linux-zen-desktop/include/linux/cpumask.h

1259 lines
35 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __LINUX_CPUMASK_H
#define __LINUX_CPUMASK_H
/*
* Cpumasks provide a bitmap suitable for representing the
* set of CPU's in a system, one bit position per CPU number. In general,
* only nr_cpu_ids (<= NR_CPUS) bits are valid.
*/
#include <linux/kernel.h>
#include <linux/threads.h>
#include <linux/bitmap.h>
#include <linux/atomic.h>
#include <linux/bug.h>
#include <linux/gfp_types.h>
#include <linux/numa.h>
/* Don't assign or return these: may not be this big! */
typedef struct cpumask { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;
/**
* cpumask_bits - get the bits in a cpumask
* @maskp: the struct cpumask *
*
* You should only assume nr_cpu_ids bits of this mask are valid. This is
* a macro so it's const-correct.
*/
#define cpumask_bits(maskp) ((maskp)->bits)
/**
* cpumask_pr_args - printf args to output a cpumask
* @maskp: cpumask to be printed
*
* Can be used to provide arguments for '%*pb[l]' when printing a cpumask.
*/
#define cpumask_pr_args(maskp) nr_cpu_ids, cpumask_bits(maskp)
#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
#define nr_cpu_ids ((unsigned int)NR_CPUS)
#else
extern unsigned int nr_cpu_ids;
#endif
static inline void set_nr_cpu_ids(unsigned int nr)
{
#if (NR_CPUS == 1) || defined(CONFIG_FORCE_NR_CPUS)
WARN_ON(nr != nr_cpu_ids);
#else
nr_cpu_ids = nr;
#endif
}
/*
* We have several different "preferred sizes" for the cpumask
* operations, depending on operation.
*
* For example, the bitmap scanning and operating operations have
* optimized routines that work for the single-word case, but only when
* the size is constant. So if NR_CPUS fits in one single word, we are
* better off using that small constant, in order to trigger the
* optimized bit finding. That is 'small_cpumask_size'.
*
* The clearing and copying operations will similarly perform better
* with a constant size, but we limit that size arbitrarily to four
* words. We call this 'large_cpumask_size'.
*
* Finally, some operations just want the exact limit, either because
* they set bits or just don't have any faster fixed-sized versions. We
* call this just 'nr_cpumask_bits'.
*
* Note that these optional constants are always guaranteed to be at
* least as big as 'nr_cpu_ids' itself is, and all our cpumask
* allocations are at least that size (see cpumask_size()). The
* optimization comes from being able to potentially use a compile-time
* constant instead of a run-time generated exact number of CPUs.
*/
#if NR_CPUS <= BITS_PER_LONG
#define small_cpumask_bits ((unsigned int)NR_CPUS)
#define large_cpumask_bits ((unsigned int)NR_CPUS)
#elif NR_CPUS <= 4*BITS_PER_LONG
#define small_cpumask_bits nr_cpu_ids
#define large_cpumask_bits ((unsigned int)NR_CPUS)
#else
#define small_cpumask_bits nr_cpu_ids
#define large_cpumask_bits nr_cpu_ids
#endif
#define nr_cpumask_bits nr_cpu_ids
/*
* The following particular system cpumasks and operations manage
* possible, present, active and online cpus.
*
* cpu_possible_mask- has bit 'cpu' set iff cpu is populatable
* cpu_present_mask - has bit 'cpu' set iff cpu is populated
* cpu_online_mask - has bit 'cpu' set iff cpu available to scheduler
* cpu_active_mask - has bit 'cpu' set iff cpu available to migration
*
* If !CONFIG_HOTPLUG_CPU, present == possible, and active == online.
*
* The cpu_possible_mask is fixed at boot time, as the set of CPU id's
* that it is possible might ever be plugged in at anytime during the
* life of that system boot. The cpu_present_mask is dynamic(*),
* representing which CPUs are currently plugged in. And
* cpu_online_mask is the dynamic subset of cpu_present_mask,
* indicating those CPUs available for scheduling.
*
* If HOTPLUG is enabled, then cpu_present_mask varies dynamically,
* depending on what ACPI reports as currently plugged in, otherwise
* cpu_present_mask is just a copy of cpu_possible_mask.
*
* (*) Well, cpu_present_mask is dynamic in the hotplug case. If not
* hotplug, it's a copy of cpu_possible_mask, hence fixed at boot.
*
* Subtleties:
* 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode
* assumption that their single CPU is online. The UP
* cpu_{online,possible,present}_masks are placebos. Changing them
* will have no useful affect on the following num_*_cpus()
* and cpu_*() macros in the UP case. This ugliness is a UP
* optimization - don't waste any instructions or memory references
* asking if you're online or how many CPUs there are if there is
* only one CPU.
*/
extern struct cpumask __cpu_possible_mask;
extern struct cpumask __cpu_online_mask;
extern struct cpumask __cpu_present_mask;
extern struct cpumask __cpu_active_mask;
extern struct cpumask __cpu_dying_mask;
#define cpu_possible_mask ((const struct cpumask *)&__cpu_possible_mask)
#define cpu_online_mask ((const struct cpumask *)&__cpu_online_mask)
#define cpu_present_mask ((const struct cpumask *)&__cpu_present_mask)
#define cpu_active_mask ((const struct cpumask *)&__cpu_active_mask)
#define cpu_dying_mask ((const struct cpumask *)&__cpu_dying_mask)
extern atomic_t __num_online_cpus;
extern cpumask_t cpus_booted_once_mask;
static __always_inline void cpu_max_bits_warn(unsigned int cpu, unsigned int bits)
{
#ifdef CONFIG_DEBUG_PER_CPU_MAPS
WARN_ON_ONCE(cpu >= bits);
#endif /* CONFIG_DEBUG_PER_CPU_MAPS */
}
/* verify cpu argument to cpumask_* operators */
static __always_inline unsigned int cpumask_check(unsigned int cpu)
{
cpu_max_bits_warn(cpu, small_cpumask_bits);
return cpu;
}
/**
* cpumask_first - get the first cpu in a cpumask
* @srcp: the cpumask pointer
*
* Returns >= nr_cpu_ids if no cpus set.
*/
static inline unsigned int cpumask_first(const struct cpumask *srcp)
{
return find_first_bit(cpumask_bits(srcp), small_cpumask_bits);
}
/**
* cpumask_first_zero - get the first unset cpu in a cpumask
* @srcp: the cpumask pointer
*
* Returns >= nr_cpu_ids if all cpus are set.
*/
static inline unsigned int cpumask_first_zero(const struct cpumask *srcp)
{
return find_first_zero_bit(cpumask_bits(srcp), small_cpumask_bits);
}
/**
* cpumask_first_and - return the first cpu from *srcp1 & *srcp2
2023-10-24 12:59:35 +02:00
* @srcp1: the first input
* @srcp2: the second input
2023-08-30 17:31:07 +02:00
*
* Returns >= nr_cpu_ids if no cpus set in both. See also cpumask_next_and().
*/
static inline
unsigned int cpumask_first_and(const struct cpumask *srcp1, const struct cpumask *srcp2)
{
return find_first_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
}
/**
* cpumask_last - get the last CPU in a cpumask
* @srcp: - the cpumask pointer
*
* Returns >= nr_cpumask_bits if no CPUs set.
*/
static inline unsigned int cpumask_last(const struct cpumask *srcp)
{
return find_last_bit(cpumask_bits(srcp), small_cpumask_bits);
}
/**
* cpumask_next - get the next cpu in a cpumask
* @n: the cpu prior to the place to search (ie. return will be > @n)
* @srcp: the cpumask pointer
*
* Returns >= nr_cpu_ids if no further cpus set.
*/
static inline
unsigned int cpumask_next(int n, const struct cpumask *srcp)
{
/* -1 is a legal arg here. */
if (n != -1)
cpumask_check(n);
return find_next_bit(cpumask_bits(srcp), small_cpumask_bits, n + 1);
}
/**
* cpumask_next_zero - get the next unset cpu in a cpumask
* @n: the cpu prior to the place to search (ie. return will be > @n)
* @srcp: the cpumask pointer
*
* Returns >= nr_cpu_ids if no further cpus unset.
*/
static inline unsigned int cpumask_next_zero(int n, const struct cpumask *srcp)
{
/* -1 is a legal arg here. */
if (n != -1)
cpumask_check(n);
return find_next_zero_bit(cpumask_bits(srcp), small_cpumask_bits, n+1);
}
#if NR_CPUS == 1
/* Uniprocessor: there is only one valid CPU */
static inline unsigned int cpumask_local_spread(unsigned int i, int node)
{
return 0;
}
static inline unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
const struct cpumask *src2p)
{
return cpumask_first_and(src1p, src2p);
}
static inline unsigned int cpumask_any_distribute(const struct cpumask *srcp)
{
return cpumask_first(srcp);
}
#else
unsigned int cpumask_local_spread(unsigned int i, int node);
unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
const struct cpumask *src2p);
unsigned int cpumask_any_distribute(const struct cpumask *srcp);
#endif /* NR_CPUS */
/**
* cpumask_next_and - get the next cpu in *src1p & *src2p
* @n: the cpu prior to the place to search (ie. return will be > @n)
* @src1p: the first cpumask pointer
* @src2p: the second cpumask pointer
*
* Returns >= nr_cpu_ids if no further cpus set in both.
*/
static inline
unsigned int cpumask_next_and(int n, const struct cpumask *src1p,
const struct cpumask *src2p)
{
/* -1 is a legal arg here. */
if (n != -1)
cpumask_check(n);
return find_next_and_bit(cpumask_bits(src1p), cpumask_bits(src2p),
small_cpumask_bits, n + 1);
}
/**
* for_each_cpu - iterate over every cpu in a mask
* @cpu: the (optionally unsigned) integer iterator
* @mask: the cpumask pointer
*
* After the loop, cpu is >= nr_cpu_ids.
*/
#define for_each_cpu(cpu, mask) \
for_each_set_bit(cpu, cpumask_bits(mask), small_cpumask_bits)
#if NR_CPUS == 1
static inline
unsigned int cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap)
{
cpumask_check(start);
if (n != -1)
cpumask_check(n);
/*
* Return the first available CPU when wrapping, or when starting before cpu0,
* since there is only one valid option.
*/
if (wrap && n >= 0)
return nr_cpumask_bits;
return cpumask_first(mask);
}
#else
unsigned int __pure cpumask_next_wrap(int n, const struct cpumask *mask, int start, bool wrap);
#endif
/**
* for_each_cpu_wrap - iterate over every cpu in a mask, starting at a specified location
* @cpu: the (optionally unsigned) integer iterator
* @mask: the cpumask pointer
* @start: the start location
*
* The implementation does not assume any bit in @mask is set (including @start).
*
* After the loop, cpu is >= nr_cpu_ids.
*/
#define for_each_cpu_wrap(cpu, mask, start) \
for_each_set_bit_wrap(cpu, cpumask_bits(mask), small_cpumask_bits, start)
/**
* for_each_cpu_and - iterate over every cpu in both masks
* @cpu: the (optionally unsigned) integer iterator
* @mask1: the first cpumask pointer
* @mask2: the second cpumask pointer
*
* This saves a temporary CPU mask in many places. It is equivalent to:
* struct cpumask tmp;
* cpumask_and(&tmp, &mask1, &mask2);
* for_each_cpu(cpu, &tmp)
* ...
*
* After the loop, cpu is >= nr_cpu_ids.
*/
#define for_each_cpu_and(cpu, mask1, mask2) \
for_each_and_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
/**
* for_each_cpu_andnot - iterate over every cpu present in one mask, excluding
* those present in another.
* @cpu: the (optionally unsigned) integer iterator
* @mask1: the first cpumask pointer
* @mask2: the second cpumask pointer
*
* This saves a temporary CPU mask in many places. It is equivalent to:
* struct cpumask tmp;
* cpumask_andnot(&tmp, &mask1, &mask2);
* for_each_cpu(cpu, &tmp)
* ...
*
* After the loop, cpu is >= nr_cpu_ids.
*/
#define for_each_cpu_andnot(cpu, mask1, mask2) \
for_each_andnot_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
/**
* for_each_cpu_or - iterate over every cpu present in either mask
* @cpu: the (optionally unsigned) integer iterator
* @mask1: the first cpumask pointer
* @mask2: the second cpumask pointer
*
* This saves a temporary CPU mask in many places. It is equivalent to:
* struct cpumask tmp;
* cpumask_or(&tmp, &mask1, &mask2);
* for_each_cpu(cpu, &tmp)
* ...
*
* After the loop, cpu is >= nr_cpu_ids.
*/
#define for_each_cpu_or(cpu, mask1, mask2) \
for_each_or_bit(cpu, cpumask_bits(mask1), cpumask_bits(mask2), small_cpumask_bits)
/**
* cpumask_any_but - return a "random" in a cpumask, but not this one.
* @mask: the cpumask to search
* @cpu: the cpu to ignore.
*
* Often used to find any cpu but smp_processor_id() in a mask.
* Returns >= nr_cpu_ids if no cpus set.
*/
static inline
unsigned int cpumask_any_but(const struct cpumask *mask, unsigned int cpu)
{
unsigned int i;
cpumask_check(cpu);
for_each_cpu(i, mask)
if (i != cpu)
break;
return i;
}
/**
* cpumask_nth - get the first cpu in a cpumask
* @srcp: the cpumask pointer
* @cpu: the N'th cpu to find, starting from 0
*
* Returns >= nr_cpu_ids if such cpu doesn't exist.
*/
static inline unsigned int cpumask_nth(unsigned int cpu, const struct cpumask *srcp)
{
return find_nth_bit(cpumask_bits(srcp), small_cpumask_bits, cpumask_check(cpu));
}
/**
* cpumask_nth_and - get the first cpu in 2 cpumasks
* @srcp1: the cpumask pointer
* @srcp2: the cpumask pointer
* @cpu: the N'th cpu to find, starting from 0
*
* Returns >= nr_cpu_ids if such cpu doesn't exist.
*/
static inline
unsigned int cpumask_nth_and(unsigned int cpu, const struct cpumask *srcp1,
const struct cpumask *srcp2)
{
return find_nth_and_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
small_cpumask_bits, cpumask_check(cpu));
}
/**
* cpumask_nth_andnot - get the first cpu set in 1st cpumask, and clear in 2nd.
* @srcp1: the cpumask pointer
* @srcp2: the cpumask pointer
* @cpu: the N'th cpu to find, starting from 0
*
* Returns >= nr_cpu_ids if such cpu doesn't exist.
*/
static inline
unsigned int cpumask_nth_andnot(unsigned int cpu, const struct cpumask *srcp1,
const struct cpumask *srcp2)
{
return find_nth_andnot_bit(cpumask_bits(srcp1), cpumask_bits(srcp2),
small_cpumask_bits, cpumask_check(cpu));
}
/**
* cpumask_nth_and_andnot - get the Nth cpu set in 1st and 2nd cpumask, and clear in 3rd.
* @srcp1: the cpumask pointer
* @srcp2: the cpumask pointer
* @srcp3: the cpumask pointer
* @cpu: the N'th cpu to find, starting from 0
*
* Returns >= nr_cpu_ids if such cpu doesn't exist.
*/
static __always_inline
unsigned int cpumask_nth_and_andnot(unsigned int cpu, const struct cpumask *srcp1,
const struct cpumask *srcp2,
const struct cpumask *srcp3)
{
return find_nth_and_andnot_bit(cpumask_bits(srcp1),
cpumask_bits(srcp2),
cpumask_bits(srcp3),
small_cpumask_bits, cpumask_check(cpu));
}
#define CPU_BITS_NONE \
{ \
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
}
#define CPU_BITS_CPU0 \
{ \
[0] = 1UL \
}
/**
* cpumask_set_cpu - set a cpu in a cpumask
* @cpu: cpu number (< nr_cpu_ids)
* @dstp: the cpumask pointer
*/
static __always_inline void cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
{
set_bit(cpumask_check(cpu), cpumask_bits(dstp));
}
static __always_inline void __cpumask_set_cpu(unsigned int cpu, struct cpumask *dstp)
{
__set_bit(cpumask_check(cpu), cpumask_bits(dstp));
}
/**
* cpumask_clear_cpu - clear a cpu in a cpumask
* @cpu: cpu number (< nr_cpu_ids)
* @dstp: the cpumask pointer
*/
static __always_inline void cpumask_clear_cpu(int cpu, struct cpumask *dstp)
{
clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
}
static __always_inline void __cpumask_clear_cpu(int cpu, struct cpumask *dstp)
{
__clear_bit(cpumask_check(cpu), cpumask_bits(dstp));
}
/**
* cpumask_test_cpu - test for a cpu in a cpumask
* @cpu: cpu number (< nr_cpu_ids)
* @cpumask: the cpumask pointer
*
* Returns true if @cpu is set in @cpumask, else returns false
*/
static __always_inline bool cpumask_test_cpu(int cpu, const struct cpumask *cpumask)
{
return test_bit(cpumask_check(cpu), cpumask_bits((cpumask)));
}
/**
* cpumask_test_and_set_cpu - atomically test and set a cpu in a cpumask
* @cpu: cpu number (< nr_cpu_ids)
* @cpumask: the cpumask pointer
*
* Returns true if @cpu is set in old bitmap of @cpumask, else returns false
*
* test_and_set_bit wrapper for cpumasks.
*/
static __always_inline bool cpumask_test_and_set_cpu(int cpu, struct cpumask *cpumask)
{
return test_and_set_bit(cpumask_check(cpu), cpumask_bits(cpumask));
}
/**
* cpumask_test_and_clear_cpu - atomically test and clear a cpu in a cpumask
* @cpu: cpu number (< nr_cpu_ids)
* @cpumask: the cpumask pointer
*
* Returns true if @cpu is set in old bitmap of @cpumask, else returns false
*
* test_and_clear_bit wrapper for cpumasks.
*/
static __always_inline bool cpumask_test_and_clear_cpu(int cpu, struct cpumask *cpumask)
{
return test_and_clear_bit(cpumask_check(cpu), cpumask_bits(cpumask));
}
/**
* cpumask_setall - set all cpus (< nr_cpu_ids) in a cpumask
* @dstp: the cpumask pointer
*/
static inline void cpumask_setall(struct cpumask *dstp)
{
if (small_const_nbits(small_cpumask_bits)) {
cpumask_bits(dstp)[0] = BITMAP_LAST_WORD_MASK(nr_cpumask_bits);
return;
}
bitmap_fill(cpumask_bits(dstp), nr_cpumask_bits);
}
/**
* cpumask_clear - clear all cpus (< nr_cpu_ids) in a cpumask
* @dstp: the cpumask pointer
*/
static inline void cpumask_clear(struct cpumask *dstp)
{
bitmap_zero(cpumask_bits(dstp), large_cpumask_bits);
}
/**
* cpumask_and - *dstp = *src1p & *src2p
* @dstp: the cpumask result
* @src1p: the first input
* @src2p: the second input
*
* If *@dstp is empty, returns false, else returns true
*/
static inline bool cpumask_and(struct cpumask *dstp,
const struct cpumask *src1p,
const struct cpumask *src2p)
{
return bitmap_and(cpumask_bits(dstp), cpumask_bits(src1p),
cpumask_bits(src2p), small_cpumask_bits);
}
/**
* cpumask_or - *dstp = *src1p | *src2p
* @dstp: the cpumask result
* @src1p: the first input
* @src2p: the second input
*/
static inline void cpumask_or(struct cpumask *dstp, const struct cpumask *src1p,
const struct cpumask *src2p)
{
bitmap_or(cpumask_bits(dstp), cpumask_bits(src1p),
cpumask_bits(src2p), small_cpumask_bits);
}
/**
* cpumask_xor - *dstp = *src1p ^ *src2p
* @dstp: the cpumask result
* @src1p: the first input
* @src2p: the second input
*/
static inline void cpumask_xor(struct cpumask *dstp,
const struct cpumask *src1p,
const struct cpumask *src2p)
{
bitmap_xor(cpumask_bits(dstp), cpumask_bits(src1p),
cpumask_bits(src2p), small_cpumask_bits);
}
/**
* cpumask_andnot - *dstp = *src1p & ~*src2p
* @dstp: the cpumask result
* @src1p: the first input
* @src2p: the second input
*
* If *@dstp is empty, returns false, else returns true
*/
static inline bool cpumask_andnot(struct cpumask *dstp,
const struct cpumask *src1p,
const struct cpumask *src2p)
{
return bitmap_andnot(cpumask_bits(dstp), cpumask_bits(src1p),
cpumask_bits(src2p), small_cpumask_bits);
}
/**
* cpumask_equal - *src1p == *src2p
* @src1p: the first input
* @src2p: the second input
*/
static inline bool cpumask_equal(const struct cpumask *src1p,
const struct cpumask *src2p)
{
return bitmap_equal(cpumask_bits(src1p), cpumask_bits(src2p),
small_cpumask_bits);
}
/**
* cpumask_or_equal - *src1p | *src2p == *src3p
* @src1p: the first input
* @src2p: the second input
* @src3p: the third input
*/
static inline bool cpumask_or_equal(const struct cpumask *src1p,
const struct cpumask *src2p,
const struct cpumask *src3p)
{
return bitmap_or_equal(cpumask_bits(src1p), cpumask_bits(src2p),
cpumask_bits(src3p), small_cpumask_bits);
}
/**
* cpumask_intersects - (*src1p & *src2p) != 0
* @src1p: the first input
* @src2p: the second input
*/
static inline bool cpumask_intersects(const struct cpumask *src1p,
const struct cpumask *src2p)
{
return bitmap_intersects(cpumask_bits(src1p), cpumask_bits(src2p),
small_cpumask_bits);
}
/**
* cpumask_subset - (*src1p & ~*src2p) == 0
* @src1p: the first input
* @src2p: the second input
*
* Returns true if *@src1p is a subset of *@src2p, else returns false
*/
static inline bool cpumask_subset(const struct cpumask *src1p,
const struct cpumask *src2p)
{
return bitmap_subset(cpumask_bits(src1p), cpumask_bits(src2p),
small_cpumask_bits);
}
/**
* cpumask_empty - *srcp == 0
* @srcp: the cpumask to that all cpus < nr_cpu_ids are clear.
*/
static inline bool cpumask_empty(const struct cpumask *srcp)
{
return bitmap_empty(cpumask_bits(srcp), small_cpumask_bits);
}
/**
* cpumask_full - *srcp == 0xFFFFFFFF...
* @srcp: the cpumask to that all cpus < nr_cpu_ids are set.
*/
static inline bool cpumask_full(const struct cpumask *srcp)
{
return bitmap_full(cpumask_bits(srcp), nr_cpumask_bits);
}
/**
* cpumask_weight - Count of bits in *srcp
* @srcp: the cpumask to count bits (< nr_cpu_ids) in.
*/
static inline unsigned int cpumask_weight(const struct cpumask *srcp)
{
return bitmap_weight(cpumask_bits(srcp), small_cpumask_bits);
}
/**
* cpumask_weight_and - Count of bits in (*srcp1 & *srcp2)
* @srcp1: the cpumask to count bits (< nr_cpu_ids) in.
* @srcp2: the cpumask to count bits (< nr_cpu_ids) in.
*/
static inline unsigned int cpumask_weight_and(const struct cpumask *srcp1,
const struct cpumask *srcp2)
{
return bitmap_weight_and(cpumask_bits(srcp1), cpumask_bits(srcp2), small_cpumask_bits);
}
/**
* cpumask_shift_right - *dstp = *srcp >> n
* @dstp: the cpumask result
* @srcp: the input to shift
* @n: the number of bits to shift by
*/
static inline void cpumask_shift_right(struct cpumask *dstp,
const struct cpumask *srcp, int n)
{
bitmap_shift_right(cpumask_bits(dstp), cpumask_bits(srcp), n,
small_cpumask_bits);
}
/**
* cpumask_shift_left - *dstp = *srcp << n
* @dstp: the cpumask result
* @srcp: the input to shift
* @n: the number of bits to shift by
*/
static inline void cpumask_shift_left(struct cpumask *dstp,
const struct cpumask *srcp, int n)
{
bitmap_shift_left(cpumask_bits(dstp), cpumask_bits(srcp), n,
nr_cpumask_bits);
}
/**
* cpumask_copy - *dstp = *srcp
* @dstp: the result
* @srcp: the input cpumask
*/
static inline void cpumask_copy(struct cpumask *dstp,
const struct cpumask *srcp)
{
bitmap_copy(cpumask_bits(dstp), cpumask_bits(srcp), large_cpumask_bits);
}
/**
* cpumask_any - pick a "random" cpu from *srcp
* @srcp: the input cpumask
*
* Returns >= nr_cpu_ids if no cpus set.
*/
#define cpumask_any(srcp) cpumask_first(srcp)
/**
* cpumask_any_and - pick a "random" cpu from *mask1 & *mask2
* @mask1: the first input cpumask
* @mask2: the second input cpumask
*
* Returns >= nr_cpu_ids if no cpus set.
*/
#define cpumask_any_and(mask1, mask2) cpumask_first_and((mask1), (mask2))
/**
* cpumask_of - the cpumask containing just a given cpu
* @cpu: the cpu (<= nr_cpu_ids)
*/
#define cpumask_of(cpu) (get_cpu_mask(cpu))
/**
* cpumask_parse_user - extract a cpumask from a user string
* @buf: the buffer to extract from
* @len: the length of the buffer
* @dstp: the cpumask to set.
*
* Returns -errno, or 0 for success.
*/
static inline int cpumask_parse_user(const char __user *buf, int len,
struct cpumask *dstp)
{
return bitmap_parse_user(buf, len, cpumask_bits(dstp), nr_cpumask_bits);
}
/**
* cpumask_parselist_user - extract a cpumask from a user string
* @buf: the buffer to extract from
* @len: the length of the buffer
* @dstp: the cpumask to set.
*
* Returns -errno, or 0 for success.
*/
static inline int cpumask_parselist_user(const char __user *buf, int len,
struct cpumask *dstp)
{
return bitmap_parselist_user(buf, len, cpumask_bits(dstp),
nr_cpumask_bits);
}
/**
* cpumask_parse - extract a cpumask from a string
* @buf: the buffer to extract from
* @dstp: the cpumask to set.
*
* Returns -errno, or 0 for success.
*/
static inline int cpumask_parse(const char *buf, struct cpumask *dstp)
{
return bitmap_parse(buf, UINT_MAX, cpumask_bits(dstp), nr_cpumask_bits);
}
/**
* cpulist_parse - extract a cpumask from a user string of ranges
* @buf: the buffer to extract from
* @dstp: the cpumask to set.
*
* Returns -errno, or 0 for success.
*/
static inline int cpulist_parse(const char *buf, struct cpumask *dstp)
{
return bitmap_parselist(buf, cpumask_bits(dstp), nr_cpumask_bits);
}
/**
* cpumask_size - size to allocate for a 'struct cpumask' in bytes
*/
static inline unsigned int cpumask_size(void)
{
return BITS_TO_LONGS(large_cpumask_bits) * sizeof(long);
}
/*
* cpumask_var_t: struct cpumask for stack usage.
*
* Oh, the wicked games we play! In order to make kernel coding a
* little more difficult, we typedef cpumask_var_t to an array or a
* pointer: doing &mask on an array is a noop, so it still works.
*
* ie.
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* ... use 'tmpmask' like a normal struct cpumask * ...
*
* free_cpumask_var(tmpmask);
*
*
* However, one notable exception is there. alloc_cpumask_var() allocates
* only nr_cpumask_bits bits (in the other hand, real cpumask_t always has
* NR_CPUS bits). Therefore you don't have to dereference cpumask_var_t.
*
* cpumask_var_t tmpmask;
* if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
* return -ENOMEM;
*
* var = *tmpmask;
*
* This code makes NR_CPUS length memcopy and brings to a memory corruption.
* cpumask_copy() provide safe copy functionality.
*
* Note that there is another evil here: If you define a cpumask_var_t
* as a percpu variable then the way to obtain the address of the cpumask
* structure differently influences what this_cpu_* operation needs to be
* used. Please use this_cpu_cpumask_var_t in those cases. The direct use
* of this_cpu_ptr() or this_cpu_read() will lead to failures when the
* other type of cpumask_var_t implementation is configured.
*
* Please also note that __cpumask_var_read_mostly can be used to declare
* a cpumask_var_t variable itself (not its content) as read mostly.
*/
#ifdef CONFIG_CPUMASK_OFFSTACK
typedef struct cpumask *cpumask_var_t;
#define this_cpu_cpumask_var_ptr(x) this_cpu_read(x)
#define __cpumask_var_read_mostly __read_mostly
bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node);
static inline
bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
{
return alloc_cpumask_var_node(mask, flags | __GFP_ZERO, node);
}
/**
* alloc_cpumask_var - allocate a struct cpumask
* @mask: pointer to cpumask_var_t where the cpumask is returned
* @flags: GFP_ flags
*
* Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
* a nop returning a constant 1 (in <linux/cpumask.h>).
*
* See alloc_cpumask_var_node.
*/
static inline
bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
{
return alloc_cpumask_var_node(mask, flags, NUMA_NO_NODE);
}
static inline
bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
{
return alloc_cpumask_var(mask, flags | __GFP_ZERO);
}
void alloc_bootmem_cpumask_var(cpumask_var_t *mask);
void free_cpumask_var(cpumask_var_t mask);
void free_bootmem_cpumask_var(cpumask_var_t mask);
static inline bool cpumask_available(cpumask_var_t mask)
{
return mask != NULL;
}
#else
typedef struct cpumask cpumask_var_t[1];
#define this_cpu_cpumask_var_ptr(x) this_cpu_ptr(x)
#define __cpumask_var_read_mostly
static inline bool alloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
{
return true;
}
static inline bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
int node)
{
return true;
}
static inline bool zalloc_cpumask_var(cpumask_var_t *mask, gfp_t flags)
{
cpumask_clear(*mask);
return true;
}
static inline bool zalloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags,
int node)
{
cpumask_clear(*mask);
return true;
}
static inline void alloc_bootmem_cpumask_var(cpumask_var_t *mask)
{
}
static inline void free_cpumask_var(cpumask_var_t mask)
{
}
static inline void free_bootmem_cpumask_var(cpumask_var_t mask)
{
}
static inline bool cpumask_available(cpumask_var_t mask)
{
return true;
}
#endif /* CONFIG_CPUMASK_OFFSTACK */
/* It's common to want to use cpu_all_mask in struct member initializers,
* so it has to refer to an address rather than a pointer. */
extern const DECLARE_BITMAP(cpu_all_bits, NR_CPUS);
#define cpu_all_mask to_cpumask(cpu_all_bits)
/* First bits of cpu_bit_bitmap are in fact unset. */
#define cpu_none_mask to_cpumask(cpu_bit_bitmap[0])
#if NR_CPUS == 1
/* Uniprocessor: the possible/online/present masks are always "1" */
#define for_each_possible_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
#define for_each_online_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
#define for_each_present_cpu(cpu) for ((cpu) = 0; (cpu) < 1; (cpu)++)
#else
#define for_each_possible_cpu(cpu) for_each_cpu((cpu), cpu_possible_mask)
#define for_each_online_cpu(cpu) for_each_cpu((cpu), cpu_online_mask)
#define for_each_present_cpu(cpu) for_each_cpu((cpu), cpu_present_mask)
#endif
/* Wrappers for arch boot code to manipulate normally-constant masks */
void init_cpu_present(const struct cpumask *src);
void init_cpu_possible(const struct cpumask *src);
void init_cpu_online(const struct cpumask *src);
static inline void reset_cpu_possible_mask(void)
{
bitmap_zero(cpumask_bits(&__cpu_possible_mask), NR_CPUS);
}
static inline void
set_cpu_possible(unsigned int cpu, bool possible)
{
if (possible)
cpumask_set_cpu(cpu, &__cpu_possible_mask);
else
cpumask_clear_cpu(cpu, &__cpu_possible_mask);
}
static inline void
set_cpu_present(unsigned int cpu, bool present)
{
if (present)
cpumask_set_cpu(cpu, &__cpu_present_mask);
else
cpumask_clear_cpu(cpu, &__cpu_present_mask);
}
void set_cpu_online(unsigned int cpu, bool online);
static inline void
set_cpu_active(unsigned int cpu, bool active)
{
if (active)
cpumask_set_cpu(cpu, &__cpu_active_mask);
else
cpumask_clear_cpu(cpu, &__cpu_active_mask);
}
static inline void
set_cpu_dying(unsigned int cpu, bool dying)
{
if (dying)
cpumask_set_cpu(cpu, &__cpu_dying_mask);
else
cpumask_clear_cpu(cpu, &__cpu_dying_mask);
}
/**
* to_cpumask - convert an NR_CPUS bitmap to a struct cpumask *
* @bitmap: the bitmap
*
* There are a few places where cpumask_var_t isn't appropriate and
* static cpumasks must be used (eg. very early boot), yet we don't
* expose the definition of 'struct cpumask'.
*
* This does the conversion, and can be used as a constant initializer.
*/
#define to_cpumask(bitmap) \
((struct cpumask *)(1 ? (bitmap) \
: (void *)sizeof(__check_is_bitmap(bitmap))))
static inline int __check_is_bitmap(const unsigned long *bitmap)
{
return 1;
}
/*
* Special-case data structure for "single bit set only" constant CPU masks.
*
* We pre-generate all the 64 (or 32) possible bit positions, with enough
* padding to the left and the right, and return the constant pointer
* appropriately offset.
*/
extern const unsigned long
cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)];
static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return to_cpumask(p);
}
#if NR_CPUS > 1
/**
* num_online_cpus() - Read the number of online CPUs
*
* Despite the fact that __num_online_cpus is of type atomic_t, this
* interface gives only a momentary snapshot and is not protected against
* concurrent CPU hotplug operations unless invoked from a cpuhp_lock held
* region.
*/
static __always_inline unsigned int num_online_cpus(void)
{
2023-10-24 12:59:35 +02:00
return raw_atomic_read(&__num_online_cpus);
2023-08-30 17:31:07 +02:00
}
#define num_possible_cpus() cpumask_weight(cpu_possible_mask)
#define num_present_cpus() cpumask_weight(cpu_present_mask)
#define num_active_cpus() cpumask_weight(cpu_active_mask)
static inline bool cpu_online(unsigned int cpu)
{
return cpumask_test_cpu(cpu, cpu_online_mask);
}
static inline bool cpu_possible(unsigned int cpu)
{
return cpumask_test_cpu(cpu, cpu_possible_mask);
}
static inline bool cpu_present(unsigned int cpu)
{
return cpumask_test_cpu(cpu, cpu_present_mask);
}
static inline bool cpu_active(unsigned int cpu)
{
return cpumask_test_cpu(cpu, cpu_active_mask);
}
static inline bool cpu_dying(unsigned int cpu)
{
return cpumask_test_cpu(cpu, cpu_dying_mask);
}
#else
#define num_online_cpus() 1U
#define num_possible_cpus() 1U
#define num_present_cpus() 1U
#define num_active_cpus() 1U
static inline bool cpu_online(unsigned int cpu)
{
return cpu == 0;
}
static inline bool cpu_possible(unsigned int cpu)
{
return cpu == 0;
}
static inline bool cpu_present(unsigned int cpu)
{
return cpu == 0;
}
static inline bool cpu_active(unsigned int cpu)
{
return cpu == 0;
}
static inline bool cpu_dying(unsigned int cpu)
{
return false;
}
#endif /* NR_CPUS > 1 */
#define cpu_is_offline(cpu) unlikely(!cpu_online(cpu))
#if NR_CPUS <= BITS_PER_LONG
#define CPU_BITS_ALL \
{ \
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
}
#else /* NR_CPUS > BITS_PER_LONG */
#define CPU_BITS_ALL \
{ \
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
}
#endif /* NR_CPUS > BITS_PER_LONG */
/**
* cpumap_print_to_pagebuf - copies the cpumask into the buffer either
* as comma-separated list of cpus or hex values of cpumask
* @list: indicates whether the cpumap must be list
* @mask: the cpumask to copy
* @buf: the buffer to copy into
*
* Returns the length of the (null-terminated) @buf string, zero if
* nothing is copied.
*/
static inline ssize_t
cpumap_print_to_pagebuf(bool list, char *buf, const struct cpumask *mask)
{
return bitmap_print_to_pagebuf(list, buf, cpumask_bits(mask),
nr_cpu_ids);
}
/**
* cpumap_print_bitmask_to_buf - copies the cpumask into the buffer as
* hex values of cpumask
*
* @buf: the buffer to copy into
* @mask: the cpumask to copy
* @off: in the string from which we are copying, we copy to @buf
* @count: the maximum number of bytes to print
*
* The function prints the cpumask into the buffer as hex values of
* cpumask; Typically used by bin_attribute to export cpumask bitmask
* ABI.
*
* Returns the length of how many bytes have been copied, excluding
* terminating '\0'.
*/
static inline ssize_t
cpumap_print_bitmask_to_buf(char *buf, const struct cpumask *mask,
loff_t off, size_t count)
{
return bitmap_print_bitmask_to_buf(buf, cpumask_bits(mask),
nr_cpu_ids, off, count) - 1;
}
/**
* cpumap_print_list_to_buf - copies the cpumask into the buffer as
* comma-separated list of cpus
2023-10-24 12:59:35 +02:00
* @buf: the buffer to copy into
* @mask: the cpumask to copy
* @off: in the string from which we are copying, we copy to @buf
* @count: the maximum number of bytes to print
2023-08-30 17:31:07 +02:00
*
* Everything is same with the above cpumap_print_bitmask_to_buf()
* except the print format.
*/
static inline ssize_t
cpumap_print_list_to_buf(char *buf, const struct cpumask *mask,
loff_t off, size_t count)
{
return bitmap_print_list_to_buf(buf, cpumask_bits(mask),
nr_cpu_ids, off, count) - 1;
}
#if NR_CPUS <= BITS_PER_LONG
#define CPU_MASK_ALL \
(cpumask_t) { { \
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
} }
#else
#define CPU_MASK_ALL \
(cpumask_t) { { \
[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL, \
[BITS_TO_LONGS(NR_CPUS)-1] = BITMAP_LAST_WORD_MASK(NR_CPUS) \
} }
#endif /* NR_CPUS > BITS_PER_LONG */
#define CPU_MASK_NONE \
(cpumask_t) { { \
[0 ... BITS_TO_LONGS(NR_CPUS)-1] = 0UL \
} }
#define CPU_MASK_CPU0 \
(cpumask_t) { { \
[0] = 1UL \
} }
/*
* Provide a valid theoretical max size for cpumap and cpulist sysfs files
* to avoid breaking userspace which may allocate a buffer based on the size
* reported by e.g. fstat.
*
* for cpumap NR_CPUS * 9/32 - 1 should be an exact length.
*
* For cpulist 7 is (ceil(log10(NR_CPUS)) + 1) allowing for NR_CPUS to be up
* to 2 orders of magnitude larger than 8192. And then we divide by 2 to
* cover a worst-case of every other cpu being on one of two nodes for a
* very large NR_CPUS.
*
* Use PAGE_SIZE as a minimum for smaller configurations while avoiding
* unsigned comparison to -1.
*/
#define CPUMAP_FILE_MAX_BYTES (((NR_CPUS * 9)/32 > PAGE_SIZE) \
? (NR_CPUS * 9)/32 - 1 : PAGE_SIZE)
#define CPULIST_FILE_MAX_BYTES (((NR_CPUS * 7)/2 > PAGE_SIZE) ? (NR_CPUS * 7)/2 : PAGE_SIZE)
#endif /* __LINUX_CPUMASK_H */