2023-08-30 17:31:07 +02:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef _ASM_RISCV_EXTABLE_H
|
|
|
|
#define _ASM_RISCV_EXTABLE_H
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The exception table consists of pairs of relative offsets: the first
|
|
|
|
* is the relative offset to an instruction that is allowed to fault,
|
|
|
|
* and the second is the relative offset at which the program should
|
|
|
|
* continue. No registers are modified, so it is entirely up to the
|
|
|
|
* continuation code to figure out what to do.
|
|
|
|
*
|
|
|
|
* All the routines below use bits of fixup code that are out of line
|
|
|
|
* with the main instruction path. This means when everything is well,
|
|
|
|
* we don't even have to jump over them. Further, they do not intrude
|
|
|
|
* on our cache or tlb entries.
|
|
|
|
*/
|
|
|
|
|
|
|
|
struct exception_table_entry {
|
|
|
|
int insn, fixup;
|
|
|
|
short type, data;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define ARCH_HAS_RELATIVE_EXTABLE
|
|
|
|
|
|
|
|
#define swap_ex_entry_fixup(a, b, tmp, delta) \
|
|
|
|
do { \
|
|
|
|
(a)->fixup = (b)->fixup + (delta); \
|
|
|
|
(b)->fixup = (tmp).fixup - (delta); \
|
|
|
|
(a)->type = (b)->type; \
|
|
|
|
(b)->type = (tmp).type; \
|
|
|
|
(a)->data = (b)->data; \
|
|
|
|
(b)->data = (tmp).data; \
|
|
|
|
} while (0)
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
#ifdef CONFIG_MMU
|
2023-08-30 17:31:07 +02:00
|
|
|
bool fixup_exception(struct pt_regs *regs);
|
2023-10-24 12:59:35 +02:00
|
|
|
#else
|
|
|
|
static inline bool fixup_exception(struct pt_regs *regs) { return false; }
|
|
|
|
#endif
|
2023-08-30 17:31:07 +02:00
|
|
|
|
|
|
|
#if defined(CONFIG_BPF_JIT) && defined(CONFIG_ARCH_RV64I)
|
|
|
|
bool ex_handler_bpf(const struct exception_table_entry *ex, struct pt_regs *regs);
|
|
|
|
#else
|
|
|
|
static inline bool
|
|
|
|
ex_handler_bpf(const struct exception_table_entry *ex,
|
|
|
|
struct pt_regs *regs)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|