linux-zen-desktop/fs/smb/client/misc.c

1353 lines
36 KiB
C
Raw Permalink Normal View History

2023-10-24 12:59:35 +02:00
// SPDX-License-Identifier: LGPL-2.1
/*
*
* Copyright (C) International Business Machines Corp., 2002,2008
* Author(s): Steve French (sfrench@us.ibm.com)
*
*/
#include <linux/slab.h>
#include <linux/ctype.h>
#include <linux/mempool.h>
#include <linux/vmalloc.h>
#include "cifspdu.h"
#include "cifsglob.h"
#include "cifsproto.h"
#include "cifs_debug.h"
#include "smberr.h"
#include "nterr.h"
#include "cifs_unicode.h"
#include "smb2pdu.h"
#include "cifsfs.h"
#ifdef CONFIG_CIFS_DFS_UPCALL
#include "dns_resolve.h"
#include "dfs_cache.h"
#include "dfs.h"
#endif
#include "fs_context.h"
#include "cached_dir.h"
extern mempool_t *cifs_sm_req_poolp;
extern mempool_t *cifs_req_poolp;
/* The xid serves as a useful identifier for each incoming vfs request,
in a similar way to the mid which is useful to track each sent smb,
and CurrentXid can also provide a running counter (although it
will eventually wrap past zero) of the total vfs operations handled
since the cifs fs was mounted */
unsigned int
_get_xid(void)
{
unsigned int xid;
spin_lock(&GlobalMid_Lock);
GlobalTotalActiveXid++;
/* keep high water mark for number of simultaneous ops in filesystem */
if (GlobalTotalActiveXid > GlobalMaxActiveXid)
GlobalMaxActiveXid = GlobalTotalActiveXid;
if (GlobalTotalActiveXid > 65000)
cifs_dbg(FYI, "warning: more than 65000 requests active\n");
xid = GlobalCurrentXid++;
spin_unlock(&GlobalMid_Lock);
return xid;
}
void
_free_xid(unsigned int xid)
{
spin_lock(&GlobalMid_Lock);
/* if (GlobalTotalActiveXid == 0)
BUG(); */
GlobalTotalActiveXid--;
spin_unlock(&GlobalMid_Lock);
}
struct cifs_ses *
sesInfoAlloc(void)
{
struct cifs_ses *ret_buf;
ret_buf = kzalloc(sizeof(struct cifs_ses), GFP_KERNEL);
if (ret_buf) {
atomic_inc(&sesInfoAllocCount);
spin_lock_init(&ret_buf->ses_lock);
ret_buf->ses_status = SES_NEW;
++ret_buf->ses_count;
INIT_LIST_HEAD(&ret_buf->smb_ses_list);
INIT_LIST_HEAD(&ret_buf->tcon_list);
mutex_init(&ret_buf->session_mutex);
spin_lock_init(&ret_buf->iface_lock);
INIT_LIST_HEAD(&ret_buf->iface_list);
spin_lock_init(&ret_buf->chan_lock);
}
return ret_buf;
}
void
sesInfoFree(struct cifs_ses *buf_to_free)
{
struct cifs_server_iface *iface = NULL, *niface = NULL;
if (buf_to_free == NULL) {
cifs_dbg(FYI, "Null buffer passed to sesInfoFree\n");
return;
}
unload_nls(buf_to_free->local_nls);
atomic_dec(&sesInfoAllocCount);
kfree(buf_to_free->serverOS);
kfree(buf_to_free->serverDomain);
kfree(buf_to_free->serverNOS);
kfree_sensitive(buf_to_free->password);
kfree(buf_to_free->user_name);
kfree(buf_to_free->domainName);
kfree_sensitive(buf_to_free->auth_key.response);
spin_lock(&buf_to_free->iface_lock);
list_for_each_entry_safe(iface, niface, &buf_to_free->iface_list,
iface_head)
kref_put(&iface->refcount, release_iface);
spin_unlock(&buf_to_free->iface_lock);
kfree_sensitive(buf_to_free);
}
struct cifs_tcon *
tconInfoAlloc(void)
{
struct cifs_tcon *ret_buf;
ret_buf = kzalloc(sizeof(*ret_buf), GFP_KERNEL);
if (!ret_buf)
return NULL;
ret_buf->cfids = init_cached_dirs();
if (!ret_buf->cfids) {
kfree(ret_buf);
return NULL;
}
atomic_inc(&tconInfoAllocCount);
ret_buf->status = TID_NEW;
++ret_buf->tc_count;
spin_lock_init(&ret_buf->tc_lock);
INIT_LIST_HEAD(&ret_buf->openFileList);
INIT_LIST_HEAD(&ret_buf->tcon_list);
spin_lock_init(&ret_buf->open_file_lock);
spin_lock_init(&ret_buf->stat_lock);
atomic_set(&ret_buf->num_local_opens, 0);
atomic_set(&ret_buf->num_remote_opens, 0);
#ifdef CONFIG_CIFS_DFS_UPCALL
INIT_LIST_HEAD(&ret_buf->dfs_ses_list);
#endif
return ret_buf;
}
void
tconInfoFree(struct cifs_tcon *tcon)
{
if (tcon == NULL) {
cifs_dbg(FYI, "Null buffer passed to tconInfoFree\n");
return;
}
free_cached_dirs(tcon->cfids);
atomic_dec(&tconInfoAllocCount);
kfree(tcon->nativeFileSystem);
kfree_sensitive(tcon->password);
#ifdef CONFIG_CIFS_DFS_UPCALL
dfs_put_root_smb_sessions(&tcon->dfs_ses_list);
#endif
kfree(tcon->origin_fullpath);
kfree(tcon);
}
struct smb_hdr *
cifs_buf_get(void)
{
struct smb_hdr *ret_buf = NULL;
/*
* SMB2 header is bigger than CIFS one - no problems to clean some
* more bytes for CIFS.
*/
size_t buf_size = sizeof(struct smb2_hdr);
/*
* We could use negotiated size instead of max_msgsize -
* but it may be more efficient to always alloc same size
* albeit slightly larger than necessary and maxbuffersize
* defaults to this and can not be bigger.
*/
ret_buf = mempool_alloc(cifs_req_poolp, GFP_NOFS);
/* clear the first few header bytes */
/* for most paths, more is cleared in header_assemble */
memset(ret_buf, 0, buf_size + 3);
atomic_inc(&buf_alloc_count);
#ifdef CONFIG_CIFS_STATS2
atomic_inc(&total_buf_alloc_count);
#endif /* CONFIG_CIFS_STATS2 */
return ret_buf;
}
void
cifs_buf_release(void *buf_to_free)
{
if (buf_to_free == NULL) {
/* cifs_dbg(FYI, "Null buffer passed to cifs_buf_release\n");*/
return;
}
mempool_free(buf_to_free, cifs_req_poolp);
atomic_dec(&buf_alloc_count);
return;
}
struct smb_hdr *
cifs_small_buf_get(void)
{
struct smb_hdr *ret_buf = NULL;
/* We could use negotiated size instead of max_msgsize -
but it may be more efficient to always alloc same size
albeit slightly larger than necessary and maxbuffersize
defaults to this and can not be bigger */
ret_buf = mempool_alloc(cifs_sm_req_poolp, GFP_NOFS);
/* No need to clear memory here, cleared in header assemble */
/* memset(ret_buf, 0, sizeof(struct smb_hdr) + 27);*/
atomic_inc(&small_buf_alloc_count);
#ifdef CONFIG_CIFS_STATS2
atomic_inc(&total_small_buf_alloc_count);
#endif /* CONFIG_CIFS_STATS2 */
return ret_buf;
}
void
cifs_small_buf_release(void *buf_to_free)
{
if (buf_to_free == NULL) {
cifs_dbg(FYI, "Null buffer passed to cifs_small_buf_release\n");
return;
}
mempool_free(buf_to_free, cifs_sm_req_poolp);
atomic_dec(&small_buf_alloc_count);
return;
}
void
free_rsp_buf(int resp_buftype, void *rsp)
{
if (resp_buftype == CIFS_SMALL_BUFFER)
cifs_small_buf_release(rsp);
else if (resp_buftype == CIFS_LARGE_BUFFER)
cifs_buf_release(rsp);
}
/* NB: MID can not be set if treeCon not passed in, in that
case it is responsbility of caller to set the mid */
void
header_assemble(struct smb_hdr *buffer, char smb_command /* command */ ,
const struct cifs_tcon *treeCon, int word_count
/* length of fixed section (word count) in two byte units */)
{
char *temp = (char *) buffer;
memset(temp, 0, 256); /* bigger than MAX_CIFS_HDR_SIZE */
buffer->smb_buf_length = cpu_to_be32(
(2 * word_count) + sizeof(struct smb_hdr) -
4 /* RFC 1001 length field does not count */ +
2 /* for bcc field itself */) ;
buffer->Protocol[0] = 0xFF;
buffer->Protocol[1] = 'S';
buffer->Protocol[2] = 'M';
buffer->Protocol[3] = 'B';
buffer->Command = smb_command;
buffer->Flags = 0x00; /* case sensitive */
buffer->Flags2 = SMBFLG2_KNOWS_LONG_NAMES;
buffer->Pid = cpu_to_le16((__u16)current->tgid);
buffer->PidHigh = cpu_to_le16((__u16)(current->tgid >> 16));
if (treeCon) {
buffer->Tid = treeCon->tid;
if (treeCon->ses) {
if (treeCon->ses->capabilities & CAP_UNICODE)
buffer->Flags2 |= SMBFLG2_UNICODE;
if (treeCon->ses->capabilities & CAP_STATUS32)
buffer->Flags2 |= SMBFLG2_ERR_STATUS;
/* Uid is not converted */
buffer->Uid = treeCon->ses->Suid;
if (treeCon->ses->server)
buffer->Mid = get_next_mid(treeCon->ses->server);
}
if (treeCon->Flags & SMB_SHARE_IS_IN_DFS)
buffer->Flags2 |= SMBFLG2_DFS;
if (treeCon->nocase)
buffer->Flags |= SMBFLG_CASELESS;
if ((treeCon->ses) && (treeCon->ses->server))
if (treeCon->ses->server->sign)
buffer->Flags2 |= SMBFLG2_SECURITY_SIGNATURE;
}
/* endian conversion of flags is now done just before sending */
buffer->WordCount = (char) word_count;
return;
}
static int
check_smb_hdr(struct smb_hdr *smb)
{
/* does it have the right SMB "signature" ? */
if (*(__le32 *) smb->Protocol != cpu_to_le32(0x424d53ff)) {
cifs_dbg(VFS, "Bad protocol string signature header 0x%x\n",
*(unsigned int *)smb->Protocol);
return 1;
}
/* if it's a response then accept */
if (smb->Flags & SMBFLG_RESPONSE)
return 0;
/* only one valid case where server sends us request */
if (smb->Command == SMB_COM_LOCKING_ANDX)
return 0;
cifs_dbg(VFS, "Server sent request, not response. mid=%u\n",
get_mid(smb));
return 1;
}
int
checkSMB(char *buf, unsigned int total_read, struct TCP_Server_Info *server)
{
struct smb_hdr *smb = (struct smb_hdr *)buf;
__u32 rfclen = be32_to_cpu(smb->smb_buf_length);
__u32 clc_len; /* calculated length */
cifs_dbg(FYI, "checkSMB Length: 0x%x, smb_buf_length: 0x%x\n",
total_read, rfclen);
/* is this frame too small to even get to a BCC? */
if (total_read < 2 + sizeof(struct smb_hdr)) {
if ((total_read >= sizeof(struct smb_hdr) - 1)
&& (smb->Status.CifsError != 0)) {
/* it's an error return */
smb->WordCount = 0;
/* some error cases do not return wct and bcc */
return 0;
} else if ((total_read == sizeof(struct smb_hdr) + 1) &&
(smb->WordCount == 0)) {
char *tmp = (char *)smb;
/* Need to work around a bug in two servers here */
/* First, check if the part of bcc they sent was zero */
if (tmp[sizeof(struct smb_hdr)] == 0) {
/* some servers return only half of bcc
* on simple responses (wct, bcc both zero)
* in particular have seen this on
* ulogoffX and FindClose. This leaves
* one byte of bcc potentially unitialized
*/
/* zero rest of bcc */
tmp[sizeof(struct smb_hdr)+1] = 0;
return 0;
}
cifs_dbg(VFS, "rcvd invalid byte count (bcc)\n");
} else {
cifs_dbg(VFS, "Length less than smb header size\n");
}
return -EIO;
}
/* otherwise, there is enough to get to the BCC */
if (check_smb_hdr(smb))
return -EIO;
clc_len = smbCalcSize(smb);
if (4 + rfclen != total_read) {
cifs_dbg(VFS, "Length read does not match RFC1001 length %d\n",
rfclen);
return -EIO;
}
if (4 + rfclen != clc_len) {
__u16 mid = get_mid(smb);
/* check if bcc wrapped around for large read responses */
if ((rfclen > 64 * 1024) && (rfclen > clc_len)) {
/* check if lengths match mod 64K */
if (((4 + rfclen) & 0xFFFF) == (clc_len & 0xFFFF))
return 0; /* bcc wrapped */
}
cifs_dbg(FYI, "Calculated size %u vs length %u mismatch for mid=%u\n",
clc_len, 4 + rfclen, mid);
if (4 + rfclen < clc_len) {
cifs_dbg(VFS, "RFC1001 size %u smaller than SMB for mid=%u\n",
rfclen, mid);
return -EIO;
} else if (rfclen > clc_len + 512) {
/*
* Some servers (Windows XP in particular) send more
* data than the lengths in the SMB packet would
* indicate on certain calls (byte range locks and
* trans2 find first calls in particular). While the
* client can handle such a frame by ignoring the
* trailing data, we choose limit the amount of extra
* data to 512 bytes.
*/
cifs_dbg(VFS, "RFC1001 size %u more than 512 bytes larger than SMB for mid=%u\n",
rfclen, mid);
return -EIO;
}
}
return 0;
}
bool
is_valid_oplock_break(char *buffer, struct TCP_Server_Info *srv)
{
struct smb_hdr *buf = (struct smb_hdr *)buffer;
struct smb_com_lock_req *pSMB = (struct smb_com_lock_req *)buf;
struct TCP_Server_Info *pserver;
struct cifs_ses *ses;
struct cifs_tcon *tcon;
struct cifsInodeInfo *pCifsInode;
struct cifsFileInfo *netfile;
cifs_dbg(FYI, "Checking for oplock break or dnotify response\n");
if ((pSMB->hdr.Command == SMB_COM_NT_TRANSACT) &&
(pSMB->hdr.Flags & SMBFLG_RESPONSE)) {
struct smb_com_transaction_change_notify_rsp *pSMBr =
(struct smb_com_transaction_change_notify_rsp *)buf;
struct file_notify_information *pnotify;
__u32 data_offset = 0;
size_t len = srv->total_read - sizeof(pSMBr->hdr.smb_buf_length);
if (get_bcc(buf) > sizeof(struct file_notify_information)) {
data_offset = le32_to_cpu(pSMBr->DataOffset);
if (data_offset >
len - sizeof(struct file_notify_information)) {
cifs_dbg(FYI, "Invalid data_offset %u\n",
data_offset);
return true;
}
pnotify = (struct file_notify_information *)
((char *)&pSMBr->hdr.Protocol + data_offset);
cifs_dbg(FYI, "dnotify on %s Action: 0x%x\n",
pnotify->FileName, pnotify->Action);
/* cifs_dump_mem("Rcvd notify Data: ",buf,
sizeof(struct smb_hdr)+60); */
return true;
}
if (pSMBr->hdr.Status.CifsError) {
cifs_dbg(FYI, "notify err 0x%x\n",
pSMBr->hdr.Status.CifsError);
return true;
}
return false;
}
if (pSMB->hdr.Command != SMB_COM_LOCKING_ANDX)
return false;
if (pSMB->hdr.Flags & SMBFLG_RESPONSE) {
/* no sense logging error on invalid handle on oplock
break - harmless race between close request and oplock
break response is expected from time to time writing out
large dirty files cached on the client */
if ((NT_STATUS_INVALID_HANDLE) ==
le32_to_cpu(pSMB->hdr.Status.CifsError)) {
cifs_dbg(FYI, "Invalid handle on oplock break\n");
return true;
} else if (ERRbadfid ==
le16_to_cpu(pSMB->hdr.Status.DosError.Error)) {
return true;
} else {
return false; /* on valid oplock brk we get "request" */
}
}
if (pSMB->hdr.WordCount != 8)
return false;
cifs_dbg(FYI, "oplock type 0x%x level 0x%x\n",
pSMB->LockType, pSMB->OplockLevel);
if (!(pSMB->LockType & LOCKING_ANDX_OPLOCK_RELEASE))
return false;
/* If server is a channel, select the primary channel */
pserver = CIFS_SERVER_IS_CHAN(srv) ? srv->primary_server : srv;
/* look up tcon based on tid & uid */
spin_lock(&cifs_tcp_ses_lock);
list_for_each_entry(ses, &pserver->smb_ses_list, smb_ses_list) {
list_for_each_entry(tcon, &ses->tcon_list, tcon_list) {
if (tcon->tid != buf->Tid)
continue;
cifs_stats_inc(&tcon->stats.cifs_stats.num_oplock_brks);
spin_lock(&tcon->open_file_lock);
list_for_each_entry(netfile, &tcon->openFileList, tlist) {
if (pSMB->Fid != netfile->fid.netfid)
continue;
cifs_dbg(FYI, "file id match, oplock break\n");
pCifsInode = CIFS_I(d_inode(netfile->dentry));
set_bit(CIFS_INODE_PENDING_OPLOCK_BREAK,
&pCifsInode->flags);
netfile->oplock_epoch = 0;
netfile->oplock_level = pSMB->OplockLevel;
netfile->oplock_break_cancelled = false;
cifs_queue_oplock_break(netfile);
spin_unlock(&tcon->open_file_lock);
spin_unlock(&cifs_tcp_ses_lock);
return true;
}
spin_unlock(&tcon->open_file_lock);
spin_unlock(&cifs_tcp_ses_lock);
cifs_dbg(FYI, "No matching file for oplock break\n");
return true;
}
}
spin_unlock(&cifs_tcp_ses_lock);
cifs_dbg(FYI, "Can not process oplock break for non-existent connection\n");
return true;
}
void
dump_smb(void *buf, int smb_buf_length)
{
if (traceSMB == 0)
return;
print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_NONE, 8, 2, buf,
smb_buf_length, true);
}
void
cifs_autodisable_serverino(struct cifs_sb_info *cifs_sb)
{
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_SERVER_INUM) {
struct cifs_tcon *tcon = NULL;
if (cifs_sb->master_tlink)
tcon = cifs_sb_master_tcon(cifs_sb);
cifs_sb->mnt_cifs_flags &= ~CIFS_MOUNT_SERVER_INUM;
cifs_sb->mnt_cifs_serverino_autodisabled = true;
cifs_dbg(VFS, "Autodisabling the use of server inode numbers on %s\n",
tcon ? tcon->tree_name : "new server");
cifs_dbg(VFS, "The server doesn't seem to support them properly or the files might be on different servers (DFS)\n");
cifs_dbg(VFS, "Hardlinks will not be recognized on this mount. Consider mounting with the \"noserverino\" option to silence this message.\n");
}
}
void cifs_set_oplock_level(struct cifsInodeInfo *cinode, __u32 oplock)
{
oplock &= 0xF;
if (oplock == OPLOCK_EXCLUSIVE) {
cinode->oplock = CIFS_CACHE_WRITE_FLG | CIFS_CACHE_READ_FLG;
cifs_dbg(FYI, "Exclusive Oplock granted on inode %p\n",
&cinode->netfs.inode);
} else if (oplock == OPLOCK_READ) {
cinode->oplock = CIFS_CACHE_READ_FLG;
cifs_dbg(FYI, "Level II Oplock granted on inode %p\n",
&cinode->netfs.inode);
} else
cinode->oplock = 0;
}
/*
* We wait for oplock breaks to be processed before we attempt to perform
* writes.
*/
int cifs_get_writer(struct cifsInodeInfo *cinode)
{
int rc;
start:
rc = wait_on_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK,
TASK_KILLABLE);
if (rc)
return rc;
spin_lock(&cinode->writers_lock);
if (!cinode->writers)
set_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
cinode->writers++;
/* Check to see if we have started servicing an oplock break */
if (test_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags)) {
cinode->writers--;
if (cinode->writers == 0) {
clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
}
spin_unlock(&cinode->writers_lock);
goto start;
}
spin_unlock(&cinode->writers_lock);
return 0;
}
void cifs_put_writer(struct cifsInodeInfo *cinode)
{
spin_lock(&cinode->writers_lock);
cinode->writers--;
if (cinode->writers == 0) {
clear_bit(CIFS_INODE_PENDING_WRITERS, &cinode->flags);
wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_WRITERS);
}
spin_unlock(&cinode->writers_lock);
}
/**
* cifs_queue_oplock_break - queue the oplock break handler for cfile
* @cfile: The file to break the oplock on
*
* This function is called from the demultiplex thread when it
* receives an oplock break for @cfile.
*
* Assumes the tcon->open_file_lock is held.
* Assumes cfile->file_info_lock is NOT held.
*/
void cifs_queue_oplock_break(struct cifsFileInfo *cfile)
{
/*
* Bump the handle refcount now while we hold the
* open_file_lock to enforce the validity of it for the oplock
* break handler. The matching put is done at the end of the
* handler.
*/
cifsFileInfo_get(cfile);
queue_work(cifsoplockd_wq, &cfile->oplock_break);
}
void cifs_done_oplock_break(struct cifsInodeInfo *cinode)
{
clear_bit(CIFS_INODE_PENDING_OPLOCK_BREAK, &cinode->flags);
wake_up_bit(&cinode->flags, CIFS_INODE_PENDING_OPLOCK_BREAK);
}
bool
backup_cred(struct cifs_sb_info *cifs_sb)
{
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPUID) {
if (uid_eq(cifs_sb->ctx->backupuid, current_fsuid()))
return true;
}
if (cifs_sb->mnt_cifs_flags & CIFS_MOUNT_CIFS_BACKUPGID) {
if (in_group_p(cifs_sb->ctx->backupgid))
return true;
}
return false;
}
void
cifs_del_pending_open(struct cifs_pending_open *open)
{
spin_lock(&tlink_tcon(open->tlink)->open_file_lock);
list_del(&open->olist);
spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
}
void
cifs_add_pending_open_locked(struct cifs_fid *fid, struct tcon_link *tlink,
struct cifs_pending_open *open)
{
memcpy(open->lease_key, fid->lease_key, SMB2_LEASE_KEY_SIZE);
open->oplock = CIFS_OPLOCK_NO_CHANGE;
open->tlink = tlink;
fid->pending_open = open;
list_add_tail(&open->olist, &tlink_tcon(tlink)->pending_opens);
}
void
cifs_add_pending_open(struct cifs_fid *fid, struct tcon_link *tlink,
struct cifs_pending_open *open)
{
spin_lock(&tlink_tcon(tlink)->open_file_lock);
cifs_add_pending_open_locked(fid, tlink, open);
spin_unlock(&tlink_tcon(open->tlink)->open_file_lock);
}
/*
* Critical section which runs after acquiring deferred_lock.
* As there is no reference count on cifs_deferred_close, pdclose
* should not be used outside deferred_lock.
*/
bool
cifs_is_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close **pdclose)
{
struct cifs_deferred_close *dclose;
list_for_each_entry(dclose, &CIFS_I(d_inode(cfile->dentry))->deferred_closes, dlist) {
if ((dclose->netfid == cfile->fid.netfid) &&
(dclose->persistent_fid == cfile->fid.persistent_fid) &&
(dclose->volatile_fid == cfile->fid.volatile_fid)) {
*pdclose = dclose;
return true;
}
}
return false;
}
/*
* Critical section which runs after acquiring deferred_lock.
*/
void
cifs_add_deferred_close(struct cifsFileInfo *cfile, struct cifs_deferred_close *dclose)
{
bool is_deferred = false;
struct cifs_deferred_close *pdclose;
is_deferred = cifs_is_deferred_close(cfile, &pdclose);
if (is_deferred) {
kfree(dclose);
return;
}
dclose->tlink = cfile->tlink;
dclose->netfid = cfile->fid.netfid;
dclose->persistent_fid = cfile->fid.persistent_fid;
dclose->volatile_fid = cfile->fid.volatile_fid;
list_add_tail(&dclose->dlist, &CIFS_I(d_inode(cfile->dentry))->deferred_closes);
}
/*
* Critical section which runs after acquiring deferred_lock.
*/
void
cifs_del_deferred_close(struct cifsFileInfo *cfile)
{
bool is_deferred = false;
struct cifs_deferred_close *dclose;
is_deferred = cifs_is_deferred_close(cfile, &dclose);
if (!is_deferred)
return;
list_del(&dclose->dlist);
kfree(dclose);
}
void
cifs_close_deferred_file(struct cifsInodeInfo *cifs_inode)
{
struct cifsFileInfo *cfile = NULL;
struct file_list *tmp_list, *tmp_next_list;
struct list_head file_head;
if (cifs_inode == NULL)
return;
INIT_LIST_HEAD(&file_head);
spin_lock(&cifs_inode->open_file_lock);
list_for_each_entry(cfile, &cifs_inode->openFileList, flist) {
if (delayed_work_pending(&cfile->deferred)) {
if (cancel_delayed_work(&cfile->deferred)) {
spin_lock(&cifs_inode->deferred_lock);
cifs_del_deferred_close(cfile);
spin_unlock(&cifs_inode->deferred_lock);
tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
if (tmp_list == NULL)
break;
tmp_list->cfile = cfile;
list_add_tail(&tmp_list->list, &file_head);
}
}
}
spin_unlock(&cifs_inode->open_file_lock);
list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
_cifsFileInfo_put(tmp_list->cfile, false, false);
list_del(&tmp_list->list);
kfree(tmp_list);
}
}
void
cifs_close_all_deferred_files(struct cifs_tcon *tcon)
{
struct cifsFileInfo *cfile;
struct file_list *tmp_list, *tmp_next_list;
struct list_head file_head;
INIT_LIST_HEAD(&file_head);
spin_lock(&tcon->open_file_lock);
list_for_each_entry(cfile, &tcon->openFileList, tlist) {
if (delayed_work_pending(&cfile->deferred)) {
if (cancel_delayed_work(&cfile->deferred)) {
spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
cifs_del_deferred_close(cfile);
spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
if (tmp_list == NULL)
break;
tmp_list->cfile = cfile;
list_add_tail(&tmp_list->list, &file_head);
}
}
}
spin_unlock(&tcon->open_file_lock);
list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
_cifsFileInfo_put(tmp_list->cfile, true, false);
list_del(&tmp_list->list);
kfree(tmp_list);
}
}
void
cifs_close_deferred_file_under_dentry(struct cifs_tcon *tcon, const char *path)
{
struct cifsFileInfo *cfile;
struct file_list *tmp_list, *tmp_next_list;
struct list_head file_head;
void *page;
const char *full_path;
INIT_LIST_HEAD(&file_head);
page = alloc_dentry_path();
spin_lock(&tcon->open_file_lock);
list_for_each_entry(cfile, &tcon->openFileList, tlist) {
full_path = build_path_from_dentry(cfile->dentry, page);
if (strstr(full_path, path)) {
if (delayed_work_pending(&cfile->deferred)) {
if (cancel_delayed_work(&cfile->deferred)) {
spin_lock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
cifs_del_deferred_close(cfile);
spin_unlock(&CIFS_I(d_inode(cfile->dentry))->deferred_lock);
tmp_list = kmalloc(sizeof(struct file_list), GFP_ATOMIC);
if (tmp_list == NULL)
break;
tmp_list->cfile = cfile;
list_add_tail(&tmp_list->list, &file_head);
}
}
}
}
spin_unlock(&tcon->open_file_lock);
list_for_each_entry_safe(tmp_list, tmp_next_list, &file_head, list) {
_cifsFileInfo_put(tmp_list->cfile, true, false);
list_del(&tmp_list->list);
kfree(tmp_list);
}
free_dentry_path(page);
}
/* parses DFS referral V3 structure
* caller is responsible for freeing target_nodes
* returns:
* - on success - 0
* - on failure - errno
*/
int
parse_dfs_referrals(struct get_dfs_referral_rsp *rsp, u32 rsp_size,
unsigned int *num_of_nodes,
struct dfs_info3_param **target_nodes,
const struct nls_table *nls_codepage, int remap,
const char *searchName, bool is_unicode)
{
int i, rc = 0;
char *data_end;
struct dfs_referral_level_3 *ref;
*num_of_nodes = le16_to_cpu(rsp->NumberOfReferrals);
if (*num_of_nodes < 1) {
cifs_dbg(VFS, "num_referrals: must be at least > 0, but we get num_referrals = %d\n",
*num_of_nodes);
rc = -EINVAL;
goto parse_DFS_referrals_exit;
}
ref = (struct dfs_referral_level_3 *) &(rsp->referrals);
if (ref->VersionNumber != cpu_to_le16(3)) {
cifs_dbg(VFS, "Referrals of V%d version are not supported, should be V3\n",
le16_to_cpu(ref->VersionNumber));
rc = -EINVAL;
goto parse_DFS_referrals_exit;
}
/* get the upper boundary of the resp buffer */
data_end = (char *)rsp + rsp_size;
cifs_dbg(FYI, "num_referrals: %d dfs flags: 0x%x ...\n",
*num_of_nodes, le32_to_cpu(rsp->DFSFlags));
*target_nodes = kcalloc(*num_of_nodes, sizeof(struct dfs_info3_param),
GFP_KERNEL);
if (*target_nodes == NULL) {
rc = -ENOMEM;
goto parse_DFS_referrals_exit;
}
/* collect necessary data from referrals */
for (i = 0; i < *num_of_nodes; i++) {
char *temp;
int max_len;
struct dfs_info3_param *node = (*target_nodes)+i;
node->flags = le32_to_cpu(rsp->DFSFlags);
if (is_unicode) {
__le16 *tmp = kmalloc(strlen(searchName)*2 + 2,
GFP_KERNEL);
if (tmp == NULL) {
rc = -ENOMEM;
goto parse_DFS_referrals_exit;
}
cifsConvertToUTF16((__le16 *) tmp, searchName,
PATH_MAX, nls_codepage, remap);
node->path_consumed = cifs_utf16_bytes(tmp,
le16_to_cpu(rsp->PathConsumed),
nls_codepage);
kfree(tmp);
} else
node->path_consumed = le16_to_cpu(rsp->PathConsumed);
node->server_type = le16_to_cpu(ref->ServerType);
node->ref_flag = le16_to_cpu(ref->ReferralEntryFlags);
/* copy DfsPath */
temp = (char *)ref + le16_to_cpu(ref->DfsPathOffset);
max_len = data_end - temp;
node->path_name = cifs_strndup_from_utf16(temp, max_len,
is_unicode, nls_codepage);
if (!node->path_name) {
rc = -ENOMEM;
goto parse_DFS_referrals_exit;
}
/* copy link target UNC */
temp = (char *)ref + le16_to_cpu(ref->NetworkAddressOffset);
max_len = data_end - temp;
node->node_name = cifs_strndup_from_utf16(temp, max_len,
is_unicode, nls_codepage);
if (!node->node_name) {
rc = -ENOMEM;
goto parse_DFS_referrals_exit;
}
node->ttl = le32_to_cpu(ref->TimeToLive);
ref++;
}
parse_DFS_referrals_exit:
if (rc) {
free_dfs_info_array(*target_nodes, *num_of_nodes);
*target_nodes = NULL;
*num_of_nodes = 0;
}
return rc;
}
struct cifs_aio_ctx *
cifs_aio_ctx_alloc(void)
{
struct cifs_aio_ctx *ctx;
/*
* Must use kzalloc to initialize ctx->bv to NULL and ctx->direct_io
* to false so that we know when we have to unreference pages within
* cifs_aio_ctx_release()
*/
ctx = kzalloc(sizeof(struct cifs_aio_ctx), GFP_KERNEL);
if (!ctx)
return NULL;
INIT_LIST_HEAD(&ctx->list);
mutex_init(&ctx->aio_mutex);
init_completion(&ctx->done);
kref_init(&ctx->refcount);
return ctx;
}
void
cifs_aio_ctx_release(struct kref *refcount)
{
struct cifs_aio_ctx *ctx = container_of(refcount,
struct cifs_aio_ctx, refcount);
cifsFileInfo_put(ctx->cfile);
/*
* ctx->bv is only set if setup_aio_ctx_iter() was call successfuly
* which means that iov_iter_extract_pages() was a success and thus
* that we may have references or pins on pages that we need to
* release.
*/
if (ctx->bv) {
if (ctx->should_dirty || ctx->bv_need_unpin) {
unsigned int i;
for (i = 0; i < ctx->nr_pinned_pages; i++) {
struct page *page = ctx->bv[i].bv_page;
if (ctx->should_dirty)
set_page_dirty(page);
if (ctx->bv_need_unpin)
unpin_user_page(page);
}
}
kvfree(ctx->bv);
}
kfree(ctx);
}
/**
* cifs_alloc_hash - allocate hash and hash context together
* @name: The name of the crypto hash algo
* @sdesc: SHASH descriptor where to put the pointer to the hash TFM
*
* The caller has to make sure @sdesc is initialized to either NULL or
* a valid context. It can be freed via cifs_free_hash().
*/
int
cifs_alloc_hash(const char *name, struct shash_desc **sdesc)
{
int rc = 0;
struct crypto_shash *alg = NULL;
if (*sdesc)
return 0;
alg = crypto_alloc_shash(name, 0, 0);
if (IS_ERR(alg)) {
cifs_dbg(VFS, "Could not allocate shash TFM '%s'\n", name);
rc = PTR_ERR(alg);
*sdesc = NULL;
return rc;
}
*sdesc = kmalloc(sizeof(struct shash_desc) + crypto_shash_descsize(alg), GFP_KERNEL);
if (*sdesc == NULL) {
cifs_dbg(VFS, "no memory left to allocate shash TFM '%s'\n", name);
crypto_free_shash(alg);
return -ENOMEM;
}
(*sdesc)->tfm = alg;
return 0;
}
/**
* cifs_free_hash - free hash and hash context together
* @sdesc: Where to find the pointer to the hash TFM
*
* Freeing a NULL descriptor is safe.
*/
void
cifs_free_hash(struct shash_desc **sdesc)
{
if (unlikely(!sdesc) || !*sdesc)
return;
if ((*sdesc)->tfm) {
crypto_free_shash((*sdesc)->tfm);
(*sdesc)->tfm = NULL;
}
kfree_sensitive(*sdesc);
*sdesc = NULL;
}
void extract_unc_hostname(const char *unc, const char **h, size_t *len)
{
const char *end;
/* skip initial slashes */
while (*unc && (*unc == '\\' || *unc == '/'))
unc++;
end = unc;
while (*end && !(*end == '\\' || *end == '/'))
end++;
*h = unc;
*len = end - unc;
}
/**
* copy_path_name - copy src path to dst, possibly truncating
* @dst: The destination buffer
* @src: The source name
*
* returns number of bytes written (including trailing nul)
*/
int copy_path_name(char *dst, const char *src)
{
int name_len;
/*
* PATH_MAX includes nul, so if strlen(src) >= PATH_MAX it
* will truncate and strlen(dst) will be PATH_MAX-1
*/
name_len = strscpy(dst, src, PATH_MAX);
if (WARN_ON_ONCE(name_len < 0))
name_len = PATH_MAX-1;
/* we count the trailing nul */
name_len++;
return name_len;
}
struct super_cb_data {
void *data;
struct super_block *sb;
};
static void tcon_super_cb(struct super_block *sb, void *arg)
{
struct super_cb_data *sd = arg;
struct cifs_sb_info *cifs_sb;
struct cifs_tcon *t1 = sd->data, *t2;
if (sd->sb)
return;
cifs_sb = CIFS_SB(sb);
t2 = cifs_sb_master_tcon(cifs_sb);
spin_lock(&t2->tc_lock);
if (t1->ses == t2->ses &&
t1->ses->server == t2->ses->server &&
t2->origin_fullpath &&
dfs_src_pathname_equal(t2->origin_fullpath, t1->origin_fullpath))
sd->sb = sb;
spin_unlock(&t2->tc_lock);
}
static struct super_block *__cifs_get_super(void (*f)(struct super_block *, void *),
void *data)
{
struct super_cb_data sd = {
.data = data,
.sb = NULL,
};
struct file_system_type **fs_type = (struct file_system_type *[]) {
&cifs_fs_type, &smb3_fs_type, NULL,
};
for (; *fs_type; fs_type++) {
iterate_supers_type(*fs_type, f, &sd);
if (sd.sb) {
/*
* Grab an active reference in order to prevent automounts (DFS links)
* of expiring and then freeing up our cifs superblock pointer while
* we're doing failover.
*/
cifs_sb_active(sd.sb);
return sd.sb;
}
}
pr_warn_once("%s: could not find dfs superblock\n", __func__);
return ERR_PTR(-EINVAL);
}
static void __cifs_put_super(struct super_block *sb)
{
if (!IS_ERR_OR_NULL(sb))
cifs_sb_deactive(sb);
}
struct super_block *cifs_get_dfs_tcon_super(struct cifs_tcon *tcon)
{
spin_lock(&tcon->tc_lock);
if (!tcon->origin_fullpath) {
spin_unlock(&tcon->tc_lock);
return ERR_PTR(-ENOENT);
}
spin_unlock(&tcon->tc_lock);
return __cifs_get_super(tcon_super_cb, tcon);
}
void cifs_put_tcp_super(struct super_block *sb)
{
__cifs_put_super(sb);
}
#ifdef CONFIG_CIFS_DFS_UPCALL
int match_target_ip(struct TCP_Server_Info *server,
const char *share, size_t share_len,
bool *result)
{
int rc;
char *target;
struct sockaddr_storage ss;
*result = false;
target = kzalloc(share_len + 3, GFP_KERNEL);
if (!target)
return -ENOMEM;
scnprintf(target, share_len + 3, "\\\\%.*s", (int)share_len, share);
cifs_dbg(FYI, "%s: target name: %s\n", __func__, target + 2);
rc = dns_resolve_server_name_to_ip(target, (struct sockaddr *)&ss, NULL);
kfree(target);
if (rc < 0)
return rc;
spin_lock(&server->srv_lock);
*result = cifs_match_ipaddr((struct sockaddr *)&server->dstaddr, (struct sockaddr *)&ss);
spin_unlock(&server->srv_lock);
cifs_dbg(FYI, "%s: ip addresses match: %u\n", __func__, *result);
return 0;
}
int cifs_update_super_prepath(struct cifs_sb_info *cifs_sb, char *prefix)
{
int rc;
kfree(cifs_sb->prepath);
cifs_sb->prepath = NULL;
if (prefix && *prefix) {
cifs_sb->prepath = cifs_sanitize_prepath(prefix, GFP_ATOMIC);
if (IS_ERR(cifs_sb->prepath)) {
rc = PTR_ERR(cifs_sb->prepath);
cifs_sb->prepath = NULL;
return rc;
}
if (cifs_sb->prepath)
convert_delimiter(cifs_sb->prepath, CIFS_DIR_SEP(cifs_sb));
}
cifs_sb->mnt_cifs_flags |= CIFS_MOUNT_USE_PREFIX_PATH;
return 0;
}
/*
* Handle weird Windows SMB server behaviour. It responds with
* STATUS_OBJECT_NAME_INVALID code to SMB2 QUERY_INFO request for
* "\<server>\<dfsname>\<linkpath>" DFS reference, where <dfsname> contains
* non-ASCII unicode symbols.
*/
int cifs_inval_name_dfs_link_error(const unsigned int xid,
struct cifs_tcon *tcon,
struct cifs_sb_info *cifs_sb,
const char *full_path,
bool *islink)
{
struct cifs_ses *ses = tcon->ses;
size_t len;
char *path;
char *ref_path;
*islink = false;
/*
* Fast path - skip check when @full_path doesn't have a prefix path to
* look up or tcon is not DFS.
*/
if (strlen(full_path) < 2 || !cifs_sb ||
(cifs_sb->mnt_cifs_flags & CIFS_MOUNT_NO_DFS) ||
!is_tcon_dfs(tcon))
return 0;
spin_lock(&tcon->tc_lock);
if (!tcon->origin_fullpath) {
spin_unlock(&tcon->tc_lock);
return 0;
}
spin_unlock(&tcon->tc_lock);
/*
* Slow path - tcon is DFS and @full_path has prefix path, so attempt
* to get a referral to figure out whether it is an DFS link.
*/
len = strnlen(tcon->tree_name, MAX_TREE_SIZE + 1) + strlen(full_path) + 1;
path = kmalloc(len, GFP_KERNEL);
if (!path)
return -ENOMEM;
scnprintf(path, len, "%s%s", tcon->tree_name, full_path);
ref_path = dfs_cache_canonical_path(path + 1, cifs_sb->local_nls,
cifs_remap(cifs_sb));
kfree(path);
if (IS_ERR(ref_path)) {
if (PTR_ERR(ref_path) != -EINVAL)
return PTR_ERR(ref_path);
} else {
struct dfs_info3_param *refs = NULL;
int num_refs = 0;
/*
* XXX: we are not using dfs_cache_find() here because we might
* end up filling all the DFS cache and thus potentially
* removing cached DFS targets that the client would eventually
* need during failover.
*/
ses = CIFS_DFS_ROOT_SES(ses);
if (ses->server->ops->get_dfs_refer &&
!ses->server->ops->get_dfs_refer(xid, ses, ref_path, &refs,
&num_refs, cifs_sb->local_nls,
cifs_remap(cifs_sb)))
*islink = refs[0].server_type == DFS_TYPE_LINK;
free_dfs_info_array(refs, num_refs);
kfree(ref_path);
}
return 0;
}
#endif
int cifs_wait_for_server_reconnect(struct TCP_Server_Info *server, bool retry)
{
int timeout = 10;
int rc;
spin_lock(&server->srv_lock);
if (server->tcpStatus != CifsNeedReconnect) {
spin_unlock(&server->srv_lock);
return 0;
}
timeout *= server->nr_targets;
spin_unlock(&server->srv_lock);
/*
* Give demultiplex thread up to 10 seconds to each target available for
* reconnect -- should be greater than cifs socket timeout which is 7
* seconds.
*
* On "soft" mounts we wait once. Hard mounts keep retrying until
* process is killed or server comes back on-line.
*/
do {
rc = wait_event_interruptible_timeout(server->response_q,
(server->tcpStatus != CifsNeedReconnect),
timeout * HZ);
if (rc < 0) {
cifs_dbg(FYI, "%s: aborting reconnect due to received signal\n",
__func__);
return -ERESTARTSYS;
}
/* are we still trying to reconnect? */
spin_lock(&server->srv_lock);
if (server->tcpStatus != CifsNeedReconnect) {
spin_unlock(&server->srv_lock);
return 0;
}
spin_unlock(&server->srv_lock);
} while (retry);
cifs_dbg(FYI, "%s: gave up waiting on reconnect\n", __func__);
return -EHOSTDOWN;
}