linux-zen-desktop/arch/powerpc/platforms/powernv/eeh-powernv.c

1698 lines
44 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* PowerNV Platform dependent EEH operations
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2013.
*/
#include <linux/atomic.h>
#include <linux/debugfs.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/irqdomain.h>
#include <linux/list.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/pci.h>
#include <linux/proc_fs.h>
#include <linux/rbtree.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <asm/eeh.h>
#include <asm/eeh_event.h>
#include <asm/firmware.h>
#include <asm/io.h>
#include <asm/iommu.h>
#include <asm/machdep.h>
#include <asm/msi_bitmap.h>
#include <asm/opal.h>
#include <asm/ppc-pci.h>
#include <asm/pnv-pci.h>
#include "powernv.h"
#include "pci.h"
#include "../../../../drivers/pci/pci.h"
static int eeh_event_irq = -EINVAL;
static void pnv_pcibios_bus_add_device(struct pci_dev *pdev)
{
dev_dbg(&pdev->dev, "EEH: Setting up device\n");
eeh_probe_device(pdev);
}
static irqreturn_t pnv_eeh_event(int irq, void *data)
{
/*
* We simply send a special EEH event if EEH has been
* enabled. We don't care about EEH events until we've
* finished processing the outstanding ones. Event processing
* gets unmasked in next_error() if EEH is enabled.
*/
disable_irq_nosync(irq);
if (eeh_enabled())
eeh_send_failure_event(NULL);
return IRQ_HANDLED;
}
#ifdef CONFIG_DEBUG_FS
static ssize_t pnv_eeh_ei_write(struct file *filp,
const char __user *user_buf,
size_t count, loff_t *ppos)
{
struct pci_controller *hose = filp->private_data;
struct eeh_pe *pe;
int pe_no, type, func;
unsigned long addr, mask;
char buf[50];
int ret;
if (!eeh_ops || !eeh_ops->err_inject)
return -ENXIO;
/* Copy over argument buffer */
ret = simple_write_to_buffer(buf, sizeof(buf), ppos, user_buf, count);
if (!ret)
return -EFAULT;
/* Retrieve parameters */
ret = sscanf(buf, "%x:%x:%x:%lx:%lx",
&pe_no, &type, &func, &addr, &mask);
if (ret != 5)
return -EINVAL;
/* Retrieve PE */
pe = eeh_pe_get(hose, pe_no);
if (!pe)
return -ENODEV;
/* Do error injection */
ret = eeh_ops->err_inject(pe, type, func, addr, mask);
return ret < 0 ? ret : count;
}
static const struct file_operations pnv_eeh_ei_fops = {
.open = simple_open,
.llseek = no_llseek,
.write = pnv_eeh_ei_write,
};
static int pnv_eeh_dbgfs_set(void *data, int offset, u64 val)
{
struct pci_controller *hose = data;
struct pnv_phb *phb = hose->private_data;
out_be64(phb->regs + offset, val);
return 0;
}
static int pnv_eeh_dbgfs_get(void *data, int offset, u64 *val)
{
struct pci_controller *hose = data;
struct pnv_phb *phb = hose->private_data;
*val = in_be64(phb->regs + offset);
return 0;
}
#define PNV_EEH_DBGFS_ENTRY(name, reg) \
static int pnv_eeh_dbgfs_set_##name(void *data, u64 val) \
{ \
return pnv_eeh_dbgfs_set(data, reg, val); \
} \
\
static int pnv_eeh_dbgfs_get_##name(void *data, u64 *val) \
{ \
return pnv_eeh_dbgfs_get(data, reg, val); \
} \
\
DEFINE_SIMPLE_ATTRIBUTE(pnv_eeh_dbgfs_ops_##name, \
pnv_eeh_dbgfs_get_##name, \
pnv_eeh_dbgfs_set_##name, \
"0x%llx\n")
PNV_EEH_DBGFS_ENTRY(outb, 0xD10);
PNV_EEH_DBGFS_ENTRY(inbA, 0xD90);
PNV_EEH_DBGFS_ENTRY(inbB, 0xE10);
#endif /* CONFIG_DEBUG_FS */
static void pnv_eeh_enable_phbs(void)
{
struct pci_controller *hose;
struct pnv_phb *phb;
list_for_each_entry(hose, &hose_list, list_node) {
phb = hose->private_data;
/*
* If EEH is enabled, we're going to rely on that.
* Otherwise, we restore to conventional mechanism
* to clear frozen PE during PCI config access.
*/
if (eeh_enabled())
phb->flags |= PNV_PHB_FLAG_EEH;
else
phb->flags &= ~PNV_PHB_FLAG_EEH;
}
}
/**
* pnv_eeh_post_init - EEH platform dependent post initialization
*
* EEH platform dependent post initialization on powernv. When
* the function is called, the EEH PEs and devices should have
* been built. If the I/O cache staff has been built, EEH is
* ready to supply service.
*/
int pnv_eeh_post_init(void)
{
struct pci_controller *hose;
struct pnv_phb *phb;
int ret = 0;
eeh_show_enabled();
/* Register OPAL event notifier */
eeh_event_irq = opal_event_request(ilog2(OPAL_EVENT_PCI_ERROR));
if (eeh_event_irq < 0) {
pr_err("%s: Can't register OPAL event interrupt (%d)\n",
__func__, eeh_event_irq);
return eeh_event_irq;
}
ret = request_irq(eeh_event_irq, pnv_eeh_event,
IRQ_TYPE_LEVEL_HIGH, "opal-eeh", NULL);
if (ret < 0) {
irq_dispose_mapping(eeh_event_irq);
pr_err("%s: Can't request OPAL event interrupt (%d)\n",
__func__, eeh_event_irq);
return ret;
}
if (!eeh_enabled())
disable_irq(eeh_event_irq);
pnv_eeh_enable_phbs();
list_for_each_entry(hose, &hose_list, list_node) {
phb = hose->private_data;
/* Create debugfs entries */
#ifdef CONFIG_DEBUG_FS
if (phb->has_dbgfs || !phb->dbgfs)
continue;
phb->has_dbgfs = 1;
debugfs_create_file("err_injct", 0200,
phb->dbgfs, hose,
&pnv_eeh_ei_fops);
debugfs_create_file("err_injct_outbound", 0600,
phb->dbgfs, hose,
&pnv_eeh_dbgfs_ops_outb);
debugfs_create_file("err_injct_inboundA", 0600,
phb->dbgfs, hose,
&pnv_eeh_dbgfs_ops_inbA);
debugfs_create_file("err_injct_inboundB", 0600,
phb->dbgfs, hose,
&pnv_eeh_dbgfs_ops_inbB);
#endif /* CONFIG_DEBUG_FS */
}
return ret;
}
static int pnv_eeh_find_cap(struct pci_dn *pdn, int cap)
{
int pos = PCI_CAPABILITY_LIST;
int cnt = 48; /* Maximal number of capabilities */
u32 status, id;
if (!pdn)
return 0;
/* Check if the device supports capabilities */
pnv_pci_cfg_read(pdn, PCI_STATUS, 2, &status);
if (!(status & PCI_STATUS_CAP_LIST))
return 0;
while (cnt--) {
pnv_pci_cfg_read(pdn, pos, 1, &pos);
if (pos < 0x40)
break;
pos &= ~3;
pnv_pci_cfg_read(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
if (id == 0xff)
break;
/* Found */
if (id == cap)
return pos;
/* Next one */
pos += PCI_CAP_LIST_NEXT;
}
return 0;
}
static int pnv_eeh_find_ecap(struct pci_dn *pdn, int cap)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
u32 header;
int pos = 256, ttl = (4096 - 256) / 8;
if (!edev || !edev->pcie_cap)
return 0;
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
return 0;
else if (!header)
return 0;
while (ttl-- > 0) {
if (PCI_EXT_CAP_ID(header) == cap && pos)
return pos;
pos = PCI_EXT_CAP_NEXT(header);
if (pos < 256)
break;
if (pnv_pci_cfg_read(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
break;
}
return 0;
}
static struct eeh_pe *pnv_eeh_get_upstream_pe(struct pci_dev *pdev)
{
struct pci_controller *hose = pdev->bus->sysdata;
struct pnv_phb *phb = hose->private_data;
struct pci_dev *parent = pdev->bus->self;
#ifdef CONFIG_PCI_IOV
/* for VFs we use the PF's PE as the upstream PE */
if (pdev->is_virtfn)
parent = pdev->physfn;
#endif
/* otherwise use the PE of our parent bridge */
if (parent) {
struct pnv_ioda_pe *ioda_pe = pnv_ioda_get_pe(parent);
return eeh_pe_get(phb->hose, ioda_pe->pe_number);
}
return NULL;
}
/**
* pnv_eeh_probe - Do probe on PCI device
* @pdev: pci_dev to probe
*
* Create, or find the existing, eeh_dev for this pci_dev.
*/
static struct eeh_dev *pnv_eeh_probe(struct pci_dev *pdev)
{
struct pci_dn *pdn = pci_get_pdn(pdev);
struct pci_controller *hose = pdn->phb;
struct pnv_phb *phb = hose->private_data;
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
struct eeh_pe *upstream_pe;
uint32_t pcie_flags;
int ret;
int config_addr = (pdn->busno << 8) | (pdn->devfn);
/*
* When probing the root bridge, which doesn't have any
* subordinate PCI devices. We don't have OF node for
* the root bridge. So it's not reasonable to continue
* the probing.
*/
if (!edev || edev->pe)
return NULL;
/* already configured? */
if (edev->pdev) {
pr_debug("%s: found existing edev for %04x:%02x:%02x.%01x\n",
__func__, hose->global_number, config_addr >> 8,
PCI_SLOT(config_addr), PCI_FUNC(config_addr));
return edev;
}
/* Skip for PCI-ISA bridge */
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
return NULL;
eeh_edev_dbg(edev, "Probing device\n");
/* Initialize eeh device */
edev->mode &= 0xFFFFFF00;
edev->pcix_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
edev->pcie_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
edev->af_cap = pnv_eeh_find_cap(pdn, PCI_CAP_ID_AF);
edev->aer_cap = pnv_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
if ((pdev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
edev->mode |= EEH_DEV_BRIDGE;
if (edev->pcie_cap) {
pnv_pci_cfg_read(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
2, &pcie_flags);
pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
edev->mode |= EEH_DEV_ROOT_PORT;
else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
edev->mode |= EEH_DEV_DS_PORT;
}
}
edev->pe_config_addr = phb->ioda.pe_rmap[config_addr];
upstream_pe = pnv_eeh_get_upstream_pe(pdev);
/* Create PE */
ret = eeh_pe_tree_insert(edev, upstream_pe);
if (ret) {
eeh_edev_warn(edev, "Failed to add device to PE (code %d)\n", ret);
return NULL;
}
/*
* If the PE contains any one of following adapters, the
* PCI config space can't be accessed when dumping EEH log.
* Otherwise, we will run into fenced PHB caused by shortage
* of outbound credits in the adapter. The PCI config access
* should be blocked until PE reset. MMIO access is dropped
* by hardware certainly. In order to drop PCI config requests,
* one more flag (EEH_PE_CFG_RESTRICTED) is introduced, which
* will be checked in the backend for PE state retrieval. If
* the PE becomes frozen for the first time and the flag has
* been set for the PE, we will set EEH_PE_CFG_BLOCKED for
* that PE to block its config space.
*
* Broadcom BCM5718 2-ports NICs (14e4:1656)
* Broadcom Austin 4-ports NICs (14e4:1657)
* Broadcom Shiner 4-ports 1G NICs (14e4:168a)
* Broadcom Shiner 2-ports 10G NICs (14e4:168e)
*/
if ((pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
pdn->device_id == 0x1656) ||
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
pdn->device_id == 0x1657) ||
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
pdn->device_id == 0x168a) ||
(pdn->vendor_id == PCI_VENDOR_ID_BROADCOM &&
pdn->device_id == 0x168e))
edev->pe->state |= EEH_PE_CFG_RESTRICTED;
/*
* Cache the PE primary bus, which can't be fetched when
* full hotplug is in progress. In that case, all child
* PCI devices of the PE are expected to be removed prior
* to PE reset.
*/
if (!(edev->pe->state & EEH_PE_PRI_BUS)) {
edev->pe->bus = pci_find_bus(hose->global_number,
pdn->busno);
if (edev->pe->bus)
edev->pe->state |= EEH_PE_PRI_BUS;
}
/*
* Enable EEH explicitly so that we will do EEH check
* while accessing I/O stuff
*/
if (!eeh_has_flag(EEH_ENABLED)) {
enable_irq(eeh_event_irq);
pnv_eeh_enable_phbs();
eeh_add_flag(EEH_ENABLED);
}
/* Save memory bars */
eeh_save_bars(edev);
eeh_edev_dbg(edev, "EEH enabled on device\n");
return edev;
}
/**
* pnv_eeh_set_option - Initialize EEH or MMIO/DMA reenable
* @pe: EEH PE
* @option: operation to be issued
*
* The function is used to control the EEH functionality globally.
* Currently, following options are support according to PAPR:
* Enable EEH, Disable EEH, Enable MMIO and Enable DMA
*/
static int pnv_eeh_set_option(struct eeh_pe *pe, int option)
{
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
bool freeze_pe = false;
int opt;
s64 rc;
switch (option) {
case EEH_OPT_DISABLE:
return -EPERM;
case EEH_OPT_ENABLE:
return 0;
case EEH_OPT_THAW_MMIO:
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_MMIO;
break;
case EEH_OPT_THAW_DMA:
opt = OPAL_EEH_ACTION_CLEAR_FREEZE_DMA;
break;
case EEH_OPT_FREEZE_PE:
freeze_pe = true;
opt = OPAL_EEH_ACTION_SET_FREEZE_ALL;
break;
default:
pr_warn("%s: Invalid option %d\n", __func__, option);
return -EINVAL;
}
/* Freeze master and slave PEs if PHB supports compound PEs */
if (freeze_pe) {
if (phb->freeze_pe) {
phb->freeze_pe(phb, pe->addr);
return 0;
}
rc = opal_pci_eeh_freeze_set(phb->opal_id, pe->addr, opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
__func__, rc, phb->hose->global_number,
pe->addr);
return -EIO;
}
return 0;
}
/* Unfreeze master and slave PEs if PHB supports */
if (phb->unfreeze_pe)
return phb->unfreeze_pe(phb, pe->addr, opt);
rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe->addr, opt);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld enable %d for PHB#%x-PE#%x\n",
__func__, rc, option, phb->hose->global_number,
pe->addr);
return -EIO;
}
return 0;
}
static void pnv_eeh_get_phb_diag(struct eeh_pe *pe)
{
struct pnv_phb *phb = pe->phb->private_data;
s64 rc;
rc = opal_pci_get_phb_diag_data2(phb->opal_id, pe->data,
phb->diag_data_size);
if (rc != OPAL_SUCCESS)
pr_warn("%s: Failure %lld getting PHB#%x diag-data\n",
__func__, rc, pe->phb->global_number);
}
static int pnv_eeh_get_phb_state(struct eeh_pe *pe)
{
struct pnv_phb *phb = pe->phb->private_data;
u8 fstate = 0;
__be16 pcierr = 0;
s64 rc;
int result = 0;
rc = opal_pci_eeh_freeze_status(phb->opal_id,
pe->addr,
&fstate,
&pcierr,
NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting PHB#%x state\n",
__func__, rc, phb->hose->global_number);
return EEH_STATE_NOT_SUPPORT;
}
/*
* Check PHB state. If the PHB is frozen for the
* first time, to dump the PHB diag-data.
*/
if (be16_to_cpu(pcierr) != OPAL_EEH_PHB_ERROR) {
result = (EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE |
EEH_STATE_MMIO_ENABLED |
EEH_STATE_DMA_ENABLED);
} else if (!(pe->state & EEH_PE_ISOLATED)) {
eeh_pe_mark_isolated(pe);
pnv_eeh_get_phb_diag(pe);
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
}
return result;
}
static int pnv_eeh_get_pe_state(struct eeh_pe *pe)
{
struct pnv_phb *phb = pe->phb->private_data;
u8 fstate = 0;
__be16 pcierr = 0;
s64 rc;
int result;
/*
* We don't clobber hardware frozen state until PE
* reset is completed. In order to keep EEH core
* moving forward, we have to return operational
* state during PE reset.
*/
if (pe->state & EEH_PE_RESET) {
result = (EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE |
EEH_STATE_MMIO_ENABLED |
EEH_STATE_DMA_ENABLED);
return result;
}
/*
* Fetch PE state from hardware. If the PHB
* supports compound PE, let it handle that.
*/
if (phb->get_pe_state) {
fstate = phb->get_pe_state(phb, pe->addr);
} else {
rc = opal_pci_eeh_freeze_status(phb->opal_id,
pe->addr,
&fstate,
&pcierr,
NULL);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld getting PHB#%x-PE%x state\n",
__func__, rc, phb->hose->global_number,
pe->addr);
return EEH_STATE_NOT_SUPPORT;
}
}
/* Figure out state */
switch (fstate) {
case OPAL_EEH_STOPPED_NOT_FROZEN:
result = (EEH_STATE_MMIO_ACTIVE |
EEH_STATE_DMA_ACTIVE |
EEH_STATE_MMIO_ENABLED |
EEH_STATE_DMA_ENABLED);
break;
case OPAL_EEH_STOPPED_MMIO_FREEZE:
result = (EEH_STATE_DMA_ACTIVE |
EEH_STATE_DMA_ENABLED);
break;
case OPAL_EEH_STOPPED_DMA_FREEZE:
result = (EEH_STATE_MMIO_ACTIVE |
EEH_STATE_MMIO_ENABLED);
break;
case OPAL_EEH_STOPPED_MMIO_DMA_FREEZE:
result = 0;
break;
case OPAL_EEH_STOPPED_RESET:
result = EEH_STATE_RESET_ACTIVE;
break;
case OPAL_EEH_STOPPED_TEMP_UNAVAIL:
result = EEH_STATE_UNAVAILABLE;
break;
case OPAL_EEH_STOPPED_PERM_UNAVAIL:
result = EEH_STATE_NOT_SUPPORT;
break;
default:
result = EEH_STATE_NOT_SUPPORT;
pr_warn("%s: Invalid PHB#%x-PE#%x state %x\n",
__func__, phb->hose->global_number,
pe->addr, fstate);
}
/*
* If PHB supports compound PE, to freeze all
* slave PEs for consistency.
*
* If the PE is switching to frozen state for the
* first time, to dump the PHB diag-data.
*/
if (!(result & EEH_STATE_NOT_SUPPORT) &&
!(result & EEH_STATE_UNAVAILABLE) &&
!(result & EEH_STATE_MMIO_ACTIVE) &&
!(result & EEH_STATE_DMA_ACTIVE) &&
!(pe->state & EEH_PE_ISOLATED)) {
if (phb->freeze_pe)
phb->freeze_pe(phb, pe->addr);
eeh_pe_mark_isolated(pe);
pnv_eeh_get_phb_diag(pe);
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
}
return result;
}
/**
* pnv_eeh_get_state - Retrieve PE state
* @pe: EEH PE
* @delay: delay while PE state is temporarily unavailable
*
* Retrieve the state of the specified PE. For IODA-compitable
* platform, it should be retrieved from IODA table. Therefore,
* we prefer passing down to hardware implementation to handle
* it.
*/
static int pnv_eeh_get_state(struct eeh_pe *pe, int *delay)
{
int ret;
if (pe->type & EEH_PE_PHB)
ret = pnv_eeh_get_phb_state(pe);
else
ret = pnv_eeh_get_pe_state(pe);
if (!delay)
return ret;
/*
* If the PE state is temporarily unavailable,
* to inform the EEH core delay for default
* period (1 second)
*/
*delay = 0;
if (ret & EEH_STATE_UNAVAILABLE)
*delay = 1000;
return ret;
}
static s64 pnv_eeh_poll(unsigned long id)
{
s64 rc = OPAL_HARDWARE;
while (1) {
rc = opal_pci_poll(id);
if (rc <= 0)
break;
if (system_state < SYSTEM_RUNNING)
udelay(1000 * rc);
else
msleep(rc);
}
return rc;
}
int pnv_eeh_phb_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_HARDWARE;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/* Issue PHB complete reset request */
if (option == EEH_RESET_FUNDAMENTAL ||
option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PHB_COMPLETE,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PHB_COMPLETE,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/*
* Poll state of the PHB until the request is done
* successfully. The PHB reset is usually PHB complete
* reset followed by hot reset on root bus. So we also
* need the PCI bus settlement delay.
*/
if (rc > 0)
rc = pnv_eeh_poll(phb->opal_id);
if (option == EEH_RESET_DEACTIVATE) {
if (system_state < SYSTEM_RUNNING)
udelay(1000 * EEH_PE_RST_SETTLE_TIME);
else
msleep(EEH_PE_RST_SETTLE_TIME);
}
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int pnv_eeh_root_reset(struct pci_controller *hose, int option)
{
struct pnv_phb *phb = hose->private_data;
s64 rc = OPAL_HARDWARE;
pr_debug("%s: Reset PHB#%x, option=%d\n",
__func__, hose->global_number, option);
/*
* During the reset deassert time, we needn't care
* the reset scope because the firmware does nothing
* for fundamental or hot reset during deassert phase.
*/
if (option == EEH_RESET_FUNDAMENTAL)
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PCI_FUNDAMENTAL,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_HOT)
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PCI_HOT,
OPAL_ASSERT_RESET);
else if (option == EEH_RESET_DEACTIVATE)
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PCI_HOT,
OPAL_DEASSERT_RESET);
if (rc < 0)
goto out;
/* Poll state of the PHB until the request is done */
if (rc > 0)
rc = pnv_eeh_poll(phb->opal_id);
if (option == EEH_RESET_DEACTIVATE)
msleep(EEH_PE_RST_SETTLE_TIME);
out:
if (rc != OPAL_SUCCESS)
return -EIO;
return 0;
}
static int __pnv_eeh_bridge_reset(struct pci_dev *dev, int option)
{
struct pci_dn *pdn = pci_get_pdn_by_devfn(dev->bus, dev->devfn);
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
int aer = edev ? edev->aer_cap : 0;
u32 ctrl;
pr_debug("%s: Secondary Reset PCI bus %04x:%02x with option %d\n",
__func__, pci_domain_nr(dev->bus),
dev->bus->number, option);
switch (option) {
case EEH_RESET_FUNDAMENTAL:
case EEH_RESET_HOT:
/* Don't report linkDown event */
if (aer) {
eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
4, &ctrl);
ctrl |= PCI_ERR_UNC_SURPDN;
eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
4, ctrl);
}
eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
msleep(EEH_PE_RST_HOLD_TIME);
break;
case EEH_RESET_DEACTIVATE:
eeh_ops->read_config(edev, PCI_BRIDGE_CONTROL, 2, &ctrl);
ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
eeh_ops->write_config(edev, PCI_BRIDGE_CONTROL, 2, ctrl);
msleep(EEH_PE_RST_SETTLE_TIME);
/* Continue reporting linkDown event */
if (aer) {
eeh_ops->read_config(edev, aer + PCI_ERR_UNCOR_MASK,
4, &ctrl);
ctrl &= ~PCI_ERR_UNC_SURPDN;
eeh_ops->write_config(edev, aer + PCI_ERR_UNCOR_MASK,
4, ctrl);
}
break;
}
return 0;
}
static int pnv_eeh_bridge_reset(struct pci_dev *pdev, int option)
{
struct pci_controller *hose = pci_bus_to_host(pdev->bus);
struct pnv_phb *phb = hose->private_data;
struct device_node *dn = pci_device_to_OF_node(pdev);
uint64_t id = PCI_SLOT_ID(phb->opal_id,
(pdev->bus->number << 8) | pdev->devfn);
uint8_t scope;
int64_t rc;
/* Hot reset to the bus if firmware cannot handle */
if (!dn || !of_get_property(dn, "ibm,reset-by-firmware", NULL))
return __pnv_eeh_bridge_reset(pdev, option);
pr_debug("%s: FW reset PCI bus %04x:%02x with option %d\n",
__func__, pci_domain_nr(pdev->bus),
pdev->bus->number, option);
switch (option) {
case EEH_RESET_FUNDAMENTAL:
scope = OPAL_RESET_PCI_FUNDAMENTAL;
break;
case EEH_RESET_HOT:
scope = OPAL_RESET_PCI_HOT;
break;
case EEH_RESET_DEACTIVATE:
return 0;
default:
dev_dbg(&pdev->dev, "%s: Unsupported reset %d\n",
__func__, option);
return -EINVAL;
}
rc = opal_pci_reset(id, scope, OPAL_ASSERT_RESET);
if (rc <= OPAL_SUCCESS)
goto out;
rc = pnv_eeh_poll(id);
out:
return (rc == OPAL_SUCCESS) ? 0 : -EIO;
}
void pnv_pci_reset_secondary_bus(struct pci_dev *dev)
{
struct pci_controller *hose;
if (pci_is_root_bus(dev->bus)) {
hose = pci_bus_to_host(dev->bus);
pnv_eeh_root_reset(hose, EEH_RESET_HOT);
pnv_eeh_root_reset(hose, EEH_RESET_DEACTIVATE);
} else {
pnv_eeh_bridge_reset(dev, EEH_RESET_HOT);
pnv_eeh_bridge_reset(dev, EEH_RESET_DEACTIVATE);
}
}
static void pnv_eeh_wait_for_pending(struct pci_dn *pdn, const char *type,
int pos, u16 mask)
{
struct eeh_dev *edev = pdn->edev;
int i, status = 0;
/* Wait for Transaction Pending bit to be cleared */
for (i = 0; i < 4; i++) {
eeh_ops->read_config(edev, pos, 2, &status);
if (!(status & mask))
return;
msleep((1 << i) * 100);
}
pr_warn("%s: Pending transaction while issuing %sFLR to %04x:%02x:%02x.%01x\n",
__func__, type,
pdn->phb->global_number, pdn->busno,
PCI_SLOT(pdn->devfn), PCI_FUNC(pdn->devfn));
}
static int pnv_eeh_do_flr(struct pci_dn *pdn, int option)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
u32 reg = 0;
if (WARN_ON(!edev->pcie_cap))
return -ENOTTY;
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCAP, 4, &reg);
if (!(reg & PCI_EXP_DEVCAP_FLR))
return -ENOTTY;
switch (option) {
case EEH_RESET_HOT:
case EEH_RESET_FUNDAMENTAL:
pnv_eeh_wait_for_pending(pdn, "",
edev->pcie_cap + PCI_EXP_DEVSTA,
PCI_EXP_DEVSTA_TRPND);
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
4, &reg);
reg |= PCI_EXP_DEVCTL_BCR_FLR;
eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
4, reg);
msleep(EEH_PE_RST_HOLD_TIME);
break;
case EEH_RESET_DEACTIVATE:
eeh_ops->read_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
4, &reg);
reg &= ~PCI_EXP_DEVCTL_BCR_FLR;
eeh_ops->write_config(edev, edev->pcie_cap + PCI_EXP_DEVCTL,
4, reg);
msleep(EEH_PE_RST_SETTLE_TIME);
break;
}
return 0;
}
static int pnv_eeh_do_af_flr(struct pci_dn *pdn, int option)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
u32 cap = 0;
if (WARN_ON(!edev->af_cap))
return -ENOTTY;
eeh_ops->read_config(edev, edev->af_cap + PCI_AF_CAP, 1, &cap);
if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
return -ENOTTY;
switch (option) {
case EEH_RESET_HOT:
case EEH_RESET_FUNDAMENTAL:
/*
* Wait for Transaction Pending bit to clear. A word-aligned
* test is used, so we use the control offset rather than status
* and shift the test bit to match.
*/
pnv_eeh_wait_for_pending(pdn, "AF",
edev->af_cap + PCI_AF_CTRL,
PCI_AF_STATUS_TP << 8);
eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL,
1, PCI_AF_CTRL_FLR);
msleep(EEH_PE_RST_HOLD_TIME);
break;
case EEH_RESET_DEACTIVATE:
eeh_ops->write_config(edev, edev->af_cap + PCI_AF_CTRL, 1, 0);
msleep(EEH_PE_RST_SETTLE_TIME);
break;
}
return 0;
}
static int pnv_eeh_reset_vf_pe(struct eeh_pe *pe, int option)
{
struct eeh_dev *edev;
struct pci_dn *pdn;
int ret;
/* The VF PE should have only one child device */
edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, entry);
pdn = eeh_dev_to_pdn(edev);
if (!pdn)
return -ENXIO;
ret = pnv_eeh_do_flr(pdn, option);
if (!ret)
return ret;
return pnv_eeh_do_af_flr(pdn, option);
}
/**
* pnv_eeh_reset - Reset the specified PE
* @pe: EEH PE
* @option: reset option
*
* Do reset on the indicated PE. For PCI bus sensitive PE,
* we need to reset the parent p2p bridge. The PHB has to
* be reinitialized if the p2p bridge is root bridge. For
* PCI device sensitive PE, we will try to reset the device
* through FLR. For now, we don't have OPAL APIs to do HARD
* reset yet, so all reset would be SOFT (HOT) reset.
*/
static int pnv_eeh_reset(struct eeh_pe *pe, int option)
{
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb;
struct pci_bus *bus;
int64_t rc;
/*
* For PHB reset, we always have complete reset. For those PEs whose
* primary bus derived from root complex (root bus) or root port
* (usually bus#1), we apply hot or fundamental reset on the root port.
* For other PEs, we always have hot reset on the PE primary bus.
*
* Here, we have different design to pHyp, which always clear the
* frozen state during PE reset. However, the good idea here from
* benh is to keep frozen state before we get PE reset done completely
* (until BAR restore). With the frozen state, HW drops illegal IO
* or MMIO access, which can incur recursive frozen PE during PE
* reset. The side effect is that EEH core has to clear the frozen
* state explicitly after BAR restore.
*/
if (pe->type & EEH_PE_PHB)
return pnv_eeh_phb_reset(hose, option);
/*
* The frozen PE might be caused by PAPR error injection
* registers, which are expected to be cleared after hitting
* frozen PE as stated in the hardware spec. Unfortunately,
* that's not true on P7IOC. So we have to clear it manually
* to avoid recursive EEH errors during recovery.
*/
phb = hose->private_data;
if (phb->model == PNV_PHB_MODEL_P7IOC &&
(option == EEH_RESET_HOT ||
option == EEH_RESET_FUNDAMENTAL)) {
rc = opal_pci_reset(phb->opal_id,
OPAL_RESET_PHB_ERROR,
OPAL_ASSERT_RESET);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld clearing error injection registers\n",
__func__, rc);
return -EIO;
}
}
if (pe->type & EEH_PE_VF)
return pnv_eeh_reset_vf_pe(pe, option);
bus = eeh_pe_bus_get(pe);
if (!bus) {
pr_err("%s: Cannot find PCI bus for PHB#%x-PE#%x\n",
__func__, pe->phb->global_number, pe->addr);
return -EIO;
}
if (pci_is_root_bus(bus))
return pnv_eeh_root_reset(hose, option);
/*
* For hot resets try use the generic PCI error recovery reset
* functions. These correctly handles the case where the secondary
* bus is behind a hotplug slot and it will use the slot provided
* reset methods to prevent spurious hotplug events during the reset.
*
* Fundamental resets need to be handled internally to EEH since the
* PCI core doesn't really have a concept of a fundamental reset,
* mainly because there's no standard way to generate one. Only a
* few devices require an FRESET so it should be fine.
*/
if (option != EEH_RESET_FUNDAMENTAL) {
/*
* NB: Skiboot and pnv_eeh_bridge_reset() also no-op the
* de-assert step. It's like the OPAL reset API was
* poorly designed or something...
*/
if (option == EEH_RESET_DEACTIVATE)
return 0;
rc = pci_bus_error_reset(bus->self);
if (!rc)
return 0;
}
/* otherwise, use the generic bridge reset. this might call into FW */
if (pci_is_root_bus(bus->parent))
return pnv_eeh_root_reset(hose, option);
return pnv_eeh_bridge_reset(bus->self, option);
}
/**
* pnv_eeh_get_log - Retrieve error log
* @pe: EEH PE
* @severity: temporary or permanent error log
* @drv_log: driver log to be combined with retrieved error log
* @len: length of driver log
*
* Retrieve the temporary or permanent error from the PE.
*/
static int pnv_eeh_get_log(struct eeh_pe *pe, int severity,
char *drv_log, unsigned long len)
{
if (!eeh_has_flag(EEH_EARLY_DUMP_LOG))
pnv_pci_dump_phb_diag_data(pe->phb, pe->data);
return 0;
}
/**
* pnv_eeh_configure_bridge - Configure PCI bridges in the indicated PE
* @pe: EEH PE
*
* The function will be called to reconfigure the bridges included
* in the specified PE so that the mulfunctional PE would be recovered
* again.
*/
static int pnv_eeh_configure_bridge(struct eeh_pe *pe)
{
return 0;
}
/**
* pnv_pe_err_inject - Inject specified error to the indicated PE
* @pe: the indicated PE
* @type: error type
* @func: specific error type
* @addr: address
* @mask: address mask
*
* The routine is called to inject specified error, which is
* determined by @type and @func, to the indicated PE for
* testing purpose.
*/
static int pnv_eeh_err_inject(struct eeh_pe *pe, int type, int func,
unsigned long addr, unsigned long mask)
{
struct pci_controller *hose = pe->phb;
struct pnv_phb *phb = hose->private_data;
s64 rc;
if (type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR &&
type != OPAL_ERR_INJECT_TYPE_IOA_BUS_ERR64) {
pr_warn("%s: Invalid error type %d\n",
__func__, type);
return -ERANGE;
}
if (func < OPAL_ERR_INJECT_FUNC_IOA_LD_MEM_ADDR ||
func > OPAL_ERR_INJECT_FUNC_IOA_DMA_WR_TARGET) {
pr_warn("%s: Invalid error function %d\n",
__func__, func);
return -ERANGE;
}
/* Firmware supports error injection ? */
if (!opal_check_token(OPAL_PCI_ERR_INJECT)) {
pr_warn("%s: Firmware doesn't support error injection\n",
__func__);
return -ENXIO;
}
/* Do error injection */
rc = opal_pci_err_inject(phb->opal_id, pe->addr,
type, func, addr, mask);
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failure %lld injecting error "
"%d-%d to PHB#%x-PE#%x\n",
__func__, rc, type, func,
hose->global_number, pe->addr);
return -EIO;
}
return 0;
}
static inline bool pnv_eeh_cfg_blocked(struct pci_dn *pdn)
{
struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
if (!edev || !edev->pe)
return false;
/*
* We will issue FLR or AF FLR to all VFs, which are contained
* in VF PE. It relies on the EEH PCI config accessors. So we
* can't block them during the window.
*/
if (edev->physfn && (edev->pe->state & EEH_PE_RESET))
return false;
if (edev->pe->state & EEH_PE_CFG_BLOCKED)
return true;
return false;
}
static int pnv_eeh_read_config(struct eeh_dev *edev,
int where, int size, u32 *val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (pnv_eeh_cfg_blocked(pdn)) {
*val = 0xFFFFFFFF;
return PCIBIOS_SET_FAILED;
}
return pnv_pci_cfg_read(pdn, where, size, val);
}
static int pnv_eeh_write_config(struct eeh_dev *edev,
int where, int size, u32 val)
{
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
if (!pdn)
return PCIBIOS_DEVICE_NOT_FOUND;
if (pnv_eeh_cfg_blocked(pdn))
return PCIBIOS_SET_FAILED;
return pnv_pci_cfg_write(pdn, where, size, val);
}
static void pnv_eeh_dump_hub_diag_common(struct OpalIoP7IOCErrorData *data)
{
/* GEM */
if (data->gemXfir || data->gemRfir ||
data->gemRirqfir || data->gemMask || data->gemRwof)
pr_info(" GEM: %016llx %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->gemXfir),
be64_to_cpu(data->gemRfir),
be64_to_cpu(data->gemRirqfir),
be64_to_cpu(data->gemMask),
be64_to_cpu(data->gemRwof));
/* LEM */
if (data->lemFir || data->lemErrMask ||
data->lemAction0 || data->lemAction1 || data->lemWof)
pr_info(" LEM: %016llx %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->lemFir),
be64_to_cpu(data->lemErrMask),
be64_to_cpu(data->lemAction0),
be64_to_cpu(data->lemAction1),
be64_to_cpu(data->lemWof));
}
static void pnv_eeh_get_and_dump_hub_diag(struct pci_controller *hose)
{
struct pnv_phb *phb = hose->private_data;
struct OpalIoP7IOCErrorData *data =
(struct OpalIoP7IOCErrorData*)phb->diag_data;
long rc;
rc = opal_pci_get_hub_diag_data(phb->hub_id, data, sizeof(*data));
if (rc != OPAL_SUCCESS) {
pr_warn("%s: Failed to get HUB#%llx diag-data (%ld)\n",
__func__, phb->hub_id, rc);
return;
}
switch (be16_to_cpu(data->type)) {
case OPAL_P7IOC_DIAG_TYPE_RGC:
pr_info("P7IOC diag-data for RGC\n\n");
pnv_eeh_dump_hub_diag_common(data);
if (data->rgc.rgcStatus || data->rgc.rgcLdcp)
pr_info(" RGC: %016llx %016llx\n",
be64_to_cpu(data->rgc.rgcStatus),
be64_to_cpu(data->rgc.rgcLdcp));
break;
case OPAL_P7IOC_DIAG_TYPE_BI:
pr_info("P7IOC diag-data for BI %s\n\n",
data->bi.biDownbound ? "Downbound" : "Upbound");
pnv_eeh_dump_hub_diag_common(data);
if (data->bi.biLdcp0 || data->bi.biLdcp1 ||
data->bi.biLdcp2 || data->bi.biFenceStatus)
pr_info(" BI: %016llx %016llx %016llx %016llx\n",
be64_to_cpu(data->bi.biLdcp0),
be64_to_cpu(data->bi.biLdcp1),
be64_to_cpu(data->bi.biLdcp2),
be64_to_cpu(data->bi.biFenceStatus));
break;
case OPAL_P7IOC_DIAG_TYPE_CI:
pr_info("P7IOC diag-data for CI Port %d\n\n",
data->ci.ciPort);
pnv_eeh_dump_hub_diag_common(data);
if (data->ci.ciPortStatus || data->ci.ciPortLdcp)
pr_info(" CI: %016llx %016llx\n",
be64_to_cpu(data->ci.ciPortStatus),
be64_to_cpu(data->ci.ciPortLdcp));
break;
case OPAL_P7IOC_DIAG_TYPE_MISC:
pr_info("P7IOC diag-data for MISC\n\n");
pnv_eeh_dump_hub_diag_common(data);
break;
case OPAL_P7IOC_DIAG_TYPE_I2C:
pr_info("P7IOC diag-data for I2C\n\n");
pnv_eeh_dump_hub_diag_common(data);
break;
default:
pr_warn("%s: Invalid type of HUB#%llx diag-data (%d)\n",
__func__, phb->hub_id, data->type);
}
}
static int pnv_eeh_get_pe(struct pci_controller *hose,
u16 pe_no, struct eeh_pe **pe)
{
struct pnv_phb *phb = hose->private_data;
struct pnv_ioda_pe *pnv_pe;
struct eeh_pe *dev_pe;
/*
* If PHB supports compound PE, to fetch
* the master PE because slave PE is invisible
* to EEH core.
*/
pnv_pe = &phb->ioda.pe_array[pe_no];
if (pnv_pe->flags & PNV_IODA_PE_SLAVE) {
pnv_pe = pnv_pe->master;
WARN_ON(!pnv_pe ||
!(pnv_pe->flags & PNV_IODA_PE_MASTER));
pe_no = pnv_pe->pe_number;
}
/* Find the PE according to PE# */
dev_pe = eeh_pe_get(hose, pe_no);
if (!dev_pe)
return -EEXIST;
/* Freeze the (compound) PE */
*pe = dev_pe;
if (!(dev_pe->state & EEH_PE_ISOLATED))
phb->freeze_pe(phb, pe_no);
/*
* At this point, we're sure the (compound) PE should
* have been frozen. However, we still need poke until
* hitting the frozen PE on top level.
*/
dev_pe = dev_pe->parent;
while (dev_pe && !(dev_pe->type & EEH_PE_PHB)) {
int ret;
ret = eeh_ops->get_state(dev_pe, NULL);
if (ret <= 0 || eeh_state_active(ret)) {
dev_pe = dev_pe->parent;
continue;
}
/* Frozen parent PE */
*pe = dev_pe;
if (!(dev_pe->state & EEH_PE_ISOLATED))
phb->freeze_pe(phb, dev_pe->addr);
/* Next one */
dev_pe = dev_pe->parent;
}
return 0;
}
/**
* pnv_eeh_next_error - Retrieve next EEH error to handle
* @pe: Affected PE
*
* The function is expected to be called by EEH core while it gets
* special EEH event (without binding PE). The function calls to
* OPAL APIs for next error to handle. The informational error is
* handled internally by platform. However, the dead IOC, dead PHB,
* fenced PHB and frozen PE should be handled by EEH core eventually.
*/
static int pnv_eeh_next_error(struct eeh_pe **pe)
{
struct pci_controller *hose;
struct pnv_phb *phb;
struct eeh_pe *phb_pe, *parent_pe;
__be64 frozen_pe_no;
__be16 err_type, severity;
long rc;
int state, ret = EEH_NEXT_ERR_NONE;
/*
* While running here, it's safe to purge the event queue. The
* event should still be masked.
*/
eeh_remove_event(NULL, false);
list_for_each_entry(hose, &hose_list, list_node) {
/*
* If the subordinate PCI buses of the PHB has been
* removed or is exactly under error recovery, we
* needn't take care of it any more.
*/
phb = hose->private_data;
phb_pe = eeh_phb_pe_get(hose);
if (!phb_pe || (phb_pe->state & EEH_PE_ISOLATED))
continue;
rc = opal_pci_next_error(phb->opal_id,
&frozen_pe_no, &err_type, &severity);
if (rc != OPAL_SUCCESS) {
pr_devel("%s: Invalid return value on "
"PHB#%x (0x%lx) from opal_pci_next_error",
__func__, hose->global_number, rc);
continue;
}
/* If the PHB doesn't have error, stop processing */
if (be16_to_cpu(err_type) == OPAL_EEH_NO_ERROR ||
be16_to_cpu(severity) == OPAL_EEH_SEV_NO_ERROR) {
pr_devel("%s: No error found on PHB#%x\n",
__func__, hose->global_number);
continue;
}
/*
* Processing the error. We're expecting the error with
* highest priority reported upon multiple errors on the
* specific PHB.
*/
pr_devel("%s: Error (%d, %d, %llu) on PHB#%x\n",
__func__, be16_to_cpu(err_type),
be16_to_cpu(severity), be64_to_cpu(frozen_pe_no),
hose->global_number);
switch (be16_to_cpu(err_type)) {
case OPAL_EEH_IOC_ERROR:
if (be16_to_cpu(severity) == OPAL_EEH_SEV_IOC_DEAD) {
pr_err("EEH: dead IOC detected\n");
ret = EEH_NEXT_ERR_DEAD_IOC;
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
pr_info("EEH: IOC informative error "
"detected\n");
pnv_eeh_get_and_dump_hub_diag(hose);
ret = EEH_NEXT_ERR_NONE;
}
break;
case OPAL_EEH_PHB_ERROR:
if (be16_to_cpu(severity) == OPAL_EEH_SEV_PHB_DEAD) {
*pe = phb_pe;
pr_err("EEH: dead PHB#%x detected, "
"location: %s\n",
hose->global_number,
eeh_pe_loc_get(phb_pe));
ret = EEH_NEXT_ERR_DEAD_PHB;
} else if (be16_to_cpu(severity) ==
OPAL_EEH_SEV_PHB_FENCED) {
*pe = phb_pe;
pr_err("EEH: Fenced PHB#%x detected, "
"location: %s\n",
hose->global_number,
eeh_pe_loc_get(phb_pe));
ret = EEH_NEXT_ERR_FENCED_PHB;
} else if (be16_to_cpu(severity) == OPAL_EEH_SEV_INF) {
pr_info("EEH: PHB#%x informative error "
"detected, location: %s\n",
hose->global_number,
eeh_pe_loc_get(phb_pe));
pnv_eeh_get_phb_diag(phb_pe);
pnv_pci_dump_phb_diag_data(hose, phb_pe->data);
ret = EEH_NEXT_ERR_NONE;
}
break;
case OPAL_EEH_PE_ERROR:
/*
* If we can't find the corresponding PE, we
* just try to unfreeze.
*/
if (pnv_eeh_get_pe(hose,
be64_to_cpu(frozen_pe_no), pe)) {
pr_info("EEH: Clear non-existing PHB#%x-PE#%llx\n",
hose->global_number, be64_to_cpu(frozen_pe_no));
pr_info("EEH: PHB location: %s\n",
eeh_pe_loc_get(phb_pe));
/* Dump PHB diag-data */
rc = opal_pci_get_phb_diag_data2(phb->opal_id,
phb->diag_data, phb->diag_data_size);
if (rc == OPAL_SUCCESS)
pnv_pci_dump_phb_diag_data(hose,
phb->diag_data);
/* Try best to clear it */
opal_pci_eeh_freeze_clear(phb->opal_id,
be64_to_cpu(frozen_pe_no),
OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
ret = EEH_NEXT_ERR_NONE;
} else if ((*pe)->state & EEH_PE_ISOLATED ||
eeh_pe_passed(*pe)) {
ret = EEH_NEXT_ERR_NONE;
} else {
pr_err("EEH: Frozen PE#%x "
"on PHB#%x detected\n",
(*pe)->addr,
(*pe)->phb->global_number);
pr_err("EEH: PE location: %s, "
"PHB location: %s\n",
eeh_pe_loc_get(*pe),
eeh_pe_loc_get(phb_pe));
ret = EEH_NEXT_ERR_FROZEN_PE;
}
break;
default:
pr_warn("%s: Unexpected error type %d\n",
__func__, be16_to_cpu(err_type));
}
/*
* EEH core will try recover from fenced PHB or
* frozen PE. In the time for frozen PE, EEH core
* enable IO path for that before collecting logs,
* but it ruins the site. So we have to dump the
* log in advance here.
*/
if ((ret == EEH_NEXT_ERR_FROZEN_PE ||
ret == EEH_NEXT_ERR_FENCED_PHB) &&
!((*pe)->state & EEH_PE_ISOLATED)) {
eeh_pe_mark_isolated(*pe);
pnv_eeh_get_phb_diag(*pe);
if (eeh_has_flag(EEH_EARLY_DUMP_LOG))
pnv_pci_dump_phb_diag_data((*pe)->phb,
(*pe)->data);
}
/*
* We probably have the frozen parent PE out there and
* we need have to handle frozen parent PE firstly.
*/
if (ret == EEH_NEXT_ERR_FROZEN_PE) {
parent_pe = (*pe)->parent;
while (parent_pe) {
/* Hit the ceiling ? */
if (parent_pe->type & EEH_PE_PHB)
break;
/* Frozen parent PE ? */
state = eeh_ops->get_state(parent_pe, NULL);
if (state > 0 && !eeh_state_active(state))
*pe = parent_pe;
/* Next parent level */
parent_pe = parent_pe->parent;
}
/* We possibly migrate to another PE */
eeh_pe_mark_isolated(*pe);
}
/*
* If we have no errors on the specific PHB or only
* informative error there, we continue poking it.
* Otherwise, we need actions to be taken by upper
* layer.
*/
if (ret > EEH_NEXT_ERR_INF)
break;
}
/* Unmask the event */
if (ret == EEH_NEXT_ERR_NONE && eeh_enabled())
enable_irq(eeh_event_irq);
return ret;
}
static int pnv_eeh_restore_config(struct eeh_dev *edev)
{
struct pnv_phb *phb;
s64 ret = 0;
if (!edev)
return -EEXIST;
if (edev->physfn)
return 0;
phb = edev->controller->private_data;
ret = opal_pci_reinit(phb->opal_id,
OPAL_REINIT_PCI_DEV, edev->bdfn);
if (ret) {
pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
__func__, edev->bdfn, ret);
return -EIO;
}
return ret;
}
static struct eeh_ops pnv_eeh_ops = {
.name = "powernv",
.probe = pnv_eeh_probe,
.set_option = pnv_eeh_set_option,
.get_state = pnv_eeh_get_state,
.reset = pnv_eeh_reset,
.get_log = pnv_eeh_get_log,
.configure_bridge = pnv_eeh_configure_bridge,
.err_inject = pnv_eeh_err_inject,
.read_config = pnv_eeh_read_config,
.write_config = pnv_eeh_write_config,
.next_error = pnv_eeh_next_error,
.restore_config = pnv_eeh_restore_config,
.notify_resume = NULL
};
/**
* eeh_powernv_init - Register platform dependent EEH operations
*
* EEH initialization on powernv platform. This function should be
* called before any EEH related functions.
*/
static int __init eeh_powernv_init(void)
{
int max_diag_size = PNV_PCI_DIAG_BUF_SIZE;
struct pci_controller *hose;
struct pnv_phb *phb;
int ret = -EINVAL;
if (!firmware_has_feature(FW_FEATURE_OPAL)) {
pr_warn("%s: OPAL is required !\n", __func__);
return -EINVAL;
}
/* Set probe mode */
eeh_add_flag(EEH_PROBE_MODE_DEV);
/*
* P7IOC blocks PCI config access to frozen PE, but PHB3
* doesn't do that. So we have to selectively enable I/O
* prior to collecting error log.
*/
list_for_each_entry(hose, &hose_list, list_node) {
phb = hose->private_data;
if (phb->model == PNV_PHB_MODEL_P7IOC)
eeh_add_flag(EEH_ENABLE_IO_FOR_LOG);
if (phb->diag_data_size > max_diag_size)
max_diag_size = phb->diag_data_size;
break;
}
/*
* eeh_init() allocates the eeh_pe and its aux data buf so the
* size needs to be set before calling eeh_init().
*/
eeh_set_pe_aux_size(max_diag_size);
ppc_md.pcibios_bus_add_device = pnv_pcibios_bus_add_device;
ret = eeh_init(&pnv_eeh_ops);
if (!ret)
pr_info("EEH: PowerNV platform initialized\n");
else
pr_info("EEH: Failed to initialize PowerNV platform (%d)\n", ret);
return ret;
}
machine_arch_initcall(powernv, eeh_powernv_init);