2023-08-30 17:31:07 +02:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef __LINUX_PREEMPT_H
|
|
|
|
#define __LINUX_PREEMPT_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* include/linux/preempt.h - macros for accessing and manipulating
|
|
|
|
* preempt_count (used for kernel preemption, interrupt count, etc.)
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/linkage.h>
|
2023-10-24 12:59:35 +02:00
|
|
|
#include <linux/cleanup.h>
|
2023-08-30 17:31:07 +02:00
|
|
|
#include <linux/list.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We put the hardirq and softirq counter into the preemption
|
|
|
|
* counter. The bitmask has the following meaning:
|
|
|
|
*
|
|
|
|
* - bits 0-7 are the preemption count (max preemption depth: 256)
|
|
|
|
* - bits 8-15 are the softirq count (max # of softirqs: 256)
|
|
|
|
*
|
|
|
|
* The hardirq count could in theory be the same as the number of
|
|
|
|
* interrupts in the system, but we run all interrupt handlers with
|
|
|
|
* interrupts disabled, so we cannot have nesting interrupts. Though
|
|
|
|
* there are a few palaeontologic drivers which reenable interrupts in
|
|
|
|
* the handler, so we need more than one bit here.
|
|
|
|
*
|
|
|
|
* PREEMPT_MASK: 0x000000ff
|
|
|
|
* SOFTIRQ_MASK: 0x0000ff00
|
|
|
|
* HARDIRQ_MASK: 0x000f0000
|
|
|
|
* NMI_MASK: 0x00f00000
|
|
|
|
* PREEMPT_NEED_RESCHED: 0x80000000
|
|
|
|
*/
|
|
|
|
#define PREEMPT_BITS 8
|
|
|
|
#define SOFTIRQ_BITS 8
|
|
|
|
#define HARDIRQ_BITS 4
|
|
|
|
#define NMI_BITS 4
|
|
|
|
|
|
|
|
#define PREEMPT_SHIFT 0
|
|
|
|
#define SOFTIRQ_SHIFT (PREEMPT_SHIFT + PREEMPT_BITS)
|
|
|
|
#define HARDIRQ_SHIFT (SOFTIRQ_SHIFT + SOFTIRQ_BITS)
|
|
|
|
#define NMI_SHIFT (HARDIRQ_SHIFT + HARDIRQ_BITS)
|
|
|
|
|
|
|
|
#define __IRQ_MASK(x) ((1UL << (x))-1)
|
|
|
|
|
|
|
|
#define PREEMPT_MASK (__IRQ_MASK(PREEMPT_BITS) << PREEMPT_SHIFT)
|
|
|
|
#define SOFTIRQ_MASK (__IRQ_MASK(SOFTIRQ_BITS) << SOFTIRQ_SHIFT)
|
|
|
|
#define HARDIRQ_MASK (__IRQ_MASK(HARDIRQ_BITS) << HARDIRQ_SHIFT)
|
|
|
|
#define NMI_MASK (__IRQ_MASK(NMI_BITS) << NMI_SHIFT)
|
|
|
|
|
|
|
|
#define PREEMPT_OFFSET (1UL << PREEMPT_SHIFT)
|
|
|
|
#define SOFTIRQ_OFFSET (1UL << SOFTIRQ_SHIFT)
|
|
|
|
#define HARDIRQ_OFFSET (1UL << HARDIRQ_SHIFT)
|
|
|
|
#define NMI_OFFSET (1UL << NMI_SHIFT)
|
|
|
|
|
|
|
|
#define SOFTIRQ_DISABLE_OFFSET (2 * SOFTIRQ_OFFSET)
|
|
|
|
|
|
|
|
#define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Disable preemption until the scheduler is running -- use an unconditional
|
|
|
|
* value so that it also works on !PREEMPT_COUNT kernels.
|
|
|
|
*
|
|
|
|
* Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count().
|
|
|
|
*/
|
|
|
|
#define INIT_PREEMPT_COUNT PREEMPT_OFFSET
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initial preempt_count value; reflects the preempt_count schedule invariant
|
|
|
|
* which states that during context switches:
|
|
|
|
*
|
|
|
|
* preempt_count() == 2*PREEMPT_DISABLE_OFFSET
|
|
|
|
*
|
|
|
|
* Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels.
|
|
|
|
* Note: See finish_task_switch().
|
|
|
|
*/
|
|
|
|
#define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED)
|
|
|
|
|
|
|
|
/* preempt_count() and related functions, depends on PREEMPT_NEED_RESCHED */
|
|
|
|
#include <asm/preempt.h>
|
|
|
|
|
|
|
|
/**
|
|
|
|
* interrupt_context_level - return interrupt context level
|
|
|
|
*
|
|
|
|
* Returns the current interrupt context level.
|
|
|
|
* 0 - normal context
|
|
|
|
* 1 - softirq context
|
|
|
|
* 2 - hardirq context
|
|
|
|
* 3 - NMI context
|
|
|
|
*/
|
|
|
|
static __always_inline unsigned char interrupt_context_level(void)
|
|
|
|
{
|
|
|
|
unsigned long pc = preempt_count();
|
|
|
|
unsigned char level = 0;
|
|
|
|
|
|
|
|
level += !!(pc & (NMI_MASK));
|
|
|
|
level += !!(pc & (NMI_MASK | HARDIRQ_MASK));
|
|
|
|
level += !!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET));
|
|
|
|
|
|
|
|
return level;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define nmi_count() (preempt_count() & NMI_MASK)
|
|
|
|
#define hardirq_count() (preempt_count() & HARDIRQ_MASK)
|
|
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
|
|
# define softirq_count() (current->softirq_disable_cnt & SOFTIRQ_MASK)
|
|
|
|
#else
|
|
|
|
# define softirq_count() (preempt_count() & SOFTIRQ_MASK)
|
|
|
|
#endif
|
|
|
|
#define irq_count() (nmi_count() | hardirq_count() | softirq_count())
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Macros to retrieve the current execution context:
|
|
|
|
*
|
|
|
|
* in_nmi() - We're in NMI context
|
|
|
|
* in_hardirq() - We're in hard IRQ context
|
|
|
|
* in_serving_softirq() - We're in softirq context
|
|
|
|
* in_task() - We're in task context
|
|
|
|
*/
|
|
|
|
#define in_nmi() (nmi_count())
|
|
|
|
#define in_hardirq() (hardirq_count())
|
|
|
|
#define in_serving_softirq() (softirq_count() & SOFTIRQ_OFFSET)
|
|
|
|
#define in_task() (!(in_nmi() | in_hardirq() | in_serving_softirq()))
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following macros are deprecated and should not be used in new code:
|
|
|
|
* in_irq() - Obsolete version of in_hardirq()
|
|
|
|
* in_softirq() - We have BH disabled, or are processing softirqs
|
|
|
|
* in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
|
|
|
|
*/
|
|
|
|
#define in_irq() (hardirq_count())
|
|
|
|
#define in_softirq() (softirq_count())
|
|
|
|
#define in_interrupt() (irq_count())
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The preempt_count offset after preempt_disable();
|
|
|
|
*/
|
|
|
|
#if defined(CONFIG_PREEMPT_COUNT)
|
|
|
|
# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
|
|
|
|
#else
|
|
|
|
# define PREEMPT_DISABLE_OFFSET 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The preempt_count offset after spin_lock()
|
|
|
|
*/
|
|
|
|
#if !defined(CONFIG_PREEMPT_RT)
|
|
|
|
#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET
|
|
|
|
#else
|
|
|
|
/* Locks on RT do not disable preemption */
|
|
|
|
#define PREEMPT_LOCK_OFFSET 0
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The preempt_count offset needed for things like:
|
|
|
|
*
|
|
|
|
* spin_lock_bh()
|
|
|
|
*
|
|
|
|
* Which need to disable both preemption (CONFIG_PREEMPT_COUNT) and
|
|
|
|
* softirqs, such that unlock sequences of:
|
|
|
|
*
|
|
|
|
* spin_unlock();
|
|
|
|
* local_bh_enable();
|
|
|
|
*
|
|
|
|
* Work as expected.
|
|
|
|
*/
|
|
|
|
#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Are we running in atomic context? WARNING: this macro cannot
|
|
|
|
* always detect atomic context; in particular, it cannot know about
|
|
|
|
* held spinlocks in non-preemptible kernels. Thus it should not be
|
|
|
|
* used in the general case to determine whether sleeping is possible.
|
|
|
|
* Do not use in_atomic() in driver code.
|
|
|
|
*/
|
|
|
|
#define in_atomic() (preempt_count() != 0)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check whether we were atomic before we did preempt_disable():
|
|
|
|
* (used by the scheduler)
|
|
|
|
*/
|
|
|
|
#define in_atomic_preempt_off() (preempt_count() != PREEMPT_DISABLE_OFFSET)
|
|
|
|
|
|
|
|
#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_TRACE_PREEMPT_TOGGLE)
|
|
|
|
extern void preempt_count_add(int val);
|
|
|
|
extern void preempt_count_sub(int val);
|
|
|
|
#define preempt_count_dec_and_test() \
|
|
|
|
({ preempt_count_sub(1); should_resched(0); })
|
|
|
|
#else
|
|
|
|
#define preempt_count_add(val) __preempt_count_add(val)
|
|
|
|
#define preempt_count_sub(val) __preempt_count_sub(val)
|
|
|
|
#define preempt_count_dec_and_test() __preempt_count_dec_and_test()
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define __preempt_count_inc() __preempt_count_add(1)
|
|
|
|
#define __preempt_count_dec() __preempt_count_sub(1)
|
|
|
|
|
|
|
|
#define preempt_count_inc() preempt_count_add(1)
|
|
|
|
#define preempt_count_dec() preempt_count_sub(1)
|
|
|
|
|
|
|
|
#ifdef CONFIG_PREEMPT_COUNT
|
|
|
|
|
|
|
|
#define preempt_disable() \
|
|
|
|
do { \
|
|
|
|
preempt_count_inc(); \
|
|
|
|
barrier(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define sched_preempt_enable_no_resched() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
preempt_count_dec(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_enable_no_resched() sched_preempt_enable_no_resched()
|
|
|
|
|
|
|
|
#define preemptible() (preempt_count() == 0 && !irqs_disabled())
|
|
|
|
|
|
|
|
#ifdef CONFIG_PREEMPTION
|
|
|
|
#define preempt_enable() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
if (unlikely(preempt_count_dec_and_test())) \
|
|
|
|
__preempt_schedule(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_enable_notrace() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
if (unlikely(__preempt_count_dec_and_test())) \
|
|
|
|
__preempt_schedule_notrace(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_check_resched() \
|
|
|
|
do { \
|
|
|
|
if (should_resched(0)) \
|
|
|
|
__preempt_schedule(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#else /* !CONFIG_PREEMPTION */
|
|
|
|
#define preempt_enable() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
preempt_count_dec(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_enable_notrace() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
__preempt_count_dec(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_check_resched() do { } while (0)
|
|
|
|
#endif /* CONFIG_PREEMPTION */
|
|
|
|
|
|
|
|
#define preempt_disable_notrace() \
|
|
|
|
do { \
|
|
|
|
__preempt_count_inc(); \
|
|
|
|
barrier(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#define preempt_enable_no_resched_notrace() \
|
|
|
|
do { \
|
|
|
|
barrier(); \
|
|
|
|
__preempt_count_dec(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#else /* !CONFIG_PREEMPT_COUNT */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Even if we don't have any preemption, we need preempt disable/enable
|
|
|
|
* to be barriers, so that we don't have things like get_user/put_user
|
|
|
|
* that can cause faults and scheduling migrate into our preempt-protected
|
|
|
|
* region.
|
|
|
|
*/
|
|
|
|
#define preempt_disable() barrier()
|
|
|
|
#define sched_preempt_enable_no_resched() barrier()
|
|
|
|
#define preempt_enable_no_resched() barrier()
|
|
|
|
#define preempt_enable() barrier()
|
|
|
|
#define preempt_check_resched() do { } while (0)
|
|
|
|
|
|
|
|
#define preempt_disable_notrace() barrier()
|
|
|
|
#define preempt_enable_no_resched_notrace() barrier()
|
|
|
|
#define preempt_enable_notrace() barrier()
|
|
|
|
#define preemptible() 0
|
|
|
|
|
|
|
|
#endif /* CONFIG_PREEMPT_COUNT */
|
|
|
|
|
|
|
|
#ifdef MODULE
|
|
|
|
/*
|
|
|
|
* Modules have no business playing preemption tricks.
|
|
|
|
*/
|
|
|
|
#undef sched_preempt_enable_no_resched
|
|
|
|
#undef preempt_enable_no_resched
|
|
|
|
#undef preempt_enable_no_resched_notrace
|
|
|
|
#undef preempt_check_resched
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define preempt_set_need_resched() \
|
|
|
|
do { \
|
|
|
|
set_preempt_need_resched(); \
|
|
|
|
} while (0)
|
|
|
|
#define preempt_fold_need_resched() \
|
|
|
|
do { \
|
|
|
|
if (tif_need_resched()) \
|
|
|
|
set_preempt_need_resched(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
#ifdef CONFIG_PREEMPT_NOTIFIERS
|
|
|
|
|
|
|
|
struct preempt_notifier;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* preempt_ops - notifiers called when a task is preempted and rescheduled
|
|
|
|
* @sched_in: we're about to be rescheduled:
|
|
|
|
* notifier: struct preempt_notifier for the task being scheduled
|
|
|
|
* cpu: cpu we're scheduled on
|
|
|
|
* @sched_out: we've just been preempted
|
|
|
|
* notifier: struct preempt_notifier for the task being preempted
|
|
|
|
* next: the task that's kicking us out
|
|
|
|
*
|
|
|
|
* Please note that sched_in and out are called under different
|
|
|
|
* contexts. sched_out is called with rq lock held and irq disabled
|
|
|
|
* while sched_in is called without rq lock and irq enabled. This
|
|
|
|
* difference is intentional and depended upon by its users.
|
|
|
|
*/
|
|
|
|
struct preempt_ops {
|
|
|
|
void (*sched_in)(struct preempt_notifier *notifier, int cpu);
|
|
|
|
void (*sched_out)(struct preempt_notifier *notifier,
|
|
|
|
struct task_struct *next);
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* preempt_notifier - key for installing preemption notifiers
|
|
|
|
* @link: internal use
|
|
|
|
* @ops: defines the notifier functions to be called
|
|
|
|
*
|
|
|
|
* Usually used in conjunction with container_of().
|
|
|
|
*/
|
|
|
|
struct preempt_notifier {
|
|
|
|
struct hlist_node link;
|
|
|
|
struct preempt_ops *ops;
|
|
|
|
};
|
|
|
|
|
|
|
|
void preempt_notifier_inc(void);
|
|
|
|
void preempt_notifier_dec(void);
|
|
|
|
void preempt_notifier_register(struct preempt_notifier *notifier);
|
|
|
|
void preempt_notifier_unregister(struct preempt_notifier *notifier);
|
|
|
|
|
|
|
|
static inline void preempt_notifier_init(struct preempt_notifier *notifier,
|
|
|
|
struct preempt_ops *ops)
|
|
|
|
{
|
|
|
|
INIT_HLIST_NODE(¬ifier->link);
|
|
|
|
notifier->ops = ops;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Migrate-Disable and why it is undesired.
|
|
|
|
*
|
|
|
|
* When a preempted task becomes elegible to run under the ideal model (IOW it
|
|
|
|
* becomes one of the M highest priority tasks), it might still have to wait
|
|
|
|
* for the preemptee's migrate_disable() section to complete. Thereby suffering
|
|
|
|
* a reduction in bandwidth in the exact duration of the migrate_disable()
|
|
|
|
* section.
|
|
|
|
*
|
|
|
|
* Per this argument, the change from preempt_disable() to migrate_disable()
|
|
|
|
* gets us:
|
|
|
|
*
|
|
|
|
* - a higher priority tasks gains reduced wake-up latency; with preempt_disable()
|
|
|
|
* it would have had to wait for the lower priority task.
|
|
|
|
*
|
|
|
|
* - a lower priority tasks; which under preempt_disable() could've instantly
|
|
|
|
* migrated away when another CPU becomes available, is now constrained
|
|
|
|
* by the ability to push the higher priority task away, which might itself be
|
|
|
|
* in a migrate_disable() section, reducing it's available bandwidth.
|
|
|
|
*
|
|
|
|
* IOW it trades latency / moves the interference term, but it stays in the
|
|
|
|
* system, and as long as it remains unbounded, the system is not fully
|
|
|
|
* deterministic.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* The reason we have it anyway.
|
|
|
|
*
|
|
|
|
* PREEMPT_RT breaks a number of assumptions traditionally held. By forcing a
|
|
|
|
* number of primitives into becoming preemptible, they would also allow
|
|
|
|
* migration. This turns out to break a bunch of per-cpu usage. To this end,
|
|
|
|
* all these primitives employ migirate_disable() to restore this implicit
|
|
|
|
* assumption.
|
|
|
|
*
|
|
|
|
* This is a 'temporary' work-around at best. The correct solution is getting
|
|
|
|
* rid of the above assumptions and reworking the code to employ explicit
|
|
|
|
* per-cpu locking or short preempt-disable regions.
|
|
|
|
*
|
|
|
|
* The end goal must be to get rid of migrate_disable(), alternatively we need
|
|
|
|
* a schedulability theory that does not depend on abritrary migration.
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Notes on the implementation.
|
|
|
|
*
|
|
|
|
* The implementation is particularly tricky since existing code patterns
|
|
|
|
* dictate neither migrate_disable() nor migrate_enable() is allowed to block.
|
|
|
|
* This means that it cannot use cpus_read_lock() to serialize against hotplug,
|
|
|
|
* nor can it easily migrate itself into a pending affinity mask change on
|
|
|
|
* migrate_enable().
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* Note: even non-work-conserving schedulers like semi-partitioned depends on
|
|
|
|
* migration, so migrate_disable() is not only a problem for
|
|
|
|
* work-conserving schedulers.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
extern void migrate_disable(void);
|
|
|
|
extern void migrate_enable(void);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static inline void migrate_disable(void) { }
|
|
|
|
static inline void migrate_enable(void) { }
|
|
|
|
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
|
|
|
|
/**
|
|
|
|
* preempt_disable_nested - Disable preemption inside a normally preempt disabled section
|
|
|
|
*
|
|
|
|
* Use for code which requires preemption protection inside a critical
|
|
|
|
* section which has preemption disabled implicitly on non-PREEMPT_RT
|
|
|
|
* enabled kernels, by e.g.:
|
|
|
|
* - holding a spinlock/rwlock
|
|
|
|
* - soft interrupt context
|
|
|
|
* - regular interrupt handlers
|
|
|
|
*
|
|
|
|
* On PREEMPT_RT enabled kernels spinlock/rwlock held sections, soft
|
|
|
|
* interrupt context and regular interrupt handlers are preemptible and
|
|
|
|
* only prevent migration. preempt_disable_nested() ensures that preemption
|
|
|
|
* is disabled for cases which require CPU local serialization even on
|
|
|
|
* PREEMPT_RT. For non-PREEMPT_RT kernels this is a NOP.
|
|
|
|
*
|
|
|
|
* The use cases are code sequences which are not serialized by a
|
|
|
|
* particular lock instance, e.g.:
|
|
|
|
* - seqcount write side critical sections where the seqcount is not
|
|
|
|
* associated to a particular lock and therefore the automatic
|
|
|
|
* protection mechanism does not work. This prevents a live lock
|
|
|
|
* against a preempting high priority reader.
|
|
|
|
* - RMW per CPU variable updates like vmstat.
|
|
|
|
*/
|
|
|
|
/* Macro to avoid header recursion hell vs. lockdep */
|
|
|
|
#define preempt_disable_nested() \
|
|
|
|
do { \
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT)) \
|
|
|
|
preempt_disable(); \
|
|
|
|
else \
|
|
|
|
lockdep_assert_preemption_disabled(); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* preempt_enable_nested - Undo the effect of preempt_disable_nested()
|
|
|
|
*/
|
|
|
|
static __always_inline void preempt_enable_nested(void)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_PREEMPT_RT))
|
|
|
|
preempt_enable();
|
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
DEFINE_LOCK_GUARD_0(preempt, preempt_disable(), preempt_enable())
|
|
|
|
DEFINE_LOCK_GUARD_0(preempt_notrace, preempt_disable_notrace(), preempt_enable_notrace())
|
|
|
|
DEFINE_LOCK_GUARD_0(migrate, migrate_disable(), migrate_enable())
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
#endif /* __LINUX_PREEMPT_H */
|