else {
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[0]) = 0;
|
|
|
|
sg_dma_address(&tfr->tx_sg.sgl[1]) += 4;
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[1]) -= 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_undo_prologue() - reconstruct original sglist state
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
*
|
|
|
|
* Undo changes which were made to an SPI transfer's sglist when transmitting
|
|
|
|
* the prologue. This is necessary to ensure the same memory ranges are
|
|
|
|
* unmapped that were originally mapped.
|
|
|
|
*/
|
|
|
|
static void bcm2835_spi_undo_prologue(struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
struct spi_transfer *tfr = bs->tfr;
|
|
|
|
|
|
|
|
if (!bs->tx_prologue)
|
|
|
|
return;
|
|
|
|
|
|
|
|
if (bs->rx_prologue) {
|
|
|
|
sg_dma_address(&tfr->rx_sg.sgl[0]) -= bs->rx_prologue;
|
|
|
|
sg_dma_len(&tfr->rx_sg.sgl[0]) += bs->rx_prologue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!bs->tx_buf)
|
|
|
|
goto out;
|
|
|
|
|
|
|
|
if (likely(!bs->tx_spillover)) {
|
|
|
|
sg_dma_address(&tfr->tx_sg.sgl[0]) -= bs->tx_prologue;
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[0]) += bs->tx_prologue;
|
|
|
|
} else {
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[0]) = bs->tx_prologue - 4;
|
|
|
|
sg_dma_address(&tfr->tx_sg.sgl[1]) -= 4;
|
|
|
|
sg_dma_len(&tfr->tx_sg.sgl[1]) += 4;
|
|
|
|
}
|
|
|
|
out:
|
|
|
|
bs->tx_prologue = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_dma_rx_done() - callback for DMA RX channel
|
|
|
|
* @data: SPI master controller
|
|
|
|
*
|
|
|
|
* Used for bidirectional and RX-only transfers.
|
|
|
|
*/
|
|
|
|
static void bcm2835_spi_dma_rx_done(void *data)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr = data;
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
|
|
|
|
/* terminate tx-dma as we do not have an irq for it
|
|
|
|
* because when the rx dma will terminate and this callback
|
|
|
|
* is called the tx-dma must have finished - can't get to this
|
|
|
|
* situation otherwise...
|
|
|
|
*/
|
|
|
|
dmaengine_terminate_async(ctlr->dma_tx);
|
|
|
|
bs->tx_dma_active = false;
|
|
|
|
bs->rx_dma_active = false;
|
|
|
|
bcm2835_spi_undo_prologue(bs);
|
|
|
|
|
|
|
|
/* reset fifo and HW */
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
|
|
|
|
/* and mark as completed */;
|
|
|
|
spi_finalize_current_transfer(ctlr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_dma_tx_done() - callback for DMA TX channel
|
|
|
|
* @data: SPI master controller
|
|
|
|
*
|
|
|
|
* Used for TX-only transfers.
|
|
|
|
*/
|
|
|
|
static void bcm2835_spi_dma_tx_done(void *data)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr = data;
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
|
|
|
|
/* busy-wait for TX FIFO to empty */
|
|
|
|
while (!(bcm2835_rd(bs, BCM2835_SPI_CS) & BCM2835_SPI_CS_DONE))
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, bs->slv->clear_rx_cs);
|
|
|
|
|
|
|
|
bs->tx_dma_active = false;
|
|
|
|
smp_wmb();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In case of a very short transfer, RX DMA may not have been
|
|
|
|
* issued yet. The onus is then on bcm2835_spi_transfer_one_dma()
|
|
|
|
* to terminate it immediately after issuing.
|
|
|
|
*/
|
|
|
|
if (cmpxchg(&bs->rx_dma_active, true, false))
|
|
|
|
dmaengine_terminate_async(ctlr->dma_rx);
|
|
|
|
|
|
|
|
bcm2835_spi_undo_prologue(bs);
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
spi_finalize_current_transfer(ctlr);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_prepare_sg() - prepare and submit DMA descriptor for sglist
|
|
|
|
* @ctlr: SPI master controller
|
|
|
|
* @tfr: SPI transfer
|
|
|
|
* @bs: BCM2835 SPI controller
|
|
|
|
* @slv: BCM2835 SPI slave
|
|
|
|
* @is_tx: whether to submit DMA descriptor for TX or RX sglist
|
|
|
|
*
|
|
|
|
* Prepare and submit a DMA descriptor for the TX or RX sglist of @tfr.
|
|
|
|
* Return 0 on success or a negative error number.
|
|
|
|
*/
|
|
|
|
static int bcm2835_spi_prepare_sg(struct spi_controller *ctlr,
|
|
|
|
struct spi_transfer *tfr,
|
|
|
|
struct bcm2835_spi *bs,
|
|
|
|
struct bcm2835_spidev *slv,
|
|
|
|
bool is_tx)
|
|
|
|
{
|
|
|
|
struct dma_chan *chan;
|
|
|
|
struct scatterlist *sgl;
|
|
|
|
unsigned int nents;
|
|
|
|
enum dma_transfer_direction dir;
|
|
|
|
unsigned long flags;
|
|
|
|
|
|
|
|
struct dma_async_tx_descriptor *desc;
|
|
|
|
dma_cookie_t cookie;
|
|
|
|
|
|
|
|
if (is_tx) {
|
|
|
|
dir = DMA_MEM_TO_DEV;
|
|
|
|
chan = ctlr->dma_tx;
|
|
|
|
nents = tfr->tx_sg.nents;
|
|
|
|
sgl = tfr->tx_sg.sgl;
|
|
|
|
flags = tfr->rx_buf ? 0 : DMA_PREP_INTERRUPT;
|
|
|
|
} else {
|
|
|
|
dir = DMA_DEV_TO_MEM;
|
|
|
|
chan = ctlr->dma_rx;
|
|
|
|
nents = tfr->rx_sg.nents;
|
|
|
|
sgl = tfr->rx_sg.sgl;
|
|
|
|
flags = DMA_PREP_INTERRUPT;
|
|
|
|
}
|
|
|
|
/* prepare the channel */
|
|
|
|
desc = dmaengine_prep_slave_sg(chan, sgl, nents, dir, flags);
|
|
|
|
if (!desc)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Completion is signaled by the RX channel for bidirectional and
|
|
|
|
* RX-only transfers; else by the TX channel for TX-only transfers.
|
|
|
|
*/
|
|
|
|
if (!is_tx) {
|
|
|
|
desc->callback = bcm2835_spi_dma_rx_done;
|
|
|
|
desc->callback_param = ctlr;
|
|
|
|
} else if (!tfr->rx_buf) {
|
|
|
|
desc->callback = bcm2835_spi_dma_tx_done;
|
|
|
|
desc->callback_param = ctlr;
|
|
|
|
bs->slv = slv;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* submit it to DMA-engine */
|
|
|
|
cookie = dmaengine_submit(desc);
|
|
|
|
|
|
|
|
return dma_submit_error(cookie);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* bcm2835_spi_transfer_one_dma() - perform SPI transfer using DMA engine
|
|
|
|
* @ctlr: SPI master controller
|
|
|
|
* @tfr: SPI transfer
|
|
|
|
* @slv: BCM2835 SPI slave
|
|
|
|
* @cs: CS register
|
|
|
|
*
|
|
|
|
* For *bidirectional* transfers (both tx_buf and rx_buf are non-%NULL), set up
|
|
|
|
* the TX and RX DMA channel to copy between memory and FIFO register.
|
|
|
|
*
|
|
|
|
* For *TX-only* transfers (rx_buf is %NULL), copying the RX FIFO's contents to
|
|
|
|
* memory is pointless. However not reading the RX FIFO isn't an option either
|
|
|
|
* because transmission is halted once it's full. As a workaround, cyclically
|
|
|
|
* clear the RX FIFO by setting the CLEAR_RX bit in the CS register.
|
|
|
|
*
|
|
|
|
* The CS register value is precalculated in bcm2835_spi_setup(). Normally
|
|
|
|
* this is called only once, on slave registration. A DMA descriptor to write
|
|
|
|
* this value is preallocated in bcm2835_dma_init(). All that's left to do
|
|
|
|
* when performing a TX-only transfer is to submit this descriptor to the RX
|
|
|
|
* DMA channel. Latency is thereby minimized. The descriptor does not
|
|
|
|
* generate any interrupts while running. It must be terminated once the
|
|
|
|
* TX DMA channel is done.
|
|
|
|
*
|
|
|
|
* Clearing the RX FIFO is paced by the DREQ signal. The signal is asserted
|
|
|
|
* when the RX FIFO becomes half full, i.e. 32 bytes. (Tuneable with the DC
|
|
|
|
* register.) Reading 32 bytes from the RX FIFO would normally require 8 bus
|
|
|
|
* accesses, whereas clearing it requires only 1 bus access. So an 8-fold
|
|
|
|
* reduction in bus traffic and thus energy consumption is achieved.
|
|
|
|
*
|
|
|
|
* For *RX-only* transfers (tx_buf is %NULL), fill the TX FIFO by cyclically
|
|
|
|
* copying from the zero page. The DMA descriptor to do this is preallocated
|
|
|
|
* in bcm2835_dma_init(). It must be terminated once the RX DMA channel is
|
|
|
|
* done and can then be reused.
|
|
|
|
*
|
|
|
|
* The BCM2835 DMA driver autodetects when a transaction copies from the zero
|
|
|
|
* page and utilizes the DMA controller's ability to synthesize zeroes instead
|
|
|
|
* of copying them from memory. This reduces traffic on the memory bus. The
|
|
|
|
* feature is not available on so-called "lite" channels, but normally TX DMA
|
|
|
|
* is backed by a full-featured channel.
|
|
|
|
*
|
|
|
|
* Zero-filling the TX FIFO is paced by the DREQ signal. Unfortunately the
|
|
|
|
* BCM2835 SPI controller continues to assert DREQ even after the DLEN register
|
|
|
|
* has been counted down to zero (hardware erratum). Thus, when the transfer
|
|
|
|
* has finished, the DMA engine zero-fills the TX FIFO until it is half full.
|
|
|
|
* (Tuneable with the DC register.) So up to 9 gratuitous bus accesses are
|
|
|
|
* performed at the end of an RX-only transfer.
|
|
|
|
*/
|
|
|
|
static int bcm2835_spi_transfer_one_dma(struct spi_controller *ctlr,
|
|
|
|
struct spi_transfer *tfr,
|
|
|
|
struct bcm2835_spidev *slv,
|
|
|
|
u32 cs)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
dma_cookie_t cookie;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* update usage statistics */
|
|
|
|
bs->count_transfer_dma++;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Transfer first few bytes without DMA if length of first TX or RX
|
|
|
|
* sglist entry is not a multiple of 4 bytes (hardware limitation).
|
|
|
|
*/
|
|
|
|
bcm2835_spi_transfer_prologue(ctlr, tfr, bs, cs);
|
|
|
|
|
|
|
|
/* setup tx-DMA */
|
|
|
|
if (bs->tx_buf) {
|
|
|
|
ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, true);
|
|
|
|
} else {
|
|
|
|
cookie = dmaengine_submit(bs->fill_tx_desc);
|
|
|
|
ret = dma_submit_error(cookie);
|
|
|
|
}
|
|
|
|
if (ret)
|
|
|
|
goto err_reset_hw;
|
|
|
|
|
|
|
|
/* set the DMA length */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_DLEN, bs->tx_len);
|
|
|
|
|
|
|
|
/* start the HW */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS,
|
|
|
|
cs | BCM2835_SPI_CS_TA | BCM2835_SPI_CS_DMAEN);
|
|
|
|
|
|
|
|
bs->tx_dma_active = true;
|
|
|
|
smp_wmb();
|
|
|
|
|
|
|
|
/* start TX early */
|
|
|
|
dma_async_issue_pending(ctlr->dma_tx);
|
|
|
|
|
|
|
|
/* setup rx-DMA late - to run transfers while
|
|
|
|
* mapping of the rx buffers still takes place
|
|
|
|
* this saves 10us or more.
|
|
|
|
*/
|
|
|
|
if (bs->rx_buf) {
|
|
|
|
ret = bcm2835_spi_prepare_sg(ctlr, tfr, bs, slv, false);
|
|
|
|
} else {
|
|
|
|
cookie = dmaengine_submit(slv->clear_rx_desc);
|
|
|
|
ret = dma_submit_error(cookie);
|
|
|
|
}
|
|
|
|
if (ret) {
|
|
|
|
/* need to reset on errors */
|
|
|
|
dmaengine_terminate_sync(ctlr->dma_tx);
|
|
|
|
bs->tx_dma_active = false;
|
|
|
|
goto err_reset_hw;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* start rx dma late */
|
|
|
|
dma_async_issue_pending(ctlr->dma_rx);
|
|
|
|
bs->rx_dma_active = true;
|
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* In case of a very short TX-only transfer, bcm2835_spi_dma_tx_done()
|
|
|
|
* may run before RX DMA is issued. Terminate RX DMA if so.
|
|
|
|
*/
|
|
|
|
if (!bs->rx_buf && !bs->tx_dma_active &&
|
|
|
|
cmpxchg(&bs->rx_dma_active, true, false)) {
|
|
|
|
dmaengine_terminate_async(ctlr->dma_rx);
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* wait for wakeup in framework */
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
err_reset_hw:
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
bcm2835_spi_undo_prologue(bs);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool bcm2835_spi_can_dma(struct spi_controller *ctlr,
|
|
|
|
struct spi_device *spi,
|
|
|
|
struct spi_transfer *tfr)
|
|
|
|
{
|
|
|
|
/* we start DMA efforts only on bigger transfers */
|
|
|
|
if (tfr->len < BCM2835_SPI_DMA_MIN_LENGTH)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
/* return OK */
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_dma_release(struct spi_controller *ctlr,
|
|
|
|
struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
if (ctlr->dma_tx) {
|
|
|
|
dmaengine_terminate_sync(ctlr->dma_tx);
|
|
|
|
|
|
|
|
if (bs->fill_tx_desc)
|
|
|
|
dmaengine_desc_free(bs->fill_tx_desc);
|
|
|
|
|
|
|
|
if (bs->fill_tx_addr)
|
|
|
|
dma_unmap_page_attrs(ctlr->dma_tx->device->dev,
|
|
|
|
bs->fill_tx_addr, sizeof(u32),
|
|
|
|
DMA_TO_DEVICE,
|
|
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
|
|
|
|
|
|
dma_release_channel(ctlr->dma_tx);
|
|
|
|
ctlr->dma_tx = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ctlr->dma_rx) {
|
|
|
|
dmaengine_terminate_sync(ctlr->dma_rx);
|
|
|
|
dma_release_channel(ctlr->dma_rx);
|
|
|
|
ctlr->dma_rx = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_dma_init(struct spi_controller *ctlr, struct device *dev,
|
|
|
|
struct bcm2835_spi *bs)
|
|
|
|
{
|
|
|
|
struct dma_slave_config slave_config;
|
|
|
|
const __be32 *addr;
|
|
|
|
dma_addr_t dma_reg_base;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* base address in dma-space */
|
|
|
|
addr = of_get_address(ctlr->dev.of_node, 0, NULL, NULL);
|
|
|
|
if (!addr) {
|
|
|
|
dev_err(dev, "could not get DMA-register address - not using dma mode\n");
|
|
|
|
/* Fall back to interrupt mode */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
dma_reg_base = be32_to_cpup(addr);
|
|
|
|
|
|
|
|
/* get tx/rx dma */
|
|
|
|
ctlr->dma_tx = dma_request_chan(dev, "tx");
|
|
|
|
if (IS_ERR(ctlr->dma_tx)) {
|
|
|
|
dev_err(dev, "no tx-dma configuration found - not using dma mode\n");
|
|
|
|
ret = PTR_ERR(ctlr->dma_tx);
|
|
|
|
ctlr->dma_tx = NULL;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
ctlr->dma_rx = dma_request_chan(dev, "rx");
|
|
|
|
if (IS_ERR(ctlr->dma_rx)) {
|
|
|
|
dev_err(dev, "no rx-dma configuration found - not using dma mode\n");
|
|
|
|
ret = PTR_ERR(ctlr->dma_rx);
|
|
|
|
ctlr->dma_rx = NULL;
|
|
|
|
goto err_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The TX DMA channel either copies a transfer's TX buffer to the FIFO
|
|
|
|
* or, in case of an RX-only transfer, cyclically copies from the zero
|
|
|
|
* page to the FIFO using a preallocated, reusable descriptor.
|
|
|
|
*/
|
|
|
|
slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
|
|
|
|
slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
|
|
|
|
ret = dmaengine_slave_config(ctlr->dma_tx, &slave_config);
|
|
|
|
if (ret)
|
|
|
|
goto err_config;
|
|
|
|
|
|
|
|
bs->fill_tx_addr = dma_map_page_attrs(ctlr->dma_tx->device->dev,
|
|
|
|
ZERO_PAGE(0), 0, sizeof(u32),
|
|
|
|
DMA_TO_DEVICE,
|
|
|
|
DMA_ATTR_SKIP_CPU_SYNC);
|
|
|
|
if (dma_mapping_error(ctlr->dma_tx->device->dev, bs->fill_tx_addr)) {
|
|
|
|
dev_err(dev, "cannot map zero page - not using DMA mode\n");
|
|
|
|
bs->fill_tx_addr = 0;
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
bs->fill_tx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_tx,
|
|
|
|
bs->fill_tx_addr,
|
|
|
|
sizeof(u32), 0,
|
|
|
|
DMA_MEM_TO_DEV, 0);
|
|
|
|
if (!bs->fill_tx_desc) {
|
|
|
|
dev_err(dev, "cannot prepare fill_tx_desc - not using DMA mode\n");
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = dmaengine_desc_set_reuse(bs->fill_tx_desc);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(dev, "cannot reuse fill_tx_desc - not using DMA mode\n");
|
|
|
|
goto err_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The RX DMA channel is used bidirectionally: It either reads the
|
|
|
|
* RX FIFO or, in case of a TX-only transfer, cyclically writes a
|
|
|
|
* precalculated value to the CS register to clear the RX FIFO.
|
|
|
|
*/
|
|
|
|
slave_config.src_addr = (u32)(dma_reg_base + BCM2835_SPI_FIFO);
|
|
|
|
slave_config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
slave_config.dst_addr = (u32)(dma_reg_base + BCM2835_SPI_CS);
|
|
|
|
slave_config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
|
|
|
|
|
|
|
|
ret = dmaengine_slave_config(ctlr->dma_rx, &slave_config);
|
|
|
|
if (ret)
|
|
|
|
goto err_config;
|
|
|
|
|
|
|
|
/* all went well, so set can_dma */
|
|
|
|
ctlr->can_dma = bcm2835_spi_can_dma;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_config:
|
|
|
|
dev_err(dev, "issue configuring dma: %d - not using DMA mode\n",
|
|
|
|
ret);
|
|
|
|
err_release:
|
|
|
|
bcm2835_dma_release(ctlr, bs);
|
|
|
|
err:
|
|
|
|
/*
|
|
|
|
* Only report error for deferred probing, otherwise fall back to
|
|
|
|
* interrupt mode
|
|
|
|
*/
|
|
|
|
if (ret != -EPROBE_DEFER)
|
|
|
|
ret = 0;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_transfer_one_poll(struct spi_controller *ctlr,
|
|
|
|
struct spi_device *spi,
|
|
|
|
struct spi_transfer *tfr,
|
|
|
|
u32 cs)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
unsigned long timeout;
|
|
|
|
|
|
|
|
/* update usage statistics */
|
|
|
|
bs->count_transfer_polling++;
|
|
|
|
|
|
|
|
/* enable HW block without interrupts */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, cs | BCM2835_SPI_CS_TA);
|
|
|
|
|
|
|
|
/* fill in the fifo before timeout calculations
|
|
|
|
* if we are interrupted here, then the data is
|
|
|
|
* getting transferred by the HW while we are interrupted
|
|
|
|
*/
|
|
|
|
bcm2835_wr_fifo_blind(bs, BCM2835_SPI_FIFO_SIZE);
|
|
|
|
|
|
|
|
/* set the timeout to at least 2 jiffies */
|
|
|
|
timeout = jiffies + 2 + HZ * polling_limit_us / 1000000;
|
|
|
|
|
|
|
|
/* loop until finished the transfer */
|
|
|
|
while (bs->rx_len) {
|
|
|
|
/* fill in tx fifo with remaining data */
|
|
|
|
bcm2835_wr_fifo(bs);
|
|
|
|
|
|
|
|
/* read from fifo as much as possible */
|
|
|
|
bcm2835_rd_fifo(bs);
|
|
|
|
|
|
|
|
/* if there is still data pending to read
|
|
|
|
* then check the timeout
|
|
|
|
*/
|
|
|
|
if (bs->rx_len && time_after(jiffies, timeout)) {
|
|
|
|
dev_dbg_ratelimited(&spi->dev,
|
|
|
|
"timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
|
|
|
|
jiffies - timeout,
|
|
|
|
bs->tx_len, bs->rx_len);
|
|
|
|
/* fall back to interrupt mode */
|
|
|
|
|
|
|
|
/* update usage statistics */
|
|
|
|
bs->count_transfer_irq_after_polling++;
|
|
|
|
|
|
|
|
return bcm2835_spi_transfer_one_irq(ctlr, spi,
|
|
|
|
tfr, cs, false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Transfer complete - reset SPI HW */
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
/* and return without waiting for completion */
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_transfer_one(struct spi_controller *ctlr,
|
|
|
|
struct spi_device *spi,
|
|
|
|
struct spi_transfer *tfr)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
struct bcm2835_spidev *slv = spi_get_ctldata(spi);
|
|
|
|
unsigned long spi_hz, cdiv;
|
|
|
|
unsigned long hz_per_byte, byte_limit;
|
|
|
|
u32 cs = slv->prepare_cs;
|
|
|
|
|
|
|
|
/* set clock */
|
|
|
|
spi_hz = tfr->speed_hz;
|
|
|
|
|
|
|
|
if (spi_hz >= bs->clk_hz / 2) {
|
|
|
|
cdiv = 2; /* clk_hz/2 is the fastest we can go */
|
|
|
|
} else if (spi_hz) {
|
|
|
|
/* CDIV must be a multiple of two */
|
|
|
|
cdiv = DIV_ROUND_UP(bs->clk_hz, spi_hz);
|
|
|
|
cdiv += (cdiv % 2);
|
|
|
|
|
|
|
|
if (cdiv >= 65536)
|
|
|
|
cdiv = 0; /* 0 is the slowest we can go */
|
|
|
|
} else {
|
|
|
|
cdiv = 0; /* 0 is the slowest we can go */
|
|
|
|
}
|
|
|
|
tfr->effective_speed_hz = cdiv ? (bs->clk_hz / cdiv) : (bs->clk_hz / 65536);
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CLK, cdiv);
|
|
|
|
|
|
|
|
/* handle all the 3-wire mode */
|
|
|
|
if (spi->mode & SPI_3WIRE && tfr->rx_buf)
|
|
|
|
cs |= BCM2835_SPI_CS_REN;
|
|
|
|
|
|
|
|
/* set transmit buffers and length */
|
|
|
|
bs->tx_buf = tfr->tx_buf;
|
|
|
|
bs->rx_buf = tfr->rx_buf;
|
|
|
|
bs->tx_len = tfr->len;
|
|
|
|
bs->rx_len = tfr->len;
|
|
|
|
|
|
|
|
/* Calculate the estimated time in us the transfer runs. Note that
|
|
|
|
* there is 1 idle clocks cycles after each byte getting transferred
|
|
|
|
* so we have 9 cycles/byte. This is used to find the number of Hz
|
|
|
|
* per byte per polling limit. E.g., we can transfer 1 byte in 30 us
|
|
|
|
* per 300,000 Hz of bus clock.
|
|
|
|
*/
|
|
|
|
hz_per_byte = polling_limit_us ? (9 * 1000000) / polling_limit_us : 0;
|
|
|
|
byte_limit = hz_per_byte ? tfr->effective_speed_hz / hz_per_byte : 1;
|
|
|
|
|
|
|
|
/* run in polling mode for short transfers */
|
|
|
|
if (tfr->len < byte_limit)
|
|
|
|
return bcm2835_spi_transfer_one_poll(ctlr, spi, tfr, cs);
|
|
|
|
|
|
|
|
/* run in dma mode if conditions are right
|
|
|
|
* Note that unlike poll or interrupt mode DMA mode does not have
|
|
|
|
* this 1 idle clock cycle pattern but runs the spi clock without gaps
|
|
|
|
*/
|
|
|
|
if (ctlr->can_dma && bcm2835_spi_can_dma(ctlr, spi, tfr))
|
|
|
|
return bcm2835_spi_transfer_one_dma(ctlr, tfr, slv, cs);
|
|
|
|
|
|
|
|
/* run in interrupt-mode */
|
|
|
|
return bcm2835_spi_transfer_one_irq(ctlr, spi, tfr, cs, true);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_prepare_message(struct spi_controller *ctlr,
|
|
|
|
struct spi_message *msg)
|
|
|
|
{
|
|
|
|
struct spi_device *spi = msg->spi;
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
struct bcm2835_spidev *slv = spi_get_ctldata(spi);
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (ctlr->can_dma) {
|
|
|
|
/*
|
|
|
|
* DMA transfers are limited to 16 bit (0 to 65535 bytes) by
|
|
|
|
* the SPI HW due to DLEN. Split up transfers (32-bit FIFO
|
|
|
|
* aligned) if the limit is exceeded.
|
|
|
|
*/
|
|
|
|
ret = spi_split_transfers_maxsize(ctlr, msg, 65532,
|
|
|
|
GFP_KERNEL | GFP_DMA);
|
|
|
|
if (ret)
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set up clock polarity before spi_transfer_one_message() asserts
|
|
|
|
* chip select to avoid a gratuitous clock signal edge.
|
|
|
|
*/
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS, slv->prepare_cs);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_spi_handle_err(struct spi_controller *ctlr,
|
|
|
|
struct spi_message *msg)
|
|
|
|
{
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
|
|
|
|
/* if an error occurred and we have an active dma, then terminate */
|
|
|
|
if (ctlr->dma_tx) {
|
|
|
|
dmaengine_terminate_sync(ctlr->dma_tx);
|
|
|
|
bs->tx_dma_active = false;
|
|
|
|
}
|
|
|
|
if (ctlr->dma_rx) {
|
|
|
|
dmaengine_terminate_sync(ctlr->dma_rx);
|
|
|
|
bs->rx_dma_active = false;
|
|
|
|
}
|
|
|
|
bcm2835_spi_undo_prologue(bs);
|
|
|
|
|
|
|
|
/* and reset */
|
|
|
|
bcm2835_spi_reset_hw(bs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int chip_match_name(struct gpio_chip *chip, void *data)
|
|
|
|
{
|
|
|
|
return !strcmp(chip->label, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void bcm2835_spi_cleanup(struct spi_device *spi)
|
|
|
|
{
|
|
|
|
struct bcm2835_spidev *slv = spi_get_ctldata(spi);
|
|
|
|
struct spi_controller *ctlr = spi->controller;
|
|
|
|
|
|
|
|
if (slv->clear_rx_desc)
|
|
|
|
dmaengine_desc_free(slv->clear_rx_desc);
|
|
|
|
|
|
|
|
if (slv->clear_rx_addr)
|
|
|
|
dma_unmap_single(ctlr->dma_rx->device->dev,
|
|
|
|
slv->clear_rx_addr,
|
|
|
|
sizeof(u32),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
|
|
|
|
kfree(slv);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_setup_dma(struct spi_controller *ctlr,
|
|
|
|
struct spi_device *spi,
|
|
|
|
struct bcm2835_spi *bs,
|
|
|
|
struct bcm2835_spidev *slv)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
if (!ctlr->dma_rx)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
slv->clear_rx_addr = dma_map_single(ctlr->dma_rx->device->dev,
|
|
|
|
&slv->clear_rx_cs,
|
|
|
|
sizeof(u32),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
if (dma_mapping_error(ctlr->dma_rx->device->dev, slv->clear_rx_addr)) {
|
|
|
|
dev_err(&spi->dev, "cannot map clear_rx_cs\n");
|
|
|
|
slv->clear_rx_addr = 0;
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
slv->clear_rx_desc = dmaengine_prep_dma_cyclic(ctlr->dma_rx,
|
|
|
|
slv->clear_rx_addr,
|
|
|
|
sizeof(u32), 0,
|
|
|
|
DMA_MEM_TO_DEV, 0);
|
|
|
|
if (!slv->clear_rx_desc) {
|
|
|
|
dev_err(&spi->dev, "cannot prepare clear_rx_desc\n");
|
|
|
|
return -ENOMEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = dmaengine_desc_set_reuse(slv->clear_rx_desc);
|
|
|
|
if (ret) {
|
|
|
|
dev_err(&spi->dev, "cannot reuse clear_rx_desc\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_setup(struct spi_device *spi)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr = spi->controller;
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
struct bcm2835_spidev *slv = spi_get_ctldata(spi);
|
|
|
|
struct gpio_chip *chip;
|
|
|
|
int ret;
|
|
|
|
u32 cs;
|
|
|
|
|
|
|
|
if (!slv) {
|
|
|
|
slv = kzalloc(ALIGN(sizeof(*slv), dma_get_cache_alignment()),
|
|
|
|
GFP_KERNEL);
|
|
|
|
if (!slv)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
spi_set_ctldata(spi, slv);
|
|
|
|
|
|
|
|
ret = bcm2835_spi_setup_dma(ctlr, spi, bs, slv);
|
|
|
|
if (ret)
|
|
|
|
goto err_cleanup;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Precalculate SPI slave's CS register value for ->prepare_message():
|
|
|
|
* The driver always uses software-controlled GPIO chip select, hence
|
|
|
|
* set the hardware-controlled native chip select to an invalid value
|
|
|
|
* to prevent it from interfering.
|
|
|
|
*/
|
|
|
|
cs = BCM2835_SPI_CS_CS_10 | BCM2835_SPI_CS_CS_01;
|
|
|
|
if (spi->mode & SPI_CPOL)
|
|
|
|
cs |= BCM2835_SPI_CS_CPOL;
|
|
|
|
if (spi->mode & SPI_CPHA)
|
|
|
|
cs |= BCM2835_SPI_CS_CPHA;
|
|
|
|
slv->prepare_cs = cs;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Precalculate SPI slave's CS register value to clear RX FIFO
|
|
|
|
* in case of a TX-only DMA transfer.
|
|
|
|
*/
|
|
|
|
if (ctlr->dma_rx) {
|
|
|
|
slv->clear_rx_cs = cs | BCM2835_SPI_CS_TA |
|
|
|
|
BCM2835_SPI_CS_DMAEN |
|
|
|
|
BCM2835_SPI_CS_CLEAR_RX;
|
|
|
|
dma_sync_single_for_device(ctlr->dma_rx->device->dev,
|
|
|
|
slv->clear_rx_addr,
|
|
|
|
sizeof(u32),
|
|
|
|
DMA_TO_DEVICE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sanity checking the native-chipselects
|
|
|
|
*/
|
|
|
|
if (spi->mode & SPI_NO_CS)
|
|
|
|
return 0;
|
|
|
|
/*
|
|
|
|
* The SPI core has successfully requested the CS GPIO line from the
|
|
|
|
* device tree, so we are done.
|
|
|
|
*/
|
2023-10-24 12:59:35 +02:00
|
|
|
if (spi_get_csgpiod(spi, 0))
|
2023-08-30 17:31:07 +02:00
|
|
|
return 0;
|
2023-10-24 12:59:35 +02:00
|
|
|
if (spi_get_chipselect(spi, 0) > 1) {
|
2023-08-30 17:31:07 +02:00
|
|
|
/* error in the case of native CS requested with CS > 1
|
|
|
|
* officially there is a CS2, but it is not documented
|
|
|
|
* which GPIO is connected with that...
|
|
|
|
*/
|
|
|
|
dev_err(&spi->dev,
|
|
|
|
"setup: only two native chip-selects are supported\n");
|
|
|
|
ret = -EINVAL;
|
|
|
|
goto err_cleanup;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Translate native CS to GPIO
|
|
|
|
*
|
|
|
|
* FIXME: poking around in the gpiolib internals like this is
|
|
|
|
* not very good practice. Find a way to locate the real problem
|
|
|
|
* and fix it. Why is the GPIO descriptor in spi->cs_gpiod
|
|
|
|
* sometimes not assigned correctly? Erroneous device trees?
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* get the gpio chip for the base */
|
|
|
|
chip = gpiochip_find("pinctrl-bcm2835", chip_match_name);
|
|
|
|
if (!chip)
|
|
|
|
return 0;
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
spi_set_csgpiod(spi, 0, gpiochip_request_own_desc(chip,
|
|
|
|
8 - (spi_get_chipselect(spi, 0)),
|
|
|
|
DRV_NAME,
|
|
|
|
GPIO_LOOKUP_FLAGS_DEFAULT,
|
|
|
|
GPIOD_OUT_LOW));
|
|
|
|
if (IS_ERR(spi_get_csgpiod(spi, 0))) {
|
|
|
|
ret = PTR_ERR(spi_get_csgpiod(spi, 0));
|
2023-08-30 17:31:07 +02:00
|
|
|
goto err_cleanup;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* and set up the "mode" and level */
|
|
|
|
dev_info(&spi->dev, "setting up native-CS%i to use GPIO\n",
|
2023-10-24 12:59:35 +02:00
|
|
|
spi_get_chipselect(spi, 0));
|
2023-08-30 17:31:07 +02:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
err_cleanup:
|
|
|
|
bcm2835_spi_cleanup(spi);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int bcm2835_spi_probe(struct platform_device *pdev)
|
|
|
|
{
|
|
|
|
struct spi_controller *ctlr;
|
|
|
|
struct bcm2835_spi *bs;
|
|
|
|
int err;
|
|
|
|
|
|
|
|
ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*bs));
|
|
|
|
if (!ctlr)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
|
|
|
platform_set_drvdata(pdev, ctlr);
|
|
|
|
|
|
|
|
ctlr->use_gpio_descriptors = true;
|
|
|
|
ctlr->mode_bits = BCM2835_SPI_MODE_BITS;
|
|
|
|
ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
|
|
|
|
ctlr->num_chipselect = 3;
|
|
|
|
ctlr->setup = bcm2835_spi_setup;
|
|
|
|
ctlr->cleanup = bcm2835_spi_cleanup;
|
|
|
|
ctlr->transfer_one = bcm2835_spi_transfer_one;
|
|
|
|
ctlr->handle_err = bcm2835_spi_handle_err;
|
|
|
|
ctlr->prepare_message = bcm2835_spi_prepare_message;
|
|
|
|
ctlr->dev.of_node = pdev->dev.of_node;
|
|
|
|
|
|
|
|
bs = spi_controller_get_devdata(ctlr);
|
|
|
|
bs->ctlr = ctlr;
|
|
|
|
|
|
|
|
bs->regs = devm_platform_ioremap_resource(pdev, 0);
|
|
|
|
if (IS_ERR(bs->regs))
|
|
|
|
return PTR_ERR(bs->regs);
|
|
|
|
|
|
|
|
bs->clk = devm_clk_get(&pdev->dev, NULL);
|
|
|
|
if (IS_ERR(bs->clk))
|
|
|
|
return dev_err_probe(&pdev->dev, PTR_ERR(bs->clk),
|
|
|
|
"could not get clk\n");
|
|
|
|
|
|
|
|
ctlr->max_speed_hz = clk_get_rate(bs->clk) / 2;
|
|
|
|
|
|
|
|
bs->irq = platform_get_irq(pdev, 0);
|
|
|
|
if (bs->irq <= 0)
|
|
|
|
return bs->irq ? bs->irq : -ENODEV;
|
|
|
|
|
|
|
|
clk_prepare_enable(bs->clk);
|
|
|
|
bs->clk_hz = clk_get_rate(bs->clk);
|
|
|
|
|
|
|
|
err = bcm2835_dma_init(ctlr, &pdev->dev, bs);
|
|
|
|
if (err)
|
|
|
|
goto out_clk_disable;
|
|
|
|
|
|
|
|
/* initialise the hardware with the default polarities */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS,
|
|
|
|
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
|
|
|
|
|
|
|
|
err = devm_request_irq(&pdev->dev, bs->irq, bcm2835_spi_interrupt,
|
|
|
|
IRQF_SHARED, dev_name(&pdev->dev), bs);
|
|
|
|
if (err) {
|
|
|
|
dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
|
|
|
|
goto out_dma_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
err = spi_register_controller(ctlr);
|
|
|
|
if (err) {
|
|
|
|
dev_err(&pdev->dev, "could not register SPI controller: %d\n",
|
|
|
|
err);
|
|
|
|
goto out_dma_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
bcm2835_debugfs_create(bs, dev_name(&pdev->dev));
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
out_dma_release:
|
|
|
|
bcm2835_dma_release(ctlr, bs);
|
|
|
|
out_clk_disable:
|
|
|
|
clk_disable_unprepare(bs->clk);
|
|
|
|
return err;
|
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
static void bcm2835_spi_remove(struct platform_device *pdev)
|
2023-08-30 17:31:07 +02:00
|
|
|
{
|
|
|
|
struct spi_controller *ctlr = platform_get_drvdata(pdev);
|
|
|
|
struct bcm2835_spi *bs = spi_controller_get_devdata(ctlr);
|
|
|
|
|
|
|
|
bcm2835_debugfs_remove(bs);
|
|
|
|
|
|
|
|
spi_unregister_controller(ctlr);
|
|
|
|
|
|
|
|
bcm2835_dma_release(ctlr, bs);
|
|
|
|
|
|
|
|
/* Clear FIFOs, and disable the HW block */
|
|
|
|
bcm2835_wr(bs, BCM2835_SPI_CS,
|
|
|
|
BCM2835_SPI_CS_CLEAR_RX | BCM2835_SPI_CS_CLEAR_TX);
|
|
|
|
|
|
|
|
clk_disable_unprepare(bs->clk);
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct of_device_id bcm2835_spi_match[] = {
|
|
|
|
{ .compatible = "brcm,bcm2835-spi", },
|
|
|
|
{}
|
|
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, bcm2835_spi_match);
|
|
|
|
|
|
|
|
static struct platform_driver bcm2835_spi_driver = {
|
|
|
|
.driver = {
|
|
|
|
.name = DRV_NAME,
|
|
|
|
.of_match_table = bcm2835_spi_match,
|
|
|
|
},
|
|
|
|
.probe = bcm2835_spi_probe,
|
2023-10-24 12:59:35 +02:00
|
|
|
.remove_new = bcm2835_spi_remove,
|
|
|
|
.shutdown = bcm2835_spi_remove,
|
2023-08-30 17:31:07 +02:00
|
|
|
};
|
|
|
|
module_platform_driver(bcm2835_spi_driver);
|
|
|
|
|
|
|
|
MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835");
|
|
|
|
MODULE_AUTHOR("Chris Boot <bootc@bootc.net>");
|
|
|
|
MODULE_LICENSE("GPL");
|