574 lines
15 KiB
C
574 lines
15 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
/*
|
||
|
* Kernel Probes (KProbes)
|
||
|
*
|
||
|
* Copyright (C) IBM Corporation, 2002, 2004
|
||
|
*
|
||
|
* 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
|
||
|
* Probes initial implementation ( includes contributions from
|
||
|
* Rusty Russell).
|
||
|
* 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
|
||
|
* interface to access function arguments.
|
||
|
* 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
|
||
|
* for PPC64
|
||
|
*/
|
||
|
|
||
|
#include <linux/kprobes.h>
|
||
|
#include <linux/ptrace.h>
|
||
|
#include <linux/preempt.h>
|
||
|
#include <linux/extable.h>
|
||
|
#include <linux/kdebug.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/moduleloader.h>
|
||
|
#include <linux/set_memory.h>
|
||
|
#include <asm/code-patching.h>
|
||
|
#include <asm/cacheflush.h>
|
||
|
#include <asm/sstep.h>
|
||
|
#include <asm/sections.h>
|
||
|
#include <asm/inst.h>
|
||
|
#include <linux/uaccess.h>
|
||
|
|
||
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
||
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
||
|
|
||
|
struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
|
||
|
|
||
|
bool arch_within_kprobe_blacklist(unsigned long addr)
|
||
|
{
|
||
|
return (addr >= (unsigned long)__kprobes_text_start &&
|
||
|
addr < (unsigned long)__kprobes_text_end) ||
|
||
|
(addr >= (unsigned long)_stext &&
|
||
|
addr < (unsigned long)__head_end);
|
||
|
}
|
||
|
|
||
|
kprobe_opcode_t *kprobe_lookup_name(const char *name, unsigned int offset)
|
||
|
{
|
||
|
kprobe_opcode_t *addr = NULL;
|
||
|
|
||
|
#ifdef CONFIG_PPC64_ELF_ABI_V2
|
||
|
/* PPC64 ABIv2 needs local entry point */
|
||
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
||
|
if (addr && !offset) {
|
||
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
||
|
unsigned long faddr;
|
||
|
/*
|
||
|
* Per livepatch.h, ftrace location is always within the first
|
||
|
* 16 bytes of a function on powerpc with -mprofile-kernel.
|
||
|
*/
|
||
|
faddr = ftrace_location_range((unsigned long)addr,
|
||
|
(unsigned long)addr + 16);
|
||
|
if (faddr)
|
||
|
addr = (kprobe_opcode_t *)faddr;
|
||
|
else
|
||
|
#endif
|
||
|
addr = (kprobe_opcode_t *)ppc_function_entry(addr);
|
||
|
}
|
||
|
#elif defined(CONFIG_PPC64_ELF_ABI_V1)
|
||
|
/*
|
||
|
* 64bit powerpc ABIv1 uses function descriptors:
|
||
|
* - Check for the dot variant of the symbol first.
|
||
|
* - If that fails, try looking up the symbol provided.
|
||
|
*
|
||
|
* This ensures we always get to the actual symbol and not
|
||
|
* the descriptor.
|
||
|
*
|
||
|
* Also handle <module:symbol> format.
|
||
|
*/
|
||
|
char dot_name[MODULE_NAME_LEN + 1 + KSYM_NAME_LEN];
|
||
|
bool dot_appended = false;
|
||
|
const char *c;
|
||
|
ssize_t ret = 0;
|
||
|
int len = 0;
|
||
|
|
||
|
if ((c = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
|
||
|
c++;
|
||
|
len = c - name;
|
||
|
memcpy(dot_name, name, len);
|
||
|
} else
|
||
|
c = name;
|
||
|
|
||
|
if (*c != '\0' && *c != '.') {
|
||
|
dot_name[len++] = '.';
|
||
|
dot_appended = true;
|
||
|
}
|
||
|
ret = strscpy(dot_name + len, c, KSYM_NAME_LEN);
|
||
|
if (ret > 0)
|
||
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(dot_name);
|
||
|
|
||
|
/* Fallback to the original non-dot symbol lookup */
|
||
|
if (!addr && dot_appended)
|
||
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
||
|
#else
|
||
|
addr = (kprobe_opcode_t *)kallsyms_lookup_name(name);
|
||
|
#endif
|
||
|
|
||
|
return addr;
|
||
|
}
|
||
|
|
||
|
static bool arch_kprobe_on_func_entry(unsigned long offset)
|
||
|
{
|
||
|
#ifdef CONFIG_PPC64_ELF_ABI_V2
|
||
|
#ifdef CONFIG_KPROBES_ON_FTRACE
|
||
|
return offset <= 16;
|
||
|
#else
|
||
|
return offset <= 8;
|
||
|
#endif
|
||
|
#else
|
||
|
return !offset;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* XXX try and fold the magic of kprobe_lookup_name() in this */
|
||
|
kprobe_opcode_t *arch_adjust_kprobe_addr(unsigned long addr, unsigned long offset,
|
||
|
bool *on_func_entry)
|
||
|
{
|
||
|
*on_func_entry = arch_kprobe_on_func_entry(offset);
|
||
|
return (kprobe_opcode_t *)(addr + offset);
|
||
|
}
|
||
|
|
||
|
void *alloc_insn_page(void)
|
||
|
{
|
||
|
void *page;
|
||
|
|
||
|
page = module_alloc(PAGE_SIZE);
|
||
|
if (!page)
|
||
|
return NULL;
|
||
|
|
||
|
if (strict_module_rwx_enabled())
|
||
|
set_memory_rox((unsigned long)page, 1);
|
||
|
|
||
|
return page;
|
||
|
}
|
||
|
|
||
|
int arch_prepare_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
int ret = 0;
|
||
|
struct kprobe *prev;
|
||
|
ppc_inst_t insn = ppc_inst_read(p->addr);
|
||
|
|
||
|
if ((unsigned long)p->addr & 0x03) {
|
||
|
printk("Attempt to register kprobe at an unaligned address\n");
|
||
|
ret = -EINVAL;
|
||
|
} else if (!can_single_step(ppc_inst_val(insn))) {
|
||
|
printk("Cannot register a kprobe on instructions that can't be single stepped\n");
|
||
|
ret = -EINVAL;
|
||
|
} else if ((unsigned long)p->addr & ~PAGE_MASK &&
|
||
|
ppc_inst_prefixed(ppc_inst_read(p->addr - 1))) {
|
||
|
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
prev = get_kprobe(p->addr - 1);
|
||
|
|
||
|
/*
|
||
|
* When prev is a ftrace-based kprobe, we don't have an insn, and it
|
||
|
* doesn't probe for prefixed instruction.
|
||
|
*/
|
||
|
if (prev && !kprobe_ftrace(prev) &&
|
||
|
ppc_inst_prefixed(ppc_inst_read(prev->ainsn.insn))) {
|
||
|
printk("Cannot register a kprobe on the second word of prefixed instruction\n");
|
||
|
ret = -EINVAL;
|
||
|
}
|
||
|
|
||
|
/* insn must be on a special executable page on ppc64. This is
|
||
|
* not explicitly required on ppc32 (right now), but it doesn't hurt */
|
||
|
if (!ret) {
|
||
|
p->ainsn.insn = get_insn_slot();
|
||
|
if (!p->ainsn.insn)
|
||
|
ret = -ENOMEM;
|
||
|
}
|
||
|
|
||
|
if (!ret) {
|
||
|
patch_instruction(p->ainsn.insn, insn);
|
||
|
p->opcode = ppc_inst_val(insn);
|
||
|
}
|
||
|
|
||
|
p->ainsn.boostable = 0;
|
||
|
return ret;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_prepare_kprobe);
|
||
|
|
||
|
void arch_arm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(BREAKPOINT_INSTRUCTION)));
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_arm_kprobe);
|
||
|
|
||
|
void arch_disarm_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
WARN_ON_ONCE(patch_instruction(p->addr, ppc_inst(p->opcode)));
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_disarm_kprobe);
|
||
|
|
||
|
void arch_remove_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (p->ainsn.insn) {
|
||
|
free_insn_slot(p->ainsn.insn, 0);
|
||
|
p->ainsn.insn = NULL;
|
||
|
}
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_remove_kprobe);
|
||
|
|
||
|
static nokprobe_inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
enable_single_step(regs);
|
||
|
|
||
|
/*
|
||
|
* On powerpc we should single step on the original
|
||
|
* instruction even if the probed insn is a trap
|
||
|
* variant as values in regs could play a part in
|
||
|
* if the trap is taken or not
|
||
|
*/
|
||
|
regs_set_return_ip(regs, (unsigned long)p->ainsn.insn);
|
||
|
}
|
||
|
|
||
|
static nokprobe_inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
kcb->prev_kprobe.kp = kprobe_running();
|
||
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
||
|
kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
|
||
|
}
|
||
|
|
||
|
static nokprobe_inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
||
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
||
|
kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
|
||
|
}
|
||
|
|
||
|
static nokprobe_inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
|
||
|
struct kprobe_ctlblk *kcb)
|
||
|
{
|
||
|
__this_cpu_write(current_kprobe, p);
|
||
|
kcb->kprobe_saved_msr = regs->msr;
|
||
|
}
|
||
|
|
||
|
void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
|
||
|
{
|
||
|
ri->ret_addr = (kprobe_opcode_t *)regs->link;
|
||
|
ri->fp = NULL;
|
||
|
|
||
|
/* Replace the return addr with trampoline addr */
|
||
|
regs->link = (unsigned long)__kretprobe_trampoline;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_prepare_kretprobe);
|
||
|
|
||
|
static int try_to_emulate(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
int ret;
|
||
|
ppc_inst_t insn = ppc_inst_read(p->ainsn.insn);
|
||
|
|
||
|
/* regs->nip is also adjusted if emulate_step returns 1 */
|
||
|
ret = emulate_step(regs, insn);
|
||
|
if (ret > 0) {
|
||
|
/*
|
||
|
* Once this instruction has been boosted
|
||
|
* successfully, set the boostable flag
|
||
|
*/
|
||
|
if (unlikely(p->ainsn.boostable == 0))
|
||
|
p->ainsn.boostable = 1;
|
||
|
} else if (ret < 0) {
|
||
|
/*
|
||
|
* We don't allow kprobes on mtmsr(d)/rfi(d), etc.
|
||
|
* So, we should never get here... but, its still
|
||
|
* good to catch them, just in case...
|
||
|
*/
|
||
|
printk("Can't step on instruction %08lx\n", ppc_inst_as_ulong(insn));
|
||
|
BUG();
|
||
|
} else {
|
||
|
/*
|
||
|
* If we haven't previously emulated this instruction, then it
|
||
|
* can't be boosted. Note it down so we don't try to do so again.
|
||
|
*
|
||
|
* If, however, we had emulated this instruction in the past,
|
||
|
* then this is just an error with the current run (for
|
||
|
* instance, exceptions due to a load/store). We return 0 so
|
||
|
* that this is now single-stepped, but continue to try
|
||
|
* emulating it in subsequent probe hits.
|
||
|
*/
|
||
|
if (unlikely(p->ainsn.boostable != 1))
|
||
|
p->ainsn.boostable = -1;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(try_to_emulate);
|
||
|
|
||
|
int kprobe_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
struct kprobe *p;
|
||
|
int ret = 0;
|
||
|
unsigned int *addr = (unsigned int *)regs->nip;
|
||
|
struct kprobe_ctlblk *kcb;
|
||
|
|
||
|
if (user_mode(regs))
|
||
|
return 0;
|
||
|
|
||
|
if (!IS_ENABLED(CONFIG_BOOKE) &&
|
||
|
(!(regs->msr & MSR_IR) || !(regs->msr & MSR_DR)))
|
||
|
return 0;
|
||
|
|
||
|
/*
|
||
|
* We don't want to be preempted for the entire
|
||
|
* duration of kprobe processing
|
||
|
*/
|
||
|
preempt_disable();
|
||
|
kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
p = get_kprobe(addr);
|
||
|
if (!p) {
|
||
|
unsigned int instr;
|
||
|
|
||
|
if (get_kernel_nofault(instr, addr))
|
||
|
goto no_kprobe;
|
||
|
|
||
|
if (instr != BREAKPOINT_INSTRUCTION) {
|
||
|
/*
|
||
|
* PowerPC has multiple variants of the "trap"
|
||
|
* instruction. If the current instruction is a
|
||
|
* trap variant, it could belong to someone else
|
||
|
*/
|
||
|
if (is_trap(instr))
|
||
|
goto no_kprobe;
|
||
|
/*
|
||
|
* The breakpoint instruction was removed right
|
||
|
* after we hit it. Another cpu has removed
|
||
|
* either a probepoint or a debugger breakpoint
|
||
|
* at this address. In either case, no further
|
||
|
* handling of this interrupt is appropriate.
|
||
|
*/
|
||
|
ret = 1;
|
||
|
}
|
||
|
/* Not one of ours: let kernel handle it */
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
/* Check we're not actually recursing */
|
||
|
if (kprobe_running()) {
|
||
|
kprobe_opcode_t insn = *p->ainsn.insn;
|
||
|
if (kcb->kprobe_status == KPROBE_HIT_SS && is_trap(insn)) {
|
||
|
/* Turn off 'trace' bits */
|
||
|
regs_set_return_msr(regs,
|
||
|
(regs->msr & ~MSR_SINGLESTEP) |
|
||
|
kcb->kprobe_saved_msr);
|
||
|
goto no_kprobe;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We have reentered the kprobe_handler(), since another probe
|
||
|
* was hit while within the handler. We here save the original
|
||
|
* kprobes variables and just single step on the instruction of
|
||
|
* the new probe without calling any user handlers.
|
||
|
*/
|
||
|
save_previous_kprobe(kcb);
|
||
|
set_current_kprobe(p, regs, kcb);
|
||
|
kprobes_inc_nmissed_count(p);
|
||
|
kcb->kprobe_status = KPROBE_REENTER;
|
||
|
if (p->ainsn.boostable >= 0) {
|
||
|
ret = try_to_emulate(p, regs);
|
||
|
|
||
|
if (ret > 0) {
|
||
|
restore_previous_kprobe(kcb);
|
||
|
preempt_enable();
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
prepare_singlestep(p, regs);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
||
|
set_current_kprobe(p, regs, kcb);
|
||
|
if (p->pre_handler && p->pre_handler(p, regs)) {
|
||
|
/* handler changed execution path, so skip ss setup */
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable();
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
if (p->ainsn.boostable >= 0) {
|
||
|
ret = try_to_emulate(p, regs);
|
||
|
|
||
|
if (ret > 0) {
|
||
|
if (p->post_handler)
|
||
|
p->post_handler(p, regs, 0);
|
||
|
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable();
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
prepare_singlestep(p, regs);
|
||
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
||
|
return 1;
|
||
|
|
||
|
no_kprobe:
|
||
|
preempt_enable();
|
||
|
return ret;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_handler);
|
||
|
|
||
|
/*
|
||
|
* Function return probe trampoline:
|
||
|
* - init_kprobes() establishes a probepoint here
|
||
|
* - When the probed function returns, this probe
|
||
|
* causes the handlers to fire
|
||
|
*/
|
||
|
asm(".global __kretprobe_trampoline\n"
|
||
|
".type __kretprobe_trampoline, @function\n"
|
||
|
"__kretprobe_trampoline:\n"
|
||
|
"nop\n"
|
||
|
"blr\n"
|
||
|
".size __kretprobe_trampoline, .-__kretprobe_trampoline\n");
|
||
|
|
||
|
/*
|
||
|
* Called when the probe at kretprobe trampoline is hit
|
||
|
*/
|
||
|
static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
|
||
|
{
|
||
|
unsigned long orig_ret_address;
|
||
|
|
||
|
orig_ret_address = __kretprobe_trampoline_handler(regs, NULL);
|
||
|
/*
|
||
|
* We get here through one of two paths:
|
||
|
* 1. by taking a trap -> kprobe_handler() -> here
|
||
|
* 2. by optprobe branch -> optimized_callback() -> opt_pre_handler() -> here
|
||
|
*
|
||
|
* When going back through (1), we need regs->nip to be setup properly
|
||
|
* as it is used to determine the return address from the trap.
|
||
|
* For (2), since nip is not honoured with optprobes, we instead setup
|
||
|
* the link register properly so that the subsequent 'blr' in
|
||
|
* __kretprobe_trampoline jumps back to the right instruction.
|
||
|
*
|
||
|
* For nip, we should set the address to the previous instruction since
|
||
|
* we end up emulating it in kprobe_handler(), which increments the nip
|
||
|
* again.
|
||
|
*/
|
||
|
regs_set_return_ip(regs, orig_ret_address - 4);
|
||
|
regs->link = orig_ret_address;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(trampoline_probe_handler);
|
||
|
|
||
|
/*
|
||
|
* Called after single-stepping. p->addr is the address of the
|
||
|
* instruction whose first byte has been replaced by the "breakpoint"
|
||
|
* instruction. To avoid the SMP problems that can occur when we
|
||
|
* temporarily put back the original opcode to single-step, we
|
||
|
* single-stepped a copy of the instruction. The address of this
|
||
|
* copy is p->ainsn.insn.
|
||
|
*/
|
||
|
int kprobe_post_handler(struct pt_regs *regs)
|
||
|
{
|
||
|
int len;
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
|
||
|
if (!cur || user_mode(regs))
|
||
|
return 0;
|
||
|
|
||
|
len = ppc_inst_len(ppc_inst_read(cur->ainsn.insn));
|
||
|
/* make sure we got here for instruction we have a kprobe on */
|
||
|
if (((unsigned long)cur->ainsn.insn + len) != regs->nip)
|
||
|
return 0;
|
||
|
|
||
|
if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
|
||
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
||
|
cur->post_handler(cur, regs, 0);
|
||
|
}
|
||
|
|
||
|
/* Adjust nip to after the single-stepped instruction */
|
||
|
regs_set_return_ip(regs, (unsigned long)cur->addr + len);
|
||
|
regs_set_return_msr(regs, regs->msr | kcb->kprobe_saved_msr);
|
||
|
|
||
|
/*Restore back the original saved kprobes variables and continue. */
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
||
|
restore_previous_kprobe(kcb);
|
||
|
goto out;
|
||
|
}
|
||
|
reset_current_kprobe();
|
||
|
out:
|
||
|
preempt_enable();
|
||
|
|
||
|
/*
|
||
|
* if somebody else is singlestepping across a probe point, msr
|
||
|
* will have DE/SE set, in which case, continue the remaining processing
|
||
|
* of do_debug, as if this is not a probe hit.
|
||
|
*/
|
||
|
if (regs->msr & MSR_SINGLESTEP)
|
||
|
return 0;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_post_handler);
|
||
|
|
||
|
int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
|
||
|
{
|
||
|
struct kprobe *cur = kprobe_running();
|
||
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
||
|
const struct exception_table_entry *entry;
|
||
|
|
||
|
switch(kcb->kprobe_status) {
|
||
|
case KPROBE_HIT_SS:
|
||
|
case KPROBE_REENTER:
|
||
|
/*
|
||
|
* We are here because the instruction being single
|
||
|
* stepped caused a page fault. We reset the current
|
||
|
* kprobe and the nip points back to the probe address
|
||
|
* and allow the page fault handler to continue as a
|
||
|
* normal page fault.
|
||
|
*/
|
||
|
regs_set_return_ip(regs, (unsigned long)cur->addr);
|
||
|
/* Turn off 'trace' bits */
|
||
|
regs_set_return_msr(regs,
|
||
|
(regs->msr & ~MSR_SINGLESTEP) |
|
||
|
kcb->kprobe_saved_msr);
|
||
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
||
|
restore_previous_kprobe(kcb);
|
||
|
else
|
||
|
reset_current_kprobe();
|
||
|
preempt_enable();
|
||
|
break;
|
||
|
case KPROBE_HIT_ACTIVE:
|
||
|
case KPROBE_HIT_SSDONE:
|
||
|
/*
|
||
|
* In case the user-specified fault handler returned
|
||
|
* zero, try to fix up.
|
||
|
*/
|
||
|
if ((entry = search_exception_tables(regs->nip)) != NULL) {
|
||
|
regs_set_return_ip(regs, extable_fixup(entry));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* fixup_exception() could not handle it,
|
||
|
* Let do_page_fault() fix it.
|
||
|
*/
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(kprobe_fault_handler);
|
||
|
|
||
|
static struct kprobe trampoline_p = {
|
||
|
.addr = (kprobe_opcode_t *) &__kretprobe_trampoline,
|
||
|
.pre_handler = trampoline_probe_handler
|
||
|
};
|
||
|
|
||
|
int __init arch_init_kprobes(void)
|
||
|
{
|
||
|
return register_kprobe(&trampoline_p);
|
||
|
}
|
||
|
|
||
|
int arch_trampoline_kprobe(struct kprobe *p)
|
||
|
{
|
||
|
if (p->addr == (kprobe_opcode_t *)&__kretprobe_trampoline)
|
||
|
return 1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
NOKPROBE_SYMBOL(arch_trampoline_kprobe);
|