2023-08-30 17:31:07 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-only
|
|
|
|
/*
|
|
|
|
* Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include <linux/cpu.h>
|
|
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include <linux/preempt.h>
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/spinlock.h>
|
|
|
|
#include <linux/init.h>
|
|
|
|
#include <linux/memblock.h>
|
|
|
|
#include <linux/sizes.h>
|
|
|
|
#include <linux/cma.h>
|
|
|
|
#include <linux/bitops.h>
|
|
|
|
|
|
|
|
#include <asm/cputable.h>
|
|
|
|
#include <asm/interrupt.h>
|
|
|
|
#include <asm/kvm_ppc.h>
|
|
|
|
#include <asm/kvm_book3s.h>
|
|
|
|
#include <asm/machdep.h>
|
|
|
|
#include <asm/xics.h>
|
|
|
|
#include <asm/xive.h>
|
|
|
|
#include <asm/dbell.h>
|
|
|
|
#include <asm/cputhreads.h>
|
|
|
|
#include <asm/io.h>
|
|
|
|
#include <asm/opal.h>
|
|
|
|
#include <asm/smp.h>
|
|
|
|
|
|
|
|
#define KVM_CMA_CHUNK_ORDER 18
|
|
|
|
|
|
|
|
#include "book3s_xics.h"
|
|
|
|
#include "book3s_xive.h"
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hash page table alignment on newer cpus(CPU_FTR_ARCH_206)
|
|
|
|
* should be power of 2.
|
|
|
|
*/
|
|
|
|
#define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */
|
|
|
|
/*
|
|
|
|
* By default we reserve 5% of memory for hash pagetable allocation.
|
|
|
|
*/
|
|
|
|
static unsigned long kvm_cma_resv_ratio = 5;
|
|
|
|
|
|
|
|
static struct cma *kvm_cma;
|
|
|
|
|
|
|
|
static int __init early_parse_kvm_cma_resv(char *p)
|
|
|
|
{
|
|
|
|
pr_debug("%s(%s)\n", __func__, p);
|
|
|
|
if (!p)
|
|
|
|
return -EINVAL;
|
|
|
|
return kstrtoul(p, 0, &kvm_cma_resv_ratio);
|
|
|
|
}
|
|
|
|
early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv);
|
|
|
|
|
|
|
|
struct page *kvm_alloc_hpt_cma(unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT);
|
|
|
|
|
|
|
|
return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES),
|
|
|
|
false);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma);
|
|
|
|
|
|
|
|
void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages)
|
|
|
|
{
|
|
|
|
cma_release(kvm_cma, page, nr_pages);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_free_hpt_cma);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* kvm_cma_reserve() - reserve area for kvm hash pagetable
|
|
|
|
*
|
|
|
|
* This function reserves memory from early allocator. It should be
|
|
|
|
* called by arch specific code once the memblock allocator
|
|
|
|
* has been activated and all other subsystems have already allocated/reserved
|
|
|
|
* memory.
|
|
|
|
*/
|
|
|
|
void __init kvm_cma_reserve(void)
|
|
|
|
{
|
|
|
|
unsigned long align_size;
|
|
|
|
phys_addr_t selected_size;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We need CMA reservation only when we are in HV mode
|
|
|
|
*/
|
|
|
|
if (!cpu_has_feature(CPU_FTR_HVMODE))
|
|
|
|
return;
|
|
|
|
|
|
|
|
selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100);
|
|
|
|
if (selected_size) {
|
|
|
|
pr_info("%s: reserving %ld MiB for global area\n", __func__,
|
|
|
|
(unsigned long)selected_size / SZ_1M);
|
|
|
|
align_size = HPT_ALIGN_PAGES << PAGE_SHIFT;
|
|
|
|
cma_declare_contiguous(0, selected_size, 0, align_size,
|
|
|
|
KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma",
|
|
|
|
&kvm_cma);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Real-mode H_CONFER implementation.
|
|
|
|
* We check if we are the only vcpu out of this virtual core
|
|
|
|
* still running in the guest and not ceded. If so, we pop up
|
|
|
|
* to the virtual-mode implementation; if not, just return to
|
|
|
|
* the guest.
|
|
|
|
*/
|
|
|
|
long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target,
|
|
|
|
unsigned int yield_count)
|
|
|
|
{
|
|
|
|
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
|
|
|
|
int ptid = local_paca->kvm_hstate.ptid;
|
|
|
|
int threads_running;
|
|
|
|
int threads_ceded;
|
|
|
|
int threads_conferring;
|
|
|
|
u64 stop = get_tb() + 10 * tb_ticks_per_usec;
|
|
|
|
int rv = H_SUCCESS; /* => don't yield */
|
|
|
|
|
|
|
|
set_bit(ptid, &vc->conferring_threads);
|
|
|
|
while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) {
|
|
|
|
threads_running = VCORE_ENTRY_MAP(vc);
|
|
|
|
threads_ceded = vc->napping_threads;
|
|
|
|
threads_conferring = vc->conferring_threads;
|
|
|
|
if ((threads_ceded | threads_conferring) == threads_running) {
|
|
|
|
rv = H_TOO_HARD; /* => do yield */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
clear_bit(ptid, &vc->conferring_threads);
|
|
|
|
return rv;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* When running HV mode KVM we need to block certain operations while KVM VMs
|
|
|
|
* exist in the system. We use a counter of VMs to track this.
|
|
|
|
*
|
|
|
|
* One of the operations we need to block is onlining of secondaries, so we
|
|
|
|
* protect hv_vm_count with cpus_read_lock/unlock().
|
|
|
|
*/
|
|
|
|
static atomic_t hv_vm_count;
|
|
|
|
|
|
|
|
void kvm_hv_vm_activated(void)
|
|
|
|
{
|
|
|
|
cpus_read_lock();
|
|
|
|
atomic_inc(&hv_vm_count);
|
|
|
|
cpus_read_unlock();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_hv_vm_activated);
|
|
|
|
|
|
|
|
void kvm_hv_vm_deactivated(void)
|
|
|
|
{
|
|
|
|
cpus_read_lock();
|
|
|
|
atomic_dec(&hv_vm_count);
|
|
|
|
cpus_read_unlock();
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated);
|
|
|
|
|
|
|
|
bool kvm_hv_mode_active(void)
|
|
|
|
{
|
|
|
|
return atomic_read(&hv_vm_count) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
extern int hcall_real_table[], hcall_real_table_end[];
|
|
|
|
|
|
|
|
int kvmppc_hcall_impl_hv_realmode(unsigned long cmd)
|
|
|
|
{
|
|
|
|
cmd /= 4;
|
|
|
|
if (cmd < hcall_real_table_end - hcall_real_table &&
|
|
|
|
hcall_real_table[cmd])
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode);
|
|
|
|
|
|
|
|
int kvmppc_hwrng_present(void)
|
|
|
|
{
|
|
|
|
return ppc_md.get_random_seed != NULL;
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_hwrng_present);
|
|
|
|
|
|
|
|
long kvmppc_rm_h_random(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
if (ppc_md.get_random_seed &&
|
|
|
|
ppc_md.get_random_seed(&vcpu->arch.regs.gpr[4]))
|
|
|
|
return H_SUCCESS;
|
|
|
|
|
|
|
|
return H_HARDWARE;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send an interrupt or message to another CPU.
|
|
|
|
* The caller needs to include any barrier needed to order writes
|
|
|
|
* to memory vs. the IPI/message.
|
|
|
|
*/
|
|
|
|
void kvmhv_rm_send_ipi(int cpu)
|
|
|
|
{
|
|
|
|
void __iomem *xics_phys;
|
|
|
|
unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
|
|
|
|
|
|
|
|
/* On POWER9 we can use msgsnd for any destination cpu. */
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_300)) {
|
|
|
|
msg |= get_hard_smp_processor_id(cpu);
|
|
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* On POWER8 for IPIs to threads in the same core, use msgsnd. */
|
|
|
|
if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
|
|
|
|
cpu_first_thread_sibling(cpu) ==
|
|
|
|
cpu_first_thread_sibling(raw_smp_processor_id())) {
|
|
|
|
msg |= cpu_thread_in_core(cpu);
|
|
|
|
__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* We should never reach this */
|
|
|
|
if (WARN_ON_ONCE(xics_on_xive()))
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* Else poke the target with an IPI */
|
|
|
|
xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys;
|
|
|
|
if (xics_phys)
|
|
|
|
__raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR);
|
|
|
|
else
|
|
|
|
opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The following functions are called from the assembly code
|
|
|
|
* in book3s_hv_rmhandlers.S.
|
|
|
|
*/
|
|
|
|
static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active)
|
|
|
|
{
|
|
|
|
int cpu = vc->pcpu;
|
|
|
|
|
|
|
|
/* Order setting of exit map vs. msgsnd/IPI */
|
|
|
|
smp_mb();
|
|
|
|
for (; active; active >>= 1, ++cpu)
|
|
|
|
if (active & 1)
|
|
|
|
kvmhv_rm_send_ipi(cpu);
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvmhv_commence_exit(int trap)
|
|
|
|
{
|
|
|
|
struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore;
|
|
|
|
int ptid = local_paca->kvm_hstate.ptid;
|
|
|
|
struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode;
|
|
|
|
int me, ee, i;
|
|
|
|
|
|
|
|
/* Set our bit in the threads-exiting-guest map in the 0xff00
|
|
|
|
bits of vcore->entry_exit_map */
|
|
|
|
me = 0x100 << ptid;
|
|
|
|
do {
|
|
|
|
ee = vc->entry_exit_map;
|
|
|
|
} while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee);
|
|
|
|
|
|
|
|
/* Are we the first here? */
|
|
|
|
if ((ee >> 8) != 0)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Trigger the other threads in this vcore to exit the guest.
|
|
|
|
* If this is a hypervisor decrementer interrupt then they
|
|
|
|
* will be already on their way out of the guest.
|
|
|
|
*/
|
|
|
|
if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER)
|
|
|
|
kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we are doing dynamic micro-threading, interrupt the other
|
|
|
|
* subcores to pull them out of their guests too.
|
|
|
|
*/
|
|
|
|
if (!sip)
|
|
|
|
return;
|
|
|
|
|
|
|
|
for (i = 0; i < MAX_SUBCORES; ++i) {
|
|
|
|
vc = sip->vc[i];
|
|
|
|
if (!vc)
|
|
|
|
break;
|
|
|
|
do {
|
|
|
|
ee = vc->entry_exit_map;
|
|
|
|
/* Already asked to exit? */
|
|
|
|
if ((ee >> 8) != 0)
|
|
|
|
break;
|
|
|
|
} while (cmpxchg(&vc->entry_exit_map, ee,
|
|
|
|
ee | VCORE_EXIT_REQ) != ee);
|
|
|
|
if ((ee >> 8) == 0)
|
|
|
|
kvmhv_interrupt_vcore(vc, ee);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv;
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv);
|
|
|
|
|
|
|
|
#ifdef CONFIG_KVM_XICS
|
|
|
|
static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap,
|
|
|
|
u32 xisr)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We access the mapped array here without a lock. That
|
|
|
|
* is safe because we never reduce the number of entries
|
|
|
|
* in the array and we never change the v_hwirq field of
|
|
|
|
* an entry once it is set.
|
|
|
|
*
|
|
|
|
* We have also carefully ordered the stores in the writer
|
|
|
|
* and the loads here in the reader, so that if we find a matching
|
|
|
|
* hwirq here, the associated GSI and irq_desc fields are valid.
|
|
|
|
*/
|
|
|
|
for (i = 0; i < pimap->n_mapped; i++) {
|
|
|
|
if (xisr == pimap->mapped[i].r_hwirq) {
|
|
|
|
/*
|
|
|
|
* Order subsequent reads in the caller to serialize
|
|
|
|
* with the writer.
|
|
|
|
*/
|
|
|
|
smp_rmb();
|
|
|
|
return &pimap->mapped[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we have an interrupt that's not an IPI, check if we have a
|
|
|
|
* passthrough adapter and if so, check if this external interrupt
|
|
|
|
* is for the adapter.
|
|
|
|
* We will attempt to deliver the IRQ directly to the target VCPU's
|
|
|
|
* ICP, the virtual ICP (based on affinity - the xive value in ICS).
|
|
|
|
*
|
|
|
|
* If the delivery fails or if this is not for a passthrough adapter,
|
|
|
|
* return to the host to handle this interrupt. We earlier
|
|
|
|
* saved a copy of the XIRR in the PACA, it will be picked up by
|
|
|
|
* the host ICP driver.
|
|
|
|
*/
|
|
|
|
static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
|
|
|
|
{
|
|
|
|
struct kvmppc_passthru_irqmap *pimap;
|
|
|
|
struct kvmppc_irq_map *irq_map;
|
|
|
|
struct kvm_vcpu *vcpu;
|
|
|
|
|
|
|
|
vcpu = local_paca->kvm_hstate.kvm_vcpu;
|
|
|
|
if (!vcpu)
|
|
|
|
return 1;
|
|
|
|
pimap = kvmppc_get_passthru_irqmap(vcpu->kvm);
|
|
|
|
if (!pimap)
|
|
|
|
return 1;
|
|
|
|
irq_map = get_irqmap(pimap, xisr);
|
|
|
|
if (!irq_map)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* We're handling this interrupt, generic code doesn't need to */
|
|
|
|
local_paca->kvm_hstate.saved_xirr = 0;
|
|
|
|
|
|
|
|
return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again)
|
|
|
|
{
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Determine what sort of external interrupt is pending (if any).
|
|
|
|
* Returns:
|
|
|
|
* 0 if no interrupt is pending
|
|
|
|
* 1 if an interrupt is pending that needs to be handled by the host
|
|
|
|
* 2 Passthrough that needs completion in the host
|
|
|
|
* -1 if there was a guest wakeup IPI (which has now been cleared)
|
|
|
|
* -2 if there is PCI passthrough external interrupt that was handled
|
|
|
|
*/
|
|
|
|
static long kvmppc_read_one_intr(bool *again);
|
|
|
|
|
|
|
|
long kvmppc_read_intr(void)
|
|
|
|
{
|
|
|
|
long ret = 0;
|
|
|
|
long rc;
|
|
|
|
bool again;
|
|
|
|
|
|
|
|
if (xive_enabled())
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
do {
|
|
|
|
again = false;
|
|
|
|
rc = kvmppc_read_one_intr(&again);
|
|
|
|
if (rc && (ret == 0 || rc > ret))
|
|
|
|
ret = rc;
|
|
|
|
} while (again);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static long kvmppc_read_one_intr(bool *again)
|
|
|
|
{
|
|
|
|
void __iomem *xics_phys;
|
|
|
|
u32 h_xirr;
|
|
|
|
__be32 xirr;
|
|
|
|
u32 xisr;
|
|
|
|
u8 host_ipi;
|
|
|
|
int64_t rc;
|
|
|
|
|
|
|
|
if (xive_enabled())
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* see if a host IPI is pending */
|
2023-10-24 12:59:35 +02:00
|
|
|
host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
|
2023-08-30 17:31:07 +02:00
|
|
|
if (host_ipi)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/* Now read the interrupt from the ICP */
|
|
|
|
xics_phys = local_paca->kvm_hstate.xics_phys;
|
|
|
|
rc = 0;
|
|
|
|
if (!xics_phys)
|
|
|
|
rc = opal_int_get_xirr(&xirr, false);
|
|
|
|
else
|
|
|
|
xirr = __raw_rm_readl(xics_phys + XICS_XIRR);
|
|
|
|
if (rc < 0)
|
|
|
|
return 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Save XIRR for later. Since we get control in reverse endian
|
|
|
|
* on LE systems, save it byte reversed and fetch it back in
|
|
|
|
* host endian. Note that xirr is the value read from the
|
|
|
|
* XIRR register, while h_xirr is the host endian version.
|
|
|
|
*/
|
|
|
|
h_xirr = be32_to_cpu(xirr);
|
|
|
|
local_paca->kvm_hstate.saved_xirr = h_xirr;
|
|
|
|
xisr = h_xirr & 0xffffff;
|
|
|
|
/*
|
|
|
|
* Ensure that the store/load complete to guarantee all side
|
|
|
|
* effects of loading from XIRR has completed
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
/* if nothing pending in the ICP */
|
|
|
|
if (!xisr)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* We found something in the ICP...
|
|
|
|
*
|
|
|
|
* If it is an IPI, clear the MFRR and EOI it.
|
|
|
|
*/
|
|
|
|
if (xisr == XICS_IPI) {
|
|
|
|
rc = 0;
|
|
|
|
if (xics_phys) {
|
|
|
|
__raw_rm_writeb(0xff, xics_phys + XICS_MFRR);
|
|
|
|
__raw_rm_writel(xirr, xics_phys + XICS_XIRR);
|
|
|
|
} else {
|
|
|
|
opal_int_set_mfrr(hard_smp_processor_id(), 0xff);
|
|
|
|
rc = opal_int_eoi(h_xirr);
|
|
|
|
}
|
|
|
|
/* If rc > 0, there is another interrupt pending */
|
|
|
|
*again = rc > 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Need to ensure side effects of above stores
|
|
|
|
* complete before proceeding.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to re-check host IPI now in case it got set in the
|
|
|
|
* meantime. If it's clear, we bounce the interrupt to the
|
|
|
|
* guest
|
|
|
|
*/
|
2023-10-24 12:59:35 +02:00
|
|
|
host_ipi = READ_ONCE(local_paca->kvm_hstate.host_ipi);
|
2023-08-30 17:31:07 +02:00
|
|
|
if (unlikely(host_ipi != 0)) {
|
|
|
|
/* We raced with the host,
|
|
|
|
* we need to resend that IPI, bummer
|
|
|
|
*/
|
|
|
|
if (xics_phys)
|
|
|
|
__raw_rm_writeb(IPI_PRIORITY,
|
|
|
|
xics_phys + XICS_MFRR);
|
|
|
|
else
|
|
|
|
opal_int_set_mfrr(hard_smp_processor_id(),
|
|
|
|
IPI_PRIORITY);
|
|
|
|
/* Let side effects complete */
|
|
|
|
smp_mb();
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* OK, it's an IPI for us */
|
|
|
|
local_paca->kvm_hstate.saved_xirr = 0;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
return kvmppc_check_passthru(xisr, xirr, again);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
vcpu->arch.ceded = 0;
|
|
|
|
if (vcpu->arch.timer_running) {
|
|
|
|
hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
|
|
|
|
vcpu->arch.timer_running = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr)
|
|
|
|
{
|
|
|
|
/* Guest must always run with ME enabled, HV disabled. */
|
|
|
|
msr = (msr | MSR_ME) & ~MSR_HV;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Check for illegal transactional state bit combination
|
|
|
|
* and if we find it, force the TS field to a safe state.
|
|
|
|
*/
|
|
|
|
if ((msr & MSR_TS_MASK) == MSR_TS_MASK)
|
|
|
|
msr &= ~MSR_TS_MASK;
|
|
|
|
vcpu->arch.shregs.msr = msr;
|
|
|
|
kvmppc_end_cede(vcpu);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv);
|
|
|
|
|
|
|
|
static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
|
|
|
|
{
|
|
|
|
unsigned long msr, pc, new_msr, new_pc;
|
|
|
|
|
|
|
|
msr = kvmppc_get_msr(vcpu);
|
|
|
|
pc = kvmppc_get_pc(vcpu);
|
|
|
|
new_msr = vcpu->arch.intr_msr;
|
|
|
|
new_pc = vec;
|
|
|
|
|
|
|
|
/* If transactional, change to suspend mode on IRQ delivery */
|
|
|
|
if (MSR_TM_TRANSACTIONAL(msr))
|
|
|
|
new_msr |= MSR_TS_S;
|
|
|
|
else
|
|
|
|
new_msr |= msr & MSR_TS_MASK;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and
|
|
|
|
* applicable. AIL=2 is not supported.
|
|
|
|
*
|
|
|
|
* AIL does not apply to SRESET, MCE, or HMI (which is never
|
|
|
|
* delivered to the guest), and does not apply if IR=0 or DR=0.
|
|
|
|
*/
|
|
|
|
if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET &&
|
|
|
|
vec != BOOK3S_INTERRUPT_MACHINE_CHECK &&
|
|
|
|
(vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 &&
|
|
|
|
(msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) {
|
|
|
|
new_msr |= MSR_IR | MSR_DR;
|
|
|
|
new_pc += 0xC000000000004000ULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
kvmppc_set_srr0(vcpu, pc);
|
|
|
|
kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags);
|
|
|
|
kvmppc_set_pc(vcpu, new_pc);
|
|
|
|
vcpu->arch.shregs.msr = new_msr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags)
|
|
|
|
{
|
|
|
|
inject_interrupt(vcpu, vec, srr1_flags);
|
|
|
|
kvmppc_end_cede(vcpu);
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Is there a PRIV_DOORBELL pending for the guest (on POWER9)?
|
|
|
|
* Can we inject a Decrementer or a External interrupt?
|
|
|
|
*/
|
|
|
|
void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu)
|
|
|
|
{
|
|
|
|
int ext;
|
|
|
|
unsigned long lpcr;
|
|
|
|
|
|
|
|
WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
|
|
|
|
|
|
|
|
/* Insert EXTERNAL bit into LPCR at the MER bit position */
|
|
|
|
ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1;
|
|
|
|
lpcr = mfspr(SPRN_LPCR);
|
|
|
|
lpcr |= ext << LPCR_MER_SH;
|
|
|
|
mtspr(SPRN_LPCR, lpcr);
|
|
|
|
isync();
|
|
|
|
|
|
|
|
if (vcpu->arch.shregs.msr & MSR_EE) {
|
|
|
|
if (ext) {
|
|
|
|
inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0);
|
|
|
|
} else {
|
|
|
|
long int dec = mfspr(SPRN_DEC);
|
|
|
|
if (!(lpcr & LPCR_LD))
|
|
|
|
dec = (int) dec;
|
|
|
|
if (dec < 0)
|
|
|
|
inject_interrupt(vcpu,
|
|
|
|
BOOK3S_INTERRUPT_DECREMENTER, 0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (vcpu->arch.doorbell_request) {
|
|
|
|
mtspr(SPRN_DPDES, 1);
|
|
|
|
vcpu->arch.vcore->dpdes = 1;
|
|
|
|
smp_wmb();
|
|
|
|
vcpu->arch.doorbell_request = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void flush_guest_tlb(struct kvm *kvm)
|
|
|
|
{
|
|
|
|
unsigned long rb, set;
|
|
|
|
|
|
|
|
rb = PPC_BIT(52); /* IS = 2 */
|
|
|
|
for (set = 0; set < kvm->arch.tlb_sets; ++set) {
|
|
|
|
/* R=0 PRS=0 RIC=0 */
|
|
|
|
asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1)
|
|
|
|
: : "r" (rb), "i" (0), "i" (0), "i" (0),
|
|
|
|
"r" (0) : "memory");
|
|
|
|
rb += PPC_BIT(51); /* increment set number */
|
|
|
|
}
|
|
|
|
asm volatile("ptesync": : :"memory");
|
|
|
|
}
|
|
|
|
|
|
|
|
void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu)
|
|
|
|
{
|
|
|
|
if (cpumask_test_cpu(pcpu, &kvm->arch.need_tlb_flush)) {
|
|
|
|
flush_guest_tlb(kvm);
|
|
|
|
|
|
|
|
/* Clear the bit after the TLB flush */
|
|
|
|
cpumask_clear_cpu(pcpu, &kvm->arch.need_tlb_flush);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush);
|