linux-zen-desktop/sound/soc/codecs/tlv320dac33.c

1573 lines
42 KiB
C
Raw Permalink Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* ALSA SoC Texas Instruments TLV320DAC33 codec driver
*
* Author: Peter Ujfalusi <peter.ujfalusi@ti.com>
*
* Copyright: (C) 2009 Nokia Corporation
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/pm.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <linux/regulator/consumer.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/tlv320dac33-plat.h>
#include "tlv320dac33.h"
/*
* The internal FIFO is 24576 bytes long
* It can be configured to hold 16bit or 24bit samples
* In 16bit configuration the FIFO can hold 6144 stereo samples
* In 24bit configuration the FIFO can hold 4096 stereo samples
*/
#define DAC33_FIFO_SIZE_16BIT 6144
#define DAC33_FIFO_SIZE_24BIT 4096
#define DAC33_MODE7_MARGIN 10 /* Safety margin for FIFO in Mode7 */
#define BURST_BASEFREQ_HZ 49152000
#define SAMPLES_TO_US(rate, samples) \
(1000000000 / (((rate) * 1000) / (samples)))
#define US_TO_SAMPLES(rate, us) \
((rate) / (1000000 / ((us) < 1000000 ? (us) : 1000000)))
#define UTHR_FROM_PERIOD_SIZE(samples, playrate, burstrate) \
(((samples)*5000) / (((burstrate)*5000) / ((burstrate) - (playrate))))
static void dac33_calculate_times(struct snd_pcm_substream *substream,
struct snd_soc_component *component);
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
struct snd_soc_component *component);
enum dac33_state {
DAC33_IDLE = 0,
DAC33_PREFILL,
DAC33_PLAYBACK,
DAC33_FLUSH,
};
enum dac33_fifo_modes {
DAC33_FIFO_BYPASS = 0,
DAC33_FIFO_MODE1,
DAC33_FIFO_MODE7,
DAC33_FIFO_LAST_MODE,
};
#define DAC33_NUM_SUPPLIES 3
static const char *dac33_supply_names[DAC33_NUM_SUPPLIES] = {
"AVDD",
"DVDD",
"IOVDD",
};
struct tlv320dac33_priv {
struct mutex mutex;
struct work_struct work;
struct snd_soc_component *component;
struct regulator_bulk_data supplies[DAC33_NUM_SUPPLIES];
struct snd_pcm_substream *substream;
int power_gpio;
int chip_power;
int irq;
unsigned int refclk;
unsigned int alarm_threshold; /* set to be half of LATENCY_TIME_MS */
enum dac33_fifo_modes fifo_mode;/* FIFO mode selection */
unsigned int fifo_size; /* Size of the FIFO in samples */
unsigned int nsample; /* burst read amount from host */
int mode1_latency; /* latency caused by the i2c writes in
* us */
u8 burst_bclkdiv; /* BCLK divider value in burst mode */
u8 *reg_cache;
unsigned int burst_rate; /* Interface speed in Burst modes */
int keep_bclk; /* Keep the BCLK continuously running
* in FIFO modes */
spinlock_t lock;
unsigned long long t_stamp1; /* Time stamp for FIFO modes to */
unsigned long long t_stamp2; /* calculate the FIFO caused delay */
unsigned int mode1_us_burst; /* Time to burst read n number of
* samples */
unsigned int mode7_us_to_lthr; /* Time to reach lthr from uthr */
unsigned int uthr;
enum dac33_state state;
struct i2c_client *i2c;
};
static const u8 dac33_reg[DAC33_CACHEREGNUM] = {
0x00, 0x00, 0x00, 0x00, /* 0x00 - 0x03 */
0x00, 0x00, 0x00, 0x00, /* 0x04 - 0x07 */
0x00, 0x00, 0x00, 0x00, /* 0x08 - 0x0b */
0x00, 0x00, 0x00, 0x00, /* 0x0c - 0x0f */
0x00, 0x00, 0x00, 0x00, /* 0x10 - 0x13 */
0x00, 0x00, 0x00, 0x00, /* 0x14 - 0x17 */
0x00, 0x00, 0x00, 0x00, /* 0x18 - 0x1b */
0x00, 0x00, 0x00, 0x00, /* 0x1c - 0x1f */
0x00, 0x00, 0x00, 0x00, /* 0x20 - 0x23 */
0x00, 0x00, 0x00, 0x00, /* 0x24 - 0x27 */
0x00, 0x00, 0x00, 0x00, /* 0x28 - 0x2b */
0x00, 0x00, 0x00, 0x80, /* 0x2c - 0x2f */
0x80, 0x00, 0x00, 0x00, /* 0x30 - 0x33 */
0x00, 0x00, 0x00, 0x00, /* 0x34 - 0x37 */
0x00, 0x00, /* 0x38 - 0x39 */
/* Registers 0x3a - 0x3f are reserved */
0x00, 0x00, /* 0x3a - 0x3b */
0x00, 0x00, 0x00, 0x00, /* 0x3c - 0x3f */
0x00, 0x00, 0x00, 0x00, /* 0x40 - 0x43 */
0x00, 0x80, /* 0x44 - 0x45 */
/* Registers 0x46 - 0x47 are reserved */
0x80, 0x80, /* 0x46 - 0x47 */
0x80, 0x00, 0x00, /* 0x48 - 0x4a */
/* Registers 0x4b - 0x7c are reserved */
0x00, /* 0x4b */
0x00, 0x00, 0x00, 0x00, /* 0x4c - 0x4f */
0x00, 0x00, 0x00, 0x00, /* 0x50 - 0x53 */
0x00, 0x00, 0x00, 0x00, /* 0x54 - 0x57 */
0x00, 0x00, 0x00, 0x00, /* 0x58 - 0x5b */
0x00, 0x00, 0x00, 0x00, /* 0x5c - 0x5f */
0x00, 0x00, 0x00, 0x00, /* 0x60 - 0x63 */
0x00, 0x00, 0x00, 0x00, /* 0x64 - 0x67 */
0x00, 0x00, 0x00, 0x00, /* 0x68 - 0x6b */
0x00, 0x00, 0x00, 0x00, /* 0x6c - 0x6f */
0x00, 0x00, 0x00, 0x00, /* 0x70 - 0x73 */
0x00, 0x00, 0x00, 0x00, /* 0x74 - 0x77 */
0x00, 0x00, 0x00, 0x00, /* 0x78 - 0x7b */
0x00, /* 0x7c */
0xda, 0x33, 0x03, /* 0x7d - 0x7f */
};
/* Register read and write */
static inline unsigned int dac33_read_reg_cache(struct snd_soc_component *component,
unsigned reg)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 *cache = dac33->reg_cache;
if (reg >= DAC33_CACHEREGNUM)
return 0;
return cache[reg];
}
static inline void dac33_write_reg_cache(struct snd_soc_component *component,
u8 reg, u8 value)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 *cache = dac33->reg_cache;
if (reg >= DAC33_CACHEREGNUM)
return;
cache[reg] = value;
}
static int dac33_read(struct snd_soc_component *component, unsigned int reg,
u8 *value)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int val, ret = 0;
*value = reg & 0xff;
/* If powered off, return the cached value */
if (dac33->chip_power) {
val = i2c_smbus_read_byte_data(dac33->i2c, value[0]);
if (val < 0) {
dev_err(component->dev, "Read failed (%d)\n", val);
value[0] = dac33_read_reg_cache(component, reg);
ret = val;
} else {
value[0] = val;
dac33_write_reg_cache(component, reg, val);
}
} else {
value[0] = dac33_read_reg_cache(component, reg);
}
return ret;
}
static int dac33_write(struct snd_soc_component *component, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 data[2];
int ret = 0;
/*
* data is
* D15..D8 dac33 register offset
* D7...D0 register data
*/
data[0] = reg & 0xff;
data[1] = value & 0xff;
dac33_write_reg_cache(component, data[0], data[1]);
if (dac33->chip_power) {
ret = i2c_master_send(dac33->i2c, data, 2);
if (ret != 2)
dev_err(component->dev, "Write failed (%d)\n", ret);
else
ret = 0;
}
return ret;
}
static int dac33_write_locked(struct snd_soc_component *component, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int ret;
mutex_lock(&dac33->mutex);
ret = dac33_write(component, reg, value);
mutex_unlock(&dac33->mutex);
return ret;
}
#define DAC33_I2C_ADDR_AUTOINC 0x80
static int dac33_write16(struct snd_soc_component *component, unsigned int reg,
unsigned int value)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 data[3];
int ret = 0;
/*
* data is
* D23..D16 dac33 register offset
* D15..D8 register data MSB
* D7...D0 register data LSB
*/
data[0] = reg & 0xff;
data[1] = (value >> 8) & 0xff;
data[2] = value & 0xff;
dac33_write_reg_cache(component, data[0], data[1]);
dac33_write_reg_cache(component, data[0] + 1, data[2]);
if (dac33->chip_power) {
/* We need to set autoincrement mode for 16 bit writes */
data[0] |= DAC33_I2C_ADDR_AUTOINC;
ret = i2c_master_send(dac33->i2c, data, 3);
if (ret != 3)
dev_err(component->dev, "Write failed (%d)\n", ret);
else
ret = 0;
}
return ret;
}
static void dac33_init_chip(struct snd_soc_component *component)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
if (unlikely(!dac33->chip_power))
return;
/* A : DAC sample rate Fsref/1.5 */
dac33_write(component, DAC33_DAC_CTRL_A, DAC33_DACRATE(0));
/* B : DAC src=normal, not muted */
dac33_write(component, DAC33_DAC_CTRL_B, DAC33_DACSRCR_RIGHT |
DAC33_DACSRCL_LEFT);
/* C : (defaults) */
dac33_write(component, DAC33_DAC_CTRL_C, 0x00);
/* 73 : volume soft stepping control,
clock source = internal osc (?) */
dac33_write(component, DAC33_ANA_VOL_SOFT_STEP_CTRL, DAC33_VOLCLKEN);
/* Restore only selected registers (gains mostly) */
dac33_write(component, DAC33_LDAC_DIG_VOL_CTRL,
dac33_read_reg_cache(component, DAC33_LDAC_DIG_VOL_CTRL));
dac33_write(component, DAC33_RDAC_DIG_VOL_CTRL,
dac33_read_reg_cache(component, DAC33_RDAC_DIG_VOL_CTRL));
dac33_write(component, DAC33_LINEL_TO_LLO_VOL,
dac33_read_reg_cache(component, DAC33_LINEL_TO_LLO_VOL));
dac33_write(component, DAC33_LINER_TO_RLO_VOL,
dac33_read_reg_cache(component, DAC33_LINER_TO_RLO_VOL));
dac33_write(component, DAC33_OUT_AMP_CTRL,
dac33_read_reg_cache(component, DAC33_OUT_AMP_CTRL));
dac33_write(component, DAC33_LDAC_PWR_CTRL,
dac33_read_reg_cache(component, DAC33_LDAC_PWR_CTRL));
dac33_write(component, DAC33_RDAC_PWR_CTRL,
dac33_read_reg_cache(component, DAC33_RDAC_PWR_CTRL));
}
static inline int dac33_read_id(struct snd_soc_component *component)
{
int i, ret = 0;
u8 reg;
for (i = 0; i < 3; i++) {
ret = dac33_read(component, DAC33_DEVICE_ID_MSB + i, &reg);
if (ret < 0)
break;
}
return ret;
}
static inline void dac33_soft_power(struct snd_soc_component *component, int power)
{
u8 reg;
reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
if (power)
reg |= DAC33_PDNALLB;
else
reg &= ~(DAC33_PDNALLB | DAC33_OSCPDNB |
DAC33_DACRPDNB | DAC33_DACLPDNB);
dac33_write(component, DAC33_PWR_CTRL, reg);
}
static inline void dac33_disable_digital(struct snd_soc_component *component)
{
u8 reg;
/* Stop the DAI clock */
reg = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);
reg &= ~DAC33_BCLKON;
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, reg);
/* Power down the Oscillator, and DACs */
reg = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
reg &= ~(DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB);
dac33_write(component, DAC33_PWR_CTRL, reg);
}
static int dac33_hard_power(struct snd_soc_component *component, int power)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int ret = 0;
mutex_lock(&dac33->mutex);
/* Safety check */
if (unlikely(power == dac33->chip_power)) {
dev_dbg(component->dev, "Trying to set the same power state: %s\n",
power ? "ON" : "OFF");
goto exit;
}
if (power) {
ret = regulator_bulk_enable(ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(component->dev,
"Failed to enable supplies: %d\n", ret);
goto exit;
}
if (dac33->power_gpio >= 0)
gpio_set_value(dac33->power_gpio, 1);
dac33->chip_power = 1;
} else {
dac33_soft_power(component, 0);
if (dac33->power_gpio >= 0)
gpio_set_value(dac33->power_gpio, 0);
ret = regulator_bulk_disable(ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(component->dev,
"Failed to disable supplies: %d\n", ret);
goto exit;
}
dac33->chip_power = 0;
}
exit:
mutex_unlock(&dac33->mutex);
return ret;
}
static int dac33_playback_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
if (likely(dac33->substream)) {
dac33_calculate_times(dac33->substream, component);
dac33_prepare_chip(dac33->substream, component);
}
break;
case SND_SOC_DAPM_POST_PMD:
dac33_disable_digital(component);
break;
}
return 0;
}
static int dac33_get_fifo_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
ucontrol->value.enumerated.item[0] = dac33->fifo_mode;
return 0;
}
static int dac33_set_fifo_mode(struct snd_kcontrol *kcontrol,
struct snd_ctl_elem_value *ucontrol)
{
struct snd_soc_component *component = snd_soc_kcontrol_component(kcontrol);
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int ret = 0;
if (dac33->fifo_mode == ucontrol->value.enumerated.item[0])
return 0;
/* Do not allow changes while stream is running*/
if (snd_soc_component_active(component))
return -EPERM;
if (ucontrol->value.enumerated.item[0] >= DAC33_FIFO_LAST_MODE)
ret = -EINVAL;
else
dac33->fifo_mode = ucontrol->value.enumerated.item[0];
return ret;
}
/* Codec operation modes */
static const char *dac33_fifo_mode_texts[] = {
"Bypass", "Mode 1", "Mode 7"
};
static SOC_ENUM_SINGLE_EXT_DECL(dac33_fifo_mode_enum, dac33_fifo_mode_texts);
/* L/R Line Output Gain */
static const char *lr_lineout_gain_texts[] = {
"Line -12dB DAC 0dB", "Line -6dB DAC 6dB",
"Line 0dB DAC 12dB", "Line 6dB DAC 18dB",
};
static SOC_ENUM_SINGLE_DECL(l_lineout_gain_enum,
DAC33_LDAC_PWR_CTRL, 0,
lr_lineout_gain_texts);
static SOC_ENUM_SINGLE_DECL(r_lineout_gain_enum,
DAC33_RDAC_PWR_CTRL, 0,
lr_lineout_gain_texts);
/*
* DACL/R digital volume control:
* from 0 dB to -63.5 in 0.5 dB steps
* Need to be inverted later on:
* 0x00 == 0 dB
* 0x7f == -63.5 dB
*/
static DECLARE_TLV_DB_SCALE(dac_digivol_tlv, -6350, 50, 0);
static const struct snd_kcontrol_new dac33_snd_controls[] = {
SOC_DOUBLE_R_TLV("DAC Digital Playback Volume",
DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL,
0, 0x7f, 1, dac_digivol_tlv),
SOC_DOUBLE_R("DAC Digital Playback Switch",
DAC33_LDAC_DIG_VOL_CTRL, DAC33_RDAC_DIG_VOL_CTRL, 7, 1, 1),
SOC_DOUBLE_R("Line to Line Out Volume",
DAC33_LINEL_TO_LLO_VOL, DAC33_LINER_TO_RLO_VOL, 0, 127, 1),
SOC_ENUM("Left Line Output Gain", l_lineout_gain_enum),
SOC_ENUM("Right Line Output Gain", r_lineout_gain_enum),
};
static const struct snd_kcontrol_new dac33_mode_snd_controls[] = {
SOC_ENUM_EXT("FIFO Mode", dac33_fifo_mode_enum,
dac33_get_fifo_mode, dac33_set_fifo_mode),
};
/* Analog bypass */
static const struct snd_kcontrol_new dac33_dapm_abypassl_control =
SOC_DAPM_SINGLE("Switch", DAC33_LINEL_TO_LLO_VOL, 7, 1, 1);
static const struct snd_kcontrol_new dac33_dapm_abypassr_control =
SOC_DAPM_SINGLE("Switch", DAC33_LINER_TO_RLO_VOL, 7, 1, 1);
/* LOP L/R invert selection */
static const char *dac33_lr_lom_texts[] = {"DAC", "LOP"};
static SOC_ENUM_SINGLE_DECL(dac33_left_lom_enum,
DAC33_OUT_AMP_CTRL, 3,
dac33_lr_lom_texts);
static const struct snd_kcontrol_new dac33_dapm_left_lom_control =
SOC_DAPM_ENUM("Route", dac33_left_lom_enum);
static SOC_ENUM_SINGLE_DECL(dac33_right_lom_enum,
DAC33_OUT_AMP_CTRL, 2,
dac33_lr_lom_texts);
static const struct snd_kcontrol_new dac33_dapm_right_lom_control =
SOC_DAPM_ENUM("Route", dac33_right_lom_enum);
static const struct snd_soc_dapm_widget dac33_dapm_widgets[] = {
SND_SOC_DAPM_OUTPUT("LEFT_LO"),
SND_SOC_DAPM_OUTPUT("RIGHT_LO"),
SND_SOC_DAPM_INPUT("LINEL"),
SND_SOC_DAPM_INPUT("LINER"),
SND_SOC_DAPM_DAC("DACL", "Left Playback", SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACR", "Right Playback", SND_SOC_NOPM, 0, 0),
/* Analog bypass */
SND_SOC_DAPM_SWITCH("Analog Left Bypass", SND_SOC_NOPM, 0, 0,
&dac33_dapm_abypassl_control),
SND_SOC_DAPM_SWITCH("Analog Right Bypass", SND_SOC_NOPM, 0, 0,
&dac33_dapm_abypassr_control),
SND_SOC_DAPM_MUX("Left LOM Inverted From", SND_SOC_NOPM, 0, 0,
&dac33_dapm_left_lom_control),
SND_SOC_DAPM_MUX("Right LOM Inverted From", SND_SOC_NOPM, 0, 0,
&dac33_dapm_right_lom_control),
/*
* For DAPM path, when only the anlog bypass path is enabled, and the
* LOP inverted from the corresponding DAC side.
* This is needed, so we can attach the DAC power supply in this case.
*/
SND_SOC_DAPM_PGA("Left Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("Right Bypass PGA", SND_SOC_NOPM, 0, 0, NULL, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Left Amplifier",
DAC33_OUT_AMP_PWR_CTRL, 6, 3, 3, 0),
SND_SOC_DAPM_REG(snd_soc_dapm_mixer, "Output Right Amplifier",
DAC33_OUT_AMP_PWR_CTRL, 4, 3, 3, 0),
SND_SOC_DAPM_SUPPLY("Left DAC Power",
DAC33_LDAC_PWR_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Right DAC Power",
DAC33_RDAC_PWR_CTRL, 2, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("Codec Power",
DAC33_PWR_CTRL, 4, 0, NULL, 0),
SND_SOC_DAPM_PRE("Pre Playback", dac33_playback_event),
SND_SOC_DAPM_POST("Post Playback", dac33_playback_event),
};
static const struct snd_soc_dapm_route audio_map[] = {
/* Analog bypass */
{"Analog Left Bypass", "Switch", "LINEL"},
{"Analog Right Bypass", "Switch", "LINER"},
{"Output Left Amplifier", NULL, "DACL"},
{"Output Right Amplifier", NULL, "DACR"},
{"Left Bypass PGA", NULL, "Analog Left Bypass"},
{"Right Bypass PGA", NULL, "Analog Right Bypass"},
{"Left LOM Inverted From", "DAC", "Left Bypass PGA"},
{"Right LOM Inverted From", "DAC", "Right Bypass PGA"},
{"Left LOM Inverted From", "LOP", "Analog Left Bypass"},
{"Right LOM Inverted From", "LOP", "Analog Right Bypass"},
{"Output Left Amplifier", NULL, "Left LOM Inverted From"},
{"Output Right Amplifier", NULL, "Right LOM Inverted From"},
{"DACL", NULL, "Left DAC Power"},
{"DACR", NULL, "Right DAC Power"},
{"Left Bypass PGA", NULL, "Left DAC Power"},
{"Right Bypass PGA", NULL, "Right DAC Power"},
/* output */
{"LEFT_LO", NULL, "Output Left Amplifier"},
{"RIGHT_LO", NULL, "Output Right Amplifier"},
{"LEFT_LO", NULL, "Codec Power"},
{"RIGHT_LO", NULL, "Codec Power"},
};
static int dac33_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
int ret;
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
/* Coming from OFF, switch on the component */
ret = dac33_hard_power(component, 1);
if (ret != 0)
return ret;
dac33_init_chip(component);
}
break;
case SND_SOC_BIAS_OFF:
/* Do not power off, when the component is already off */
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
return 0;
ret = dac33_hard_power(component, 0);
if (ret != 0)
return ret;
break;
}
return 0;
}
static inline void dac33_prefill_handler(struct tlv320dac33_priv *dac33)
{
struct snd_soc_component *component = dac33->component;
unsigned int delay;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write16(component, DAC33_NSAMPLE_MSB,
DAC33_THRREG(dac33->nsample));
/* Take the timestamps */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp2 = ktime_to_us(ktime_get());
dac33->t_stamp1 = dac33->t_stamp2;
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(component, DAC33_PREFILL_MSB,
DAC33_THRREG(dac33->alarm_threshold));
/* Enable Alarm Threshold IRQ with a delay */
delay = SAMPLES_TO_US(dac33->burst_rate,
dac33->alarm_threshold) + 1000;
usleep_range(delay, delay + 500);
dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MAT);
break;
case DAC33_FIFO_MODE7:
/* Take the timestamp */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp1 = ktime_to_us(ktime_get());
/* Move back the timestamp with drain time */
dac33->t_stamp1 -= dac33->mode7_us_to_lthr;
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(component, DAC33_PREFILL_MSB,
DAC33_THRREG(DAC33_MODE7_MARGIN));
/* Enable Upper Threshold IRQ */
dac33_write(component, DAC33_FIFO_IRQ_MASK, DAC33_MUT);
break;
default:
dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
}
static inline void dac33_playback_handler(struct tlv320dac33_priv *dac33)
{
struct snd_soc_component *component = dac33->component;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/* Take the timestamp */
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp2 = ktime_to_us(ktime_get());
spin_unlock_irqrestore(&dac33->lock, flags);
dac33_write16(component, DAC33_NSAMPLE_MSB,
DAC33_THRREG(dac33->nsample));
break;
case DAC33_FIFO_MODE7:
/* At the moment we are not using interrupts in mode7 */
break;
default:
dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
}
static void dac33_work(struct work_struct *work)
{
struct snd_soc_component *component;
struct tlv320dac33_priv *dac33;
u8 reg;
dac33 = container_of(work, struct tlv320dac33_priv, work);
component = dac33->component;
mutex_lock(&dac33->mutex);
switch (dac33->state) {
case DAC33_PREFILL:
dac33->state = DAC33_PLAYBACK;
dac33_prefill_handler(dac33);
break;
case DAC33_PLAYBACK:
dac33_playback_handler(dac33);
break;
case DAC33_IDLE:
break;
case DAC33_FLUSH:
dac33->state = DAC33_IDLE;
/* Mask all interrupts from dac33 */
dac33_write(component, DAC33_FIFO_IRQ_MASK, 0);
/* flush fifo */
reg = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A);
reg |= DAC33_FIFOFLUSH;
dac33_write(component, DAC33_FIFO_CTRL_A, reg);
break;
}
mutex_unlock(&dac33->mutex);
}
static irqreturn_t dac33_interrupt_handler(int irq, void *dev)
{
struct snd_soc_component *component = dev;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
unsigned long flags;
spin_lock_irqsave(&dac33->lock, flags);
dac33->t_stamp1 = ktime_to_us(ktime_get());
spin_unlock_irqrestore(&dac33->lock, flags);
/* Do not schedule the workqueue in Mode7 */
if (dac33->fifo_mode != DAC33_FIFO_MODE7)
schedule_work(&dac33->work);
return IRQ_HANDLED;
}
static void dac33_oscwait(struct snd_soc_component *component)
{
int timeout = 60;
u8 reg;
do {
usleep_range(1000, 2000);
dac33_read(component, DAC33_INT_OSC_STATUS, &reg);
} while (((reg & 0x03) != DAC33_OSCSTATUS_NORMAL) && timeout--);
if ((reg & 0x03) != DAC33_OSCSTATUS_NORMAL)
dev_err(component->dev,
"internal oscillator calibration failed\n");
}
static int dac33_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
/* Stream started, save the substream pointer */
dac33->substream = substream;
return 0;
}
static void dac33_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
dac33->substream = NULL;
}
#define CALC_BURST_RATE(bclkdiv, bclk_per_sample) \
(BURST_BASEFREQ_HZ / bclkdiv / bclk_per_sample)
static int dac33_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
/* Check parameters for validity */
switch (params_rate(params)) {
case 44100:
case 48000:
break;
default:
dev_err(component->dev, "unsupported rate %d\n",
params_rate(params));
return -EINVAL;
}
switch (params_width(params)) {
case 16:
dac33->fifo_size = DAC33_FIFO_SIZE_16BIT;
dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 32);
break;
case 32:
dac33->fifo_size = DAC33_FIFO_SIZE_24BIT;
dac33->burst_rate = CALC_BURST_RATE(dac33->burst_bclkdiv, 64);
break;
default:
dev_err(component->dev, "unsupported width %d\n",
params_width(params));
return -EINVAL;
}
return 0;
}
#define CALC_OSCSET(rate, refclk) ( \
((((rate * 10000) / refclk) * 4096) + 7000) / 10000)
#define CALC_RATIOSET(rate, refclk) ( \
((((refclk * 100000) / rate) * 16384) + 50000) / 100000)
/*
* tlv320dac33 is strict on the sequence of the register writes, if the register
* writes happens in different order, than dac33 might end up in unknown state.
* Use the known, working sequence of register writes to initialize the dac33.
*/
static int dac33_prepare_chip(struct snd_pcm_substream *substream,
struct snd_soc_component *component)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
unsigned int oscset, ratioset, pwr_ctrl, reg_tmp;
u8 aictrl_a, aictrl_b, fifoctrl_a;
switch (substream->runtime->rate) {
case 44100:
case 48000:
oscset = CALC_OSCSET(substream->runtime->rate, dac33->refclk);
ratioset = CALC_RATIOSET(substream->runtime->rate,
dac33->refclk);
break;
default:
dev_err(component->dev, "unsupported rate %d\n",
substream->runtime->rate);
return -EINVAL;
}
aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A);
aictrl_a &= ~(DAC33_NCYCL_MASK | DAC33_WLEN_MASK);
/* Read FIFO control A, and clear FIFO flush bit */
fifoctrl_a = dac33_read_reg_cache(component, DAC33_FIFO_CTRL_A);
fifoctrl_a &= ~DAC33_FIFOFLUSH;
fifoctrl_a &= ~DAC33_WIDTH;
switch (substream->runtime->format) {
case SNDRV_PCM_FORMAT_S16_LE:
aictrl_a |= (DAC33_NCYCL_16 | DAC33_WLEN_16);
fifoctrl_a |= DAC33_WIDTH;
break;
case SNDRV_PCM_FORMAT_S32_LE:
aictrl_a |= (DAC33_NCYCL_32 | DAC33_WLEN_24);
break;
default:
dev_err(component->dev, "unsupported format %d\n",
substream->runtime->format);
return -EINVAL;
}
mutex_lock(&dac33->mutex);
if (!dac33->chip_power) {
/*
* Chip is not powered yet.
* Do the init in the dac33_set_bias_level later.
*/
mutex_unlock(&dac33->mutex);
return 0;
}
dac33_soft_power(component, 0);
dac33_soft_power(component, 1);
reg_tmp = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL);
dac33_write(component, DAC33_INT_OSC_CTRL, reg_tmp);
/* Write registers 0x08 and 0x09 (MSB, LSB) */
dac33_write16(component, DAC33_INT_OSC_FREQ_RAT_A, oscset);
/* OSC calibration time */
dac33_write(component, DAC33_CALIB_TIME, 96);
/* adjustment treshold & step */
dac33_write(component, DAC33_INT_OSC_CTRL_B, DAC33_ADJTHRSHLD(2) |
DAC33_ADJSTEP(1));
/* div=4 / gain=1 / div */
dac33_write(component, DAC33_INT_OSC_CTRL_C, DAC33_REFDIV(4));
pwr_ctrl = dac33_read_reg_cache(component, DAC33_PWR_CTRL);
pwr_ctrl |= DAC33_OSCPDNB | DAC33_DACRPDNB | DAC33_DACLPDNB;
dac33_write(component, DAC33_PWR_CTRL, pwr_ctrl);
dac33_oscwait(component);
if (dac33->fifo_mode) {
/* Generic for all FIFO modes */
/* 50-51 : ASRC Control registers */
dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCLKDIV(1));
dac33_write(component, DAC33_ASRC_CTRL_B, 1); /* ??? */
/* Write registers 0x34 and 0x35 (MSB, LSB) */
dac33_write16(component, DAC33_SRC_REF_CLK_RATIO_A, ratioset);
/* Set interrupts to high active */
dac33_write(component, DAC33_INTP_CTRL_A, DAC33_INTPM_AHIGH);
} else {
/* FIFO bypass mode */
/* 50-51 : ASRC Control registers */
dac33_write(component, DAC33_ASRC_CTRL_A, DAC33_SRCBYP);
dac33_write(component, DAC33_ASRC_CTRL_B, 0); /* ??? */
}
/* Interrupt behaviour configuration */
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write(component, DAC33_FIFO_IRQ_MODE_B,
DAC33_ATM(DAC33_FIFO_IRQ_MODE_LEVEL));
break;
case DAC33_FIFO_MODE7:
dac33_write(component, DAC33_FIFO_IRQ_MODE_A,
DAC33_UTM(DAC33_FIFO_IRQ_MODE_LEVEL));
break;
default:
/* in FIFO bypass mode, the interrupts are not used */
break;
}
aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/*
* For mode1:
* Disable the FIFO bypass (Enable the use of FIFO)
* Select nSample mode
* BCLK is only running when data is needed by DAC33
*/
fifoctrl_a &= ~DAC33_FBYPAS;
fifoctrl_a &= ~DAC33_FAUTO;
if (dac33->keep_bclk)
aictrl_b |= DAC33_BCLKON;
else
aictrl_b &= ~DAC33_BCLKON;
break;
case DAC33_FIFO_MODE7:
/*
* For mode1:
* Disable the FIFO bypass (Enable the use of FIFO)
* Select Threshold mode
* BCLK is only running when data is needed by DAC33
*/
fifoctrl_a &= ~DAC33_FBYPAS;
fifoctrl_a |= DAC33_FAUTO;
if (dac33->keep_bclk)
aictrl_b |= DAC33_BCLKON;
else
aictrl_b &= ~DAC33_BCLKON;
break;
default:
/*
* For FIFO bypass mode:
* Enable the FIFO bypass (Disable the FIFO use)
* Set the BCLK as continuous
*/
fifoctrl_a |= DAC33_FBYPAS;
aictrl_b |= DAC33_BCLKON;
break;
}
dac33_write(component, DAC33_FIFO_CTRL_A, fifoctrl_a);
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);
/*
* BCLK divide ratio
* 0: 1.5
* 1: 1
* 2: 2
* ...
* 254: 254
* 255: 255
*/
if (dac33->fifo_mode)
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C,
dac33->burst_bclkdiv);
else
if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 32);
else
dac33_write(component, DAC33_SER_AUDIOIF_CTRL_C, 16);
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
dac33_write16(component, DAC33_ATHR_MSB,
DAC33_THRREG(dac33->alarm_threshold));
break;
case DAC33_FIFO_MODE7:
/*
* Configure the threshold levels, and leave 10 sample space
* at the bottom, and also at the top of the FIFO
*/
dac33_write16(component, DAC33_UTHR_MSB, DAC33_THRREG(dac33->uthr));
dac33_write16(component, DAC33_LTHR_MSB,
DAC33_THRREG(DAC33_MODE7_MARGIN));
break;
default:
break;
}
mutex_unlock(&dac33->mutex);
return 0;
}
static void dac33_calculate_times(struct snd_pcm_substream *substream,
struct snd_soc_component *component)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
unsigned int period_size = substream->runtime->period_size;
unsigned int rate = substream->runtime->rate;
unsigned int nsample_limit;
/* In bypass mode we don't need to calculate */
if (!dac33->fifo_mode)
return;
switch (dac33->fifo_mode) {
case DAC33_FIFO_MODE1:
/* Number of samples under i2c latency */
dac33->alarm_threshold = US_TO_SAMPLES(rate,
dac33->mode1_latency);
nsample_limit = dac33->fifo_size - dac33->alarm_threshold;
if (period_size <= dac33->alarm_threshold)
/*
* Configure nSamaple to number of periods,
* which covers the latency requironment.
*/
dac33->nsample = period_size *
((dac33->alarm_threshold / period_size) +
((dac33->alarm_threshold % period_size) ?
1 : 0));
else if (period_size > nsample_limit)
dac33->nsample = nsample_limit;
else
dac33->nsample = period_size;
dac33->mode1_us_burst = SAMPLES_TO_US(dac33->burst_rate,
dac33->nsample);
dac33->t_stamp1 = 0;
dac33->t_stamp2 = 0;
break;
case DAC33_FIFO_MODE7:
dac33->uthr = UTHR_FROM_PERIOD_SIZE(period_size, rate,
dac33->burst_rate) + 9;
if (dac33->uthr > (dac33->fifo_size - DAC33_MODE7_MARGIN))
dac33->uthr = dac33->fifo_size - DAC33_MODE7_MARGIN;
if (dac33->uthr < (DAC33_MODE7_MARGIN + 10))
dac33->uthr = (DAC33_MODE7_MARGIN + 10);
dac33->mode7_us_to_lthr =
SAMPLES_TO_US(substream->runtime->rate,
dac33->uthr - DAC33_MODE7_MARGIN + 1);
dac33->t_stamp1 = 0;
break;
default:
break;
}
}
static int dac33_pcm_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int ret = 0;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
if (dac33->fifo_mode) {
dac33->state = DAC33_PREFILL;
schedule_work(&dac33->work);
}
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
if (dac33->fifo_mode) {
dac33->state = DAC33_FLUSH;
schedule_work(&dac33->work);
}
break;
default:
ret = -EINVAL;
}
return ret;
}
static snd_pcm_sframes_t dac33_dai_delay(
struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
unsigned long long t0, t1, t_now;
unsigned int time_delta, uthr;
int samples_out, samples_in, samples;
snd_pcm_sframes_t delay = 0;
unsigned long flags;
switch (dac33->fifo_mode) {
case DAC33_FIFO_BYPASS:
break;
case DAC33_FIFO_MODE1:
spin_lock_irqsave(&dac33->lock, flags);
t0 = dac33->t_stamp1;
t1 = dac33->t_stamp2;
spin_unlock_irqrestore(&dac33->lock, flags);
t_now = ktime_to_us(ktime_get());
/* We have not started to fill the FIFO yet, delay is 0 */
if (!t1)
goto out;
if (t0 > t1) {
/*
* Phase 1:
* After Alarm threshold, and before nSample write
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
if (likely(dac33->alarm_threshold > samples_out))
delay = dac33->alarm_threshold - samples_out;
else
delay = 0;
} else if ((t_now - t1) <= dac33->mode1_us_burst) {
/*
* Phase 2:
* After nSample write (during burst operation)
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
time_delta = t_now - t1;
samples_in = time_delta ? US_TO_SAMPLES(
dac33->burst_rate,
time_delta) : 0;
samples = dac33->alarm_threshold;
samples += (samples_in - samples_out);
if (likely(samples > 0))
delay = samples;
else
delay = 0;
} else {
/*
* Phase 3:
* After burst operation, before next alarm threshold
*/
time_delta = t_now - t0;
samples_out = time_delta ? US_TO_SAMPLES(
substream->runtime->rate,
time_delta) : 0;
samples_in = dac33->nsample;
samples = dac33->alarm_threshold;
samples += (samples_in - samples_out);
if (likely(samples > 0))
delay = samples > dac33->fifo_size ?
dac33->fifo_size : samples;
else
delay = 0;
}
break;
case DAC33_FIFO_MODE7:
spin_lock_irqsave(&dac33->lock, flags);
t0 = dac33->t_stamp1;
uthr = dac33->uthr;
spin_unlock_irqrestore(&dac33->lock, flags);
t_now = ktime_to_us(ktime_get());
/* We have not started to fill the FIFO yet, delay is 0 */
if (!t0)
goto out;
if (t_now <= t0) {
/*
* Either the timestamps are messed or equal. Report
* maximum delay
*/
delay = uthr;
goto out;
}
time_delta = t_now - t0;
if (time_delta <= dac33->mode7_us_to_lthr) {
/*
* Phase 1:
* After burst (draining phase)
*/
samples_out = US_TO_SAMPLES(
substream->runtime->rate,
time_delta);
if (likely(uthr > samples_out))
delay = uthr - samples_out;
else
delay = 0;
} else {
/*
* Phase 2:
* During burst operation
*/
time_delta = time_delta - dac33->mode7_us_to_lthr;
samples_out = US_TO_SAMPLES(
substream->runtime->rate,
time_delta);
samples_in = US_TO_SAMPLES(
dac33->burst_rate,
time_delta);
delay = DAC33_MODE7_MARGIN + samples_in - samples_out;
if (unlikely(delay > uthr))
delay = uthr;
}
break;
default:
dev_warn(component->dev, "Unhandled FIFO mode: %d\n",
dac33->fifo_mode);
break;
}
out:
return delay;
}
static int dac33_set_dai_sysclk(struct snd_soc_dai *codec_dai,
int clk_id, unsigned int freq, int dir)
{
struct snd_soc_component *component = codec_dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 ioc_reg, asrcb_reg;
ioc_reg = dac33_read_reg_cache(component, DAC33_INT_OSC_CTRL);
asrcb_reg = dac33_read_reg_cache(component, DAC33_ASRC_CTRL_B);
switch (clk_id) {
case TLV320DAC33_MCLK:
ioc_reg |= DAC33_REFSEL;
asrcb_reg |= DAC33_SRCREFSEL;
break;
case TLV320DAC33_SLEEPCLK:
ioc_reg &= ~DAC33_REFSEL;
asrcb_reg &= ~DAC33_SRCREFSEL;
break;
default:
dev_err(component->dev, "Invalid clock ID (%d)\n", clk_id);
break;
}
dac33->refclk = freq;
dac33_write_reg_cache(component, DAC33_INT_OSC_CTRL, ioc_reg);
dac33_write_reg_cache(component, DAC33_ASRC_CTRL_B, asrcb_reg);
return 0;
}
static int dac33_set_dai_fmt(struct snd_soc_dai *codec_dai,
unsigned int fmt)
{
struct snd_soc_component *component = codec_dai->component;
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
u8 aictrl_a, aictrl_b;
aictrl_a = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A);
aictrl_b = dac33_read_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B);
switch (fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) {
case SND_SOC_DAIFMT_CBP_CFP:
aictrl_a |= (DAC33_MSBCLK | DAC33_MSWCLK);
break;
case SND_SOC_DAIFMT_CBC_CFC:
if (dac33->fifo_mode) {
dev_err(component->dev, "FIFO mode requires provider mode\n");
return -EINVAL;
} else
aictrl_a &= ~(DAC33_MSBCLK | DAC33_MSWCLK);
break;
default:
return -EINVAL;
}
aictrl_a &= ~DAC33_AFMT_MASK;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
aictrl_a |= DAC33_AFMT_I2S;
break;
case SND_SOC_DAIFMT_DSP_A:
aictrl_a |= DAC33_AFMT_DSP;
aictrl_b &= ~DAC33_DATA_DELAY_MASK;
aictrl_b |= DAC33_DATA_DELAY(0);
break;
case SND_SOC_DAIFMT_RIGHT_J:
aictrl_a |= DAC33_AFMT_RIGHT_J;
break;
case SND_SOC_DAIFMT_LEFT_J:
aictrl_a |= DAC33_AFMT_LEFT_J;
break;
default:
dev_err(component->dev, "Unsupported format (%u)\n",
fmt & SND_SOC_DAIFMT_FORMAT_MASK);
return -EINVAL;
}
dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_A, aictrl_a);
dac33_write_reg_cache(component, DAC33_SER_AUDIOIF_CTRL_B, aictrl_b);
return 0;
}
static int dac33_soc_probe(struct snd_soc_component *component)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
int ret = 0;
dac33->component = component;
/* Read the tlv320dac33 ID registers */
ret = dac33_hard_power(component, 1);
if (ret != 0) {
dev_err(component->dev, "Failed to power up component: %d\n", ret);
goto err_power;
}
ret = dac33_read_id(component);
dac33_hard_power(component, 0);
if (ret < 0) {
dev_err(component->dev, "Failed to read chip ID: %d\n", ret);
ret = -ENODEV;
goto err_power;
}
/* Check if the IRQ number is valid and request it */
if (dac33->irq >= 0) {
ret = request_irq(dac33->irq, dac33_interrupt_handler,
IRQF_TRIGGER_RISING,
component->name, component);
if (ret < 0) {
dev_err(component->dev, "Could not request IRQ%d (%d)\n",
dac33->irq, ret);
dac33->irq = -1;
}
if (dac33->irq != -1) {
INIT_WORK(&dac33->work, dac33_work);
}
}
/* Only add the FIFO controls, if we have valid IRQ number */
if (dac33->irq >= 0)
snd_soc_add_component_controls(component, dac33_mode_snd_controls,
ARRAY_SIZE(dac33_mode_snd_controls));
err_power:
return ret;
}
static void dac33_soc_remove(struct snd_soc_component *component)
{
struct tlv320dac33_priv *dac33 = snd_soc_component_get_drvdata(component);
if (dac33->irq >= 0) {
free_irq(dac33->irq, dac33->component);
flush_work(&dac33->work);
}
}
static const struct snd_soc_component_driver soc_component_dev_tlv320dac33 = {
.read = dac33_read_reg_cache,
.write = dac33_write_locked,
.set_bias_level = dac33_set_bias_level,
.probe = dac33_soc_probe,
.remove = dac33_soc_remove,
.controls = dac33_snd_controls,
.num_controls = ARRAY_SIZE(dac33_snd_controls),
.dapm_widgets = dac33_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(dac33_dapm_widgets),
.dapm_routes = audio_map,
.num_dapm_routes = ARRAY_SIZE(audio_map),
.use_pmdown_time = 1,
.endianness = 1,
};
#define DAC33_RATES (SNDRV_PCM_RATE_44100 | \
SNDRV_PCM_RATE_48000)
#define DAC33_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE)
static const struct snd_soc_dai_ops dac33_dai_ops = {
.startup = dac33_startup,
.shutdown = dac33_shutdown,
.hw_params = dac33_hw_params,
.trigger = dac33_pcm_trigger,
.delay = dac33_dai_delay,
.set_sysclk = dac33_set_dai_sysclk,
.set_fmt = dac33_set_dai_fmt,
};
static struct snd_soc_dai_driver dac33_dai = {
.name = "tlv320dac33-hifi",
.playback = {
.stream_name = "Playback",
.channels_min = 2,
.channels_max = 2,
.rates = DAC33_RATES,
.formats = DAC33_FORMATS,
.sig_bits = 24,
},
.ops = &dac33_dai_ops,
};
static int dac33_i2c_probe(struct i2c_client *client)
{
struct tlv320dac33_platform_data *pdata;
struct tlv320dac33_priv *dac33;
int ret, i;
if (client->dev.platform_data == NULL) {
dev_err(&client->dev, "Platform data not set\n");
return -ENODEV;
}
pdata = client->dev.platform_data;
dac33 = devm_kzalloc(&client->dev, sizeof(struct tlv320dac33_priv),
GFP_KERNEL);
if (dac33 == NULL)
return -ENOMEM;
dac33->reg_cache = devm_kmemdup(&client->dev,
dac33_reg,
ARRAY_SIZE(dac33_reg) * sizeof(u8),
GFP_KERNEL);
if (!dac33->reg_cache)
return -ENOMEM;
dac33->i2c = client;
mutex_init(&dac33->mutex);
spin_lock_init(&dac33->lock);
i2c_set_clientdata(client, dac33);
dac33->power_gpio = pdata->power_gpio;
dac33->burst_bclkdiv = pdata->burst_bclkdiv;
dac33->keep_bclk = pdata->keep_bclk;
dac33->mode1_latency = pdata->mode1_latency;
if (!dac33->mode1_latency)
dac33->mode1_latency = 10000; /* 10ms */
dac33->irq = client->irq;
/* Disable FIFO use by default */
dac33->fifo_mode = DAC33_FIFO_BYPASS;
/* Check if the reset GPIO number is valid and request it */
if (dac33->power_gpio >= 0) {
ret = gpio_request(dac33->power_gpio, "tlv320dac33 reset");
if (ret < 0) {
dev_err(&client->dev,
"Failed to request reset GPIO (%d)\n",
dac33->power_gpio);
goto err_gpio;
}
gpio_direction_output(dac33->power_gpio, 0);
}
for (i = 0; i < ARRAY_SIZE(dac33->supplies); i++)
dac33->supplies[i].supply = dac33_supply_names[i];
ret = devm_regulator_bulk_get(&client->dev, ARRAY_SIZE(dac33->supplies),
dac33->supplies);
if (ret != 0) {
dev_err(&client->dev, "Failed to request supplies: %d\n", ret);
goto err_get;
}
ret = devm_snd_soc_register_component(&client->dev,
&soc_component_dev_tlv320dac33, &dac33_dai, 1);
if (ret < 0)
goto err_get;
return ret;
err_get:
if (dac33->power_gpio >= 0)
gpio_free(dac33->power_gpio);
err_gpio:
return ret;
}
static void dac33_i2c_remove(struct i2c_client *client)
{
struct tlv320dac33_priv *dac33 = i2c_get_clientdata(client);
if (unlikely(dac33->chip_power))
dac33_hard_power(dac33->component, 0);
if (dac33->power_gpio >= 0)
gpio_free(dac33->power_gpio);
}
static const struct i2c_device_id tlv320dac33_i2c_id[] = {
{
.name = "tlv320dac33",
.driver_data = 0,
},
{ },
};
MODULE_DEVICE_TABLE(i2c, tlv320dac33_i2c_id);
static struct i2c_driver tlv320dac33_i2c_driver = {
.driver = {
.name = "tlv320dac33-codec",
},
2023-10-24 12:59:35 +02:00
.probe = dac33_i2c_probe,
2023-08-30 17:31:07 +02:00
.remove = dac33_i2c_remove,
.id_table = tlv320dac33_i2c_id,
};
module_i2c_driver(tlv320dac33_i2c_driver);
MODULE_DESCRIPTION("ASoC TLV320DAC33 codec driver");
MODULE_AUTHOR("Peter Ujfalusi <peter.ujfalusi@ti.com>");
MODULE_LICENSE("GPL");