linux-zen-desktop/drivers/gpu/drm/i915/gt/intel_engine_cs.c

2546 lines
69 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2016 Intel Corporation
*/
#include <linux/string_helpers.h>
#include <drm/drm_print.h>
#include "gem/i915_gem_context.h"
#include "gem/i915_gem_internal.h"
2023-10-24 12:59:35 +02:00
#include "gt/intel_gt_print.h"
2023-08-30 17:31:07 +02:00
#include "gt/intel_gt_regs.h"
#include "i915_cmd_parser.h"
#include "i915_drv.h"
#include "i915_irq.h"
#include "i915_reg.h"
#include "intel_breadcrumbs.h"
#include "intel_context.h"
#include "intel_engine.h"
#include "intel_engine_pm.h"
#include "intel_engine_regs.h"
#include "intel_engine_user.h"
#include "intel_execlists_submission.h"
#include "intel_gt.h"
#include "intel_gt_mcr.h"
#include "intel_gt_pm.h"
#include "intel_gt_requests.h"
#include "intel_lrc.h"
#include "intel_lrc_reg.h"
#include "intel_reset.h"
#include "intel_ring.h"
#include "uc/intel_guc_submission.h"
/* Haswell does have the CXT_SIZE register however it does not appear to be
* valid. Now, docs explain in dwords what is in the context object. The full
* size is 70720 bytes, however, the power context and execlist context will
* never be saved (power context is stored elsewhere, and execlists don't work
* on HSW) - so the final size, including the extra state required for the
* Resource Streamer, is 66944 bytes, which rounds to 17 pages.
*/
#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
#define MAX_MMIO_BASES 3
struct engine_info {
u8 class;
u8 instance;
/* mmio bases table *must* be sorted in reverse graphics_ver order */
struct engine_mmio_base {
u32 graphics_ver : 8;
u32 base : 24;
} mmio_bases[MAX_MMIO_BASES];
};
static const struct engine_info intel_engines[] = {
[RCS0] = {
.class = RENDER_CLASS,
.instance = 0,
.mmio_bases = {
{ .graphics_ver = 1, .base = RENDER_RING_BASE }
},
},
[BCS0] = {
.class = COPY_ENGINE_CLASS,
.instance = 0,
.mmio_bases = {
{ .graphics_ver = 6, .base = BLT_RING_BASE }
},
},
[BCS1] = {
.class = COPY_ENGINE_CLASS,
.instance = 1,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
},
},
[BCS2] = {
.class = COPY_ENGINE_CLASS,
.instance = 2,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
},
},
[BCS3] = {
.class = COPY_ENGINE_CLASS,
.instance = 3,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
},
},
[BCS4] = {
.class = COPY_ENGINE_CLASS,
.instance = 4,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
},
},
[BCS5] = {
.class = COPY_ENGINE_CLASS,
.instance = 5,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
},
},
[BCS6] = {
.class = COPY_ENGINE_CLASS,
.instance = 6,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
},
},
[BCS7] = {
.class = COPY_ENGINE_CLASS,
.instance = 7,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
},
},
[BCS8] = {
.class = COPY_ENGINE_CLASS,
.instance = 8,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
},
},
[VCS0] = {
.class = VIDEO_DECODE_CLASS,
.instance = 0,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
{ .graphics_ver = 4, .base = BSD_RING_BASE }
},
},
[VCS1] = {
.class = VIDEO_DECODE_CLASS,
.instance = 1,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
},
},
[VCS2] = {
.class = VIDEO_DECODE_CLASS,
.instance = 2,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
},
},
[VCS3] = {
.class = VIDEO_DECODE_CLASS,
.instance = 3,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
},
},
[VCS4] = {
.class = VIDEO_DECODE_CLASS,
.instance = 4,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
},
},
[VCS5] = {
.class = VIDEO_DECODE_CLASS,
.instance = 5,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
},
},
[VCS6] = {
.class = VIDEO_DECODE_CLASS,
.instance = 6,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
},
},
[VCS7] = {
.class = VIDEO_DECODE_CLASS,
.instance = 7,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
},
},
[VECS0] = {
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 0,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
},
},
[VECS1] = {
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 1,
.mmio_bases = {
{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
},
},
[VECS2] = {
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 2,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
},
},
[VECS3] = {
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 3,
.mmio_bases = {
{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
},
},
[CCS0] = {
.class = COMPUTE_CLASS,
.instance = 0,
.mmio_bases = {
{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
}
},
[CCS1] = {
.class = COMPUTE_CLASS,
.instance = 1,
.mmio_bases = {
{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
}
},
[CCS2] = {
.class = COMPUTE_CLASS,
.instance = 2,
.mmio_bases = {
{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
}
},
[CCS3] = {
.class = COMPUTE_CLASS,
.instance = 3,
.mmio_bases = {
{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
}
},
[GSC0] = {
.class = OTHER_CLASS,
.instance = OTHER_GSC_INSTANCE,
.mmio_bases = {
{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
}
},
};
/**
* intel_engine_context_size() - return the size of the context for an engine
* @gt: the gt
* @class: engine class
*
* Each engine class may require a different amount of space for a context
* image.
*
* Return: size (in bytes) of an engine class specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
{
struct intel_uncore *uncore = gt->uncore;
u32 cxt_size;
BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
switch (class) {
case COMPUTE_CLASS:
fallthrough;
case RENDER_CLASS:
switch (GRAPHICS_VER(gt->i915)) {
default:
MISSING_CASE(GRAPHICS_VER(gt->i915));
return DEFAULT_LR_CONTEXT_RENDER_SIZE;
case 12:
case 11:
return GEN11_LR_CONTEXT_RENDER_SIZE;
case 9:
return GEN9_LR_CONTEXT_RENDER_SIZE;
case 8:
return GEN8_LR_CONTEXT_RENDER_SIZE;
case 7:
if (IS_HASWELL(gt->i915))
return HSW_CXT_TOTAL_SIZE;
cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 6:
cxt_size = intel_uncore_read(uncore, CXT_SIZE);
return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 5:
case 4:
/*
* There is a discrepancy here between the size reported
* by the register and the size of the context layout
* in the docs. Both are described as authorative!
*
* The discrepancy is on the order of a few cachelines,
* but the total is under one page (4k), which is our
* minimum allocation anyway so it should all come
* out in the wash.
*/
cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
drm_dbg(&gt->i915->drm,
"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
GRAPHICS_VER(gt->i915), cxt_size * 64,
cxt_size - 1);
return round_up(cxt_size * 64, PAGE_SIZE);
case 3:
case 2:
/* For the special day when i810 gets merged. */
case 1:
return 0;
}
break;
default:
MISSING_CASE(class);
fallthrough;
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
case COPY_ENGINE_CLASS:
case OTHER_CLASS:
if (GRAPHICS_VER(gt->i915) < 8)
return 0;
return GEN8_LR_CONTEXT_OTHER_SIZE;
}
}
static u32 __engine_mmio_base(struct drm_i915_private *i915,
const struct engine_mmio_base *bases)
{
int i;
for (i = 0; i < MAX_MMIO_BASES; i++)
if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
break;
GEM_BUG_ON(i == MAX_MMIO_BASES);
GEM_BUG_ON(!bases[i].base);
return bases[i].base;
}
static void __sprint_engine_name(struct intel_engine_cs *engine)
{
/*
* Before we know what the uABI name for this engine will be,
* we still would like to keep track of this engine in the debug logs.
* We throw in a ' here as a reminder that this isn't its final name.
*/
GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
intel_engine_class_repr(engine->class),
engine->instance) >= sizeof(engine->name));
}
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
/*
* Though they added more rings on g4x/ilk, they did not add
* per-engine HWSTAM until gen6.
*/
if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
return;
if (GRAPHICS_VER(engine->i915) >= 3)
ENGINE_WRITE(engine, RING_HWSTAM, mask);
else
ENGINE_WRITE16(engine, RING_HWSTAM, mask);
}
static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
/* Mask off all writes into the unknown HWSP */
intel_engine_set_hwsp_writemask(engine, ~0u);
}
static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
{
GEM_DEBUG_WARN_ON(iir);
}
static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
{
u32 reset_domain;
if (ver >= 11) {
static const u32 engine_reset_domains[] = {
[RCS0] = GEN11_GRDOM_RENDER,
[BCS0] = GEN11_GRDOM_BLT,
[BCS1] = XEHPC_GRDOM_BLT1,
[BCS2] = XEHPC_GRDOM_BLT2,
[BCS3] = XEHPC_GRDOM_BLT3,
[BCS4] = XEHPC_GRDOM_BLT4,
[BCS5] = XEHPC_GRDOM_BLT5,
[BCS6] = XEHPC_GRDOM_BLT6,
[BCS7] = XEHPC_GRDOM_BLT7,
[BCS8] = XEHPC_GRDOM_BLT8,
[VCS0] = GEN11_GRDOM_MEDIA,
[VCS1] = GEN11_GRDOM_MEDIA2,
[VCS2] = GEN11_GRDOM_MEDIA3,
[VCS3] = GEN11_GRDOM_MEDIA4,
[VCS4] = GEN11_GRDOM_MEDIA5,
[VCS5] = GEN11_GRDOM_MEDIA6,
[VCS6] = GEN11_GRDOM_MEDIA7,
[VCS7] = GEN11_GRDOM_MEDIA8,
[VECS0] = GEN11_GRDOM_VECS,
[VECS1] = GEN11_GRDOM_VECS2,
[VECS2] = GEN11_GRDOM_VECS3,
[VECS3] = GEN11_GRDOM_VECS4,
[CCS0] = GEN11_GRDOM_RENDER,
[CCS1] = GEN11_GRDOM_RENDER,
[CCS2] = GEN11_GRDOM_RENDER,
[CCS3] = GEN11_GRDOM_RENDER,
[GSC0] = GEN12_GRDOM_GSC,
};
GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
!engine_reset_domains[id]);
reset_domain = engine_reset_domains[id];
} else {
static const u32 engine_reset_domains[] = {
[RCS0] = GEN6_GRDOM_RENDER,
[BCS0] = GEN6_GRDOM_BLT,
[VCS0] = GEN6_GRDOM_MEDIA,
[VCS1] = GEN8_GRDOM_MEDIA2,
[VECS0] = GEN6_GRDOM_VECS,
};
GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
!engine_reset_domains[id]);
reset_domain = engine_reset_domains[id];
}
return reset_domain;
}
static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
u8 logical_instance)
{
const struct engine_info *info = &intel_engines[id];
struct drm_i915_private *i915 = gt->i915;
struct intel_engine_cs *engine;
u8 guc_class;
BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
return -EINVAL;
engine = kzalloc(sizeof(*engine), GFP_KERNEL);
if (!engine)
return -ENOMEM;
BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
INIT_LIST_HEAD(&engine->pinned_contexts_list);
engine->id = id;
engine->legacy_idx = INVALID_ENGINE;
engine->mask = BIT(id);
engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
id);
engine->i915 = i915;
engine->gt = gt;
engine->uncore = gt->uncore;
guc_class = engine_class_to_guc_class(info->class);
engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
engine->irq_handler = nop_irq_handler;
engine->class = info->class;
engine->instance = info->instance;
engine->logical_mask = BIT(logical_instance);
__sprint_engine_name(engine);
if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
__ffs(CCS_MASK(engine->gt)) == engine->instance) ||
engine->class == RENDER_CLASS)
engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
/* features common between engines sharing EUs */
if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
}
engine->props.heartbeat_interval_ms =
CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
engine->props.max_busywait_duration_ns =
CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
engine->props.preempt_timeout_ms =
CONFIG_DRM_I915_PREEMPT_TIMEOUT;
engine->props.stop_timeout_ms =
CONFIG_DRM_I915_STOP_TIMEOUT;
engine->props.timeslice_duration_ms =
CONFIG_DRM_I915_TIMESLICE_DURATION;
/*
* Mid-thread pre-emption is not available in Gen12. Unfortunately,
* some compute workloads run quite long threads. That means they get
* reset due to not pre-empting in a timely manner. So, bump the
* pre-emption timeout value to be much higher for compute engines.
*/
if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
/* Cap properties according to any system limits */
#define CLAMP_PROP(field) \
do { \
u64 clamp = intel_clamp_##field(engine, engine->props.field); \
if (clamp != engine->props.field) { \
drm_notice(&engine->i915->drm, \
"Warning, clamping %s to %lld to prevent overflow\n", \
#field, clamp); \
engine->props.field = clamp; \
} \
} while (0)
CLAMP_PROP(heartbeat_interval_ms);
CLAMP_PROP(max_busywait_duration_ns);
CLAMP_PROP(preempt_timeout_ms);
CLAMP_PROP(stop_timeout_ms);
CLAMP_PROP(timeslice_duration_ms);
#undef CLAMP_PROP
engine->defaults = engine->props; /* never to change again */
engine->context_size = intel_engine_context_size(gt, engine->class);
if (WARN_ON(engine->context_size > BIT(20)))
engine->context_size = 0;
if (engine->context_size)
DRIVER_CAPS(i915)->has_logical_contexts = true;
ewma__engine_latency_init(&engine->latency);
seqcount_init(&engine->stats.execlists.lock);
ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
/* Scrub mmio state on takeover */
intel_engine_sanitize_mmio(engine);
gt->engine_class[info->class][info->instance] = engine;
gt->engine[id] = engine;
return 0;
}
u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
{
value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
return value;
}
u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
{
value = min(value, jiffies_to_nsecs(2));
return value;
}
u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
{
/*
* NB: The GuC API only supports 32bit values. However, the limit is further
* reduced due to internal calculations which would otherwise overflow.
*/
if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
return value;
}
u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
{
value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
return value;
}
u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
{
/*
* NB: The GuC API only supports 32bit values. However, the limit is further
* reduced due to internal calculations which would otherwise overflow.
*/
if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
return value;
}
static void __setup_engine_capabilities(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
if (engine->class == VIDEO_DECODE_CLASS) {
/*
* HEVC support is present on first engine instance
* before Gen11 and on all instances afterwards.
*/
if (GRAPHICS_VER(i915) >= 11 ||
(GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_CLASS_CAPABILITY_HEVC;
/*
* SFC block is present only on even logical engine
* instances.
*/
if ((GRAPHICS_VER(i915) >= 11 &&
(engine->gt->info.vdbox_sfc_access &
BIT(engine->instance))) ||
(GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
if (GRAPHICS_VER(i915) >= 9 &&
engine->gt->info.sfc_mask & BIT(engine->instance))
engine->uabi_capabilities |=
I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
}
}
static void intel_setup_engine_capabilities(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id)
__setup_engine_capabilities(engine);
}
/**
* intel_engines_release() - free the resources allocated for Command Streamers
* @gt: pointer to struct intel_gt
*/
void intel_engines_release(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* Before we release the resources held by engine, we must be certain
* that the HW is no longer accessing them -- having the GPU scribble
* to or read from a page being used for something else causes no end
* of fun.
*
* The GPU should be reset by this point, but assume the worst just
* in case we aborted before completely initialising the engines.
*/
GEM_BUG_ON(intel_gt_pm_is_awake(gt));
if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
__intel_gt_reset(gt, ALL_ENGINES);
/* Decouple the backend; but keep the layout for late GPU resets */
for_each_engine(engine, gt, id) {
if (!engine->release)
continue;
intel_wakeref_wait_for_idle(&engine->wakeref);
GEM_BUG_ON(intel_engine_pm_is_awake(engine));
engine->release(engine);
engine->release = NULL;
memset(&engine->reset, 0, sizeof(engine->reset));
}
}
void intel_engine_free_request_pool(struct intel_engine_cs *engine)
{
if (!engine->request_pool)
return;
kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
}
void intel_engines_free(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/* Free the requests! dma-resv keeps fences around for an eternity */
rcu_barrier();
for_each_engine(engine, gt, id) {
intel_engine_free_request_pool(engine);
kfree(engine);
gt->engine[id] = NULL;
}
}
static
bool gen11_vdbox_has_sfc(struct intel_gt *gt,
unsigned int physical_vdbox,
unsigned int logical_vdbox, u16 vdbox_mask)
{
struct drm_i915_private *i915 = gt->i915;
/*
* In Gen11, only even numbered logical VDBOXes are hooked
* up to an SFC (Scaler & Format Converter) unit.
* In Gen12, Even numbered physical instance always are connected
* to an SFC. Odd numbered physical instances have SFC only if
* previous even instance is fused off.
*
* Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
* in the fuse register that tells us whether a specific SFC is present.
*/
if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
return false;
else if (MEDIA_VER(i915) >= 12)
return (physical_vdbox % 2 == 0) ||
!(BIT(physical_vdbox - 1) & vdbox_mask);
else if (MEDIA_VER(i915) == 11)
return logical_vdbox % 2 == 0;
return false;
}
static void engine_mask_apply_media_fuses(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
unsigned int logical_vdbox = 0;
unsigned int i;
u32 media_fuse, fuse1;
u16 vdbox_mask;
u16 vebox_mask;
if (MEDIA_VER(gt->i915) < 11)
return;
/*
* On newer platforms the fusing register is called 'enable' and has
* enable semantics, while on older platforms it is called 'disable'
* and bits have disable semantices.
*/
media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
media_fuse = ~media_fuse;
vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
GEN11_GT_VEBOX_DISABLE_SHIFT;
if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
} else {
gt->info.sfc_mask = ~0;
}
for (i = 0; i < I915_MAX_VCS; i++) {
if (!HAS_ENGINE(gt, _VCS(i))) {
vdbox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vdbox_mask)) {
gt->info.engine_mask &= ~BIT(_VCS(i));
drm_dbg(&i915->drm, "vcs%u fused off\n", i);
continue;
}
if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
gt->info.vdbox_sfc_access |= BIT(i);
logical_vdbox++;
}
drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
vdbox_mask, VDBOX_MASK(gt));
GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
for (i = 0; i < I915_MAX_VECS; i++) {
if (!HAS_ENGINE(gt, _VECS(i))) {
vebox_mask &= ~BIT(i);
continue;
}
if (!(BIT(i) & vebox_mask)) {
gt->info.engine_mask &= ~BIT(_VECS(i));
drm_dbg(&i915->drm, "vecs%u fused off\n", i);
}
}
drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
vebox_mask, VEBOX_MASK(gt));
GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
}
static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_gt_info *info = &gt->info;
int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
unsigned long ccs_mask;
unsigned int i;
if (GRAPHICS_VER(i915) < 11)
return;
if (hweight32(CCS_MASK(gt)) <= 1)
return;
ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
ss_per_ccs);
/*
* If all DSS in a quadrant are fused off, the corresponding CCS
* engine is not available for use.
*/
for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
info->engine_mask &= ~BIT(_CCS(i));
drm_dbg(&i915->drm, "ccs%u fused off\n", i);
}
}
static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
struct intel_gt_info *info = &gt->info;
unsigned long meml3_mask;
unsigned long quad;
if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
return;
meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
/*
* Link Copy engines may be fused off according to meml3_mask. Each
* bit is a quad that houses 2 Link Copy and two Sub Copy engines.
*/
for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
unsigned int instance = quad * 2 + 1;
intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
_BCS(instance));
if (mask & info->engine_mask) {
drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
info->engine_mask &= ~mask;
}
}
}
/*
* Determine which engines are fused off in our particular hardware.
* Note that we have a catch-22 situation where we need to be able to access
* the blitter forcewake domain to read the engine fuses, but at the same time
* we need to know which engines are available on the system to know which
* forcewake domains are present. We solve this by intializing the forcewake
* domains based on the full engine mask in the platform capabilities before
* calling this function and pruning the domains for fused-off engines
* afterwards.
*/
static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
{
struct intel_gt_info *info = &gt->info;
GEM_BUG_ON(!info->engine_mask);
engine_mask_apply_media_fuses(gt);
engine_mask_apply_compute_fuses(gt);
engine_mask_apply_copy_fuses(gt);
/*
* The only use of the GSC CS is to load and communicate with the GSC
* FW, so we have no use for it if we don't have the FW.
*
* IMPORTANT: in cases where we don't have the GSC FW, we have a
* catch-22 situation that breaks media C6 due to 2 requirements:
* 1) once turned on, the GSC power well will not go to sleep unless the
* GSC FW is loaded.
* 2) to enable idling (which is required for media C6) we need to
* initialize the IDLE_MSG register for the GSC CS and do at least 1
* submission, which will wake up the GSC power well.
*/
if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
drm_notice(&gt->i915->drm,
"No GSC FW selected, disabling GSC CS and media C6\n");
info->engine_mask &= ~BIT(GSC0);
}
return info->engine_mask;
}
static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
u8 class, const u8 *map, u8 num_instances)
{
int i, j;
u8 current_logical_id = 0;
for (j = 0; j < num_instances; ++j) {
for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
if (!HAS_ENGINE(gt, i) ||
intel_engines[i].class != class)
continue;
if (intel_engines[i].instance == map[j]) {
logical_ids[intel_engines[i].instance] =
current_logical_id++;
break;
}
}
}
}
static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
{
/*
* Logical to physical mapping is needed for proper support
* to split-frame feature.
*/
if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
populate_logical_ids(gt, logical_ids, class,
map, ARRAY_SIZE(map));
} else {
int i;
u8 map[MAX_ENGINE_INSTANCE + 1];
for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
map[i] = i;
populate_logical_ids(gt, logical_ids, class,
map, ARRAY_SIZE(map));
}
}
/**
* intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
* @gt: pointer to struct intel_gt
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init_mmio(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
const unsigned int engine_mask = init_engine_mask(gt);
unsigned int mask = 0;
unsigned int i, class;
u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
int err;
drm_WARN_ON(&i915->drm, engine_mask == 0);
drm_WARN_ON(&i915->drm, engine_mask &
GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
if (i915_inject_probe_failure(i915))
return -ENODEV;
for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
setup_logical_ids(gt, logical_ids, class);
for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
u8 instance = intel_engines[i].instance;
if (intel_engines[i].class != class ||
!HAS_ENGINE(gt, i))
continue;
err = intel_engine_setup(gt, i,
logical_ids[instance]);
if (err)
goto cleanup;
mask |= BIT(i);
}
}
/*
* Catch failures to update intel_engines table when the new engines
* are added to the driver by a warning and disabling the forgotten
* engines.
*/
if (drm_WARN_ON(&i915->drm, mask != engine_mask))
gt->info.engine_mask = mask;
gt->info.num_engines = hweight32(mask);
intel_gt_check_and_clear_faults(gt);
intel_setup_engine_capabilities(gt);
intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
return 0;
cleanup:
intel_engines_free(gt);
return err;
}
void intel_engine_init_execlists(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
execlists->port_mask = 1;
GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
memset(execlists->pending, 0, sizeof(execlists->pending));
execlists->active =
memset(execlists->inflight, 0, sizeof(execlists->inflight));
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
/* Prevent writes into HWSP after returning the page to the system */
intel_engine_set_hwsp_writemask(engine, ~0u);
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
if (!HWS_NEEDS_PHYSICAL(engine->i915))
i915_vma_unpin(vma);
i915_gem_object_unpin_map(vma->obj);
i915_gem_object_put(vma->obj);
}
static int pin_ggtt_status_page(struct intel_engine_cs *engine,
struct i915_gem_ww_ctx *ww,
struct i915_vma *vma)
{
unsigned int flags;
if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
/*
* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actually map it).
*/
flags = PIN_MAPPABLE;
else
flags = PIN_HIGH;
return i915_ggtt_pin(vma, ww, 0, flags);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_gem_ww_ctx ww;
struct i915_vma *vma;
void *vaddr;
int ret;
INIT_LIST_HEAD(&engine->status_page.timelines);
/*
* Though the HWS register does support 36bit addresses, historically
* we have had hangs and corruption reported due to wild writes if
* the HWS is placed above 4G. We only allow objects to be allocated
* in GFP_DMA32 for i965, and no earlier physical address users had
* access to more than 4G.
*/
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
drm_err(&engine->i915->drm,
"Failed to allocate status page\n");
return PTR_ERR(obj);
}
i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_put;
}
i915_gem_ww_ctx_init(&ww, true);
retry:
ret = i915_gem_object_lock(obj, &ww);
if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
ret = pin_ggtt_status_page(engine, &ww, vma);
if (ret)
goto err;
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err_unpin;
}
engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
engine->status_page.vma = vma;
err_unpin:
if (ret)
i915_vma_unpin(vma);
err:
if (ret == -EDEADLK) {
ret = i915_gem_ww_ctx_backoff(&ww);
if (!ret)
goto retry;
}
i915_gem_ww_ctx_fini(&ww);
err_put:
if (ret)
i915_gem_object_put(obj);
return ret;
}
2023-10-24 12:59:35 +02:00
static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
{
static const union intel_engine_tlb_inv_reg gen8_regs[] = {
[RENDER_CLASS].reg = GEN8_RTCR,
[VIDEO_DECODE_CLASS].reg = GEN8_M1TCR, /* , GEN8_M2TCR */
[VIDEO_ENHANCEMENT_CLASS].reg = GEN8_VTCR,
[COPY_ENGINE_CLASS].reg = GEN8_BTCR,
};
static const union intel_engine_tlb_inv_reg gen12_regs[] = {
[RENDER_CLASS].reg = GEN12_GFX_TLB_INV_CR,
[VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
[VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
[COPY_ENGINE_CLASS].reg = GEN12_BLT_TLB_INV_CR,
[COMPUTE_CLASS].reg = GEN12_COMPCTX_TLB_INV_CR,
};
static const union intel_engine_tlb_inv_reg xehp_regs[] = {
[RENDER_CLASS].mcr_reg = XEHP_GFX_TLB_INV_CR,
[VIDEO_DECODE_CLASS].mcr_reg = XEHP_VD_TLB_INV_CR,
[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
[COPY_ENGINE_CLASS].mcr_reg = XEHP_BLT_TLB_INV_CR,
[COMPUTE_CLASS].mcr_reg = XEHP_COMPCTX_TLB_INV_CR,
};
static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
[VIDEO_DECODE_CLASS].reg = GEN12_VD_TLB_INV_CR,
[VIDEO_ENHANCEMENT_CLASS].reg = GEN12_VE_TLB_INV_CR,
[OTHER_CLASS].reg = XELPMP_GSC_TLB_INV_CR,
};
struct drm_i915_private *i915 = engine->i915;
const unsigned int instance = engine->instance;
const unsigned int class = engine->class;
const union intel_engine_tlb_inv_reg *regs;
union intel_engine_tlb_inv_reg reg;
unsigned int num = 0;
u32 val;
/*
* New platforms should not be added with catch-all-newer (>=)
* condition so that any later platform added triggers the below warning
* and in turn mandates a human cross-check of whether the invalidation
* flows have compatible semantics.
*
* For instance with the 11.00 -> 12.00 transition three out of five
* respective engine registers were moved to masked type. Then after the
* 12.00 -> 12.50 transition multi cast handling is required too.
*/
if (engine->gt->type == GT_MEDIA) {
if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
regs = xelpmp_regs;
num = ARRAY_SIZE(xelpmp_regs);
}
} else {
if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
regs = xehp_regs;
num = ARRAY_SIZE(xehp_regs);
} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
regs = gen12_regs;
num = ARRAY_SIZE(gen12_regs);
} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
regs = gen8_regs;
num = ARRAY_SIZE(gen8_regs);
} else if (GRAPHICS_VER(i915) < 8) {
return 0;
}
}
if (gt_WARN_ONCE(engine->gt, !num,
"Platform does not implement TLB invalidation!"))
return -ENODEV;
if (gt_WARN_ON_ONCE(engine->gt,
class >= num ||
(!regs[class].reg.reg &&
!regs[class].mcr_reg.reg)))
return -ERANGE;
reg = regs[class];
if (regs == xelpmp_regs && class == OTHER_CLASS) {
/*
* There's only a single GSC instance, but it uses register bit
* 1 instead of either 0 or OTHER_GSC_INSTANCE.
*/
GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
val = 1;
} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
reg.reg = GEN8_M2TCR;
val = 0;
} else {
val = instance;
}
val = BIT(val);
engine->tlb_inv.mcr = regs == xehp_regs;
engine->tlb_inv.reg = reg;
engine->tlb_inv.done = val;
if (GRAPHICS_VER(i915) >= 12 &&
(engine->class == VIDEO_DECODE_CLASS ||
engine->class == VIDEO_ENHANCEMENT_CLASS ||
engine->class == COMPUTE_CLASS ||
engine->class == OTHER_CLASS))
engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
else
engine->tlb_inv.request = val;
return 0;
}
2023-08-30 17:31:07 +02:00
static int engine_setup_common(struct intel_engine_cs *engine)
{
int err;
init_llist_head(&engine->barrier_tasks);
2023-10-24 12:59:35 +02:00
err = intel_engine_init_tlb_invalidation(engine);
if (err)
return err;
2023-08-30 17:31:07 +02:00
err = init_status_page(engine);
if (err)
return err;
engine->breadcrumbs = intel_breadcrumbs_create(engine);
if (!engine->breadcrumbs) {
err = -ENOMEM;
goto err_status;
}
engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
if (!engine->sched_engine) {
err = -ENOMEM;
goto err_sched_engine;
}
engine->sched_engine->private_data = engine;
err = intel_engine_init_cmd_parser(engine);
if (err)
goto err_cmd_parser;
intel_engine_init_execlists(engine);
intel_engine_init__pm(engine);
intel_engine_init_retire(engine);
/* Use the whole device by default */
engine->sseu =
intel_sseu_from_device_info(&engine->gt->info.sseu);
intel_engine_init_workarounds(engine);
intel_engine_init_whitelist(engine);
intel_engine_init_ctx_wa(engine);
if (GRAPHICS_VER(engine->i915) >= 12)
engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
return 0;
err_cmd_parser:
i915_sched_engine_put(engine->sched_engine);
err_sched_engine:
intel_breadcrumbs_put(engine->breadcrumbs);
err_status:
cleanup_status_page(engine);
return err;
}
struct measure_breadcrumb {
struct i915_request rq;
struct intel_ring ring;
u32 cs[2048];
};
static int measure_breadcrumb_dw(struct intel_context *ce)
{
struct intel_engine_cs *engine = ce->engine;
struct measure_breadcrumb *frame;
int dw;
GEM_BUG_ON(!engine->gt->scratch);
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
return -ENOMEM;
frame->rq.engine = engine;
frame->rq.context = ce;
rcu_assign_pointer(frame->rq.timeline, ce->timeline);
frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
frame->ring.vaddr = frame->cs;
frame->ring.size = sizeof(frame->cs);
frame->ring.wrap =
BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
frame->ring.effective_size = frame->ring.size;
intel_ring_update_space(&frame->ring);
frame->rq.ring = &frame->ring;
mutex_lock(&ce->timeline->mutex);
spin_lock_irq(&engine->sched_engine->lock);
dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
spin_unlock_irq(&engine->sched_engine->lock);
mutex_unlock(&ce->timeline->mutex);
GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
kfree(frame);
return dw;
}
struct intel_context *
intel_engine_create_pinned_context(struct intel_engine_cs *engine,
struct i915_address_space *vm,
unsigned int ring_size,
unsigned int hwsp,
struct lock_class_key *key,
const char *name)
{
struct intel_context *ce;
int err;
ce = intel_context_create(engine);
if (IS_ERR(ce))
return ce;
__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
ce->timeline = page_pack_bits(NULL, hwsp);
ce->ring = NULL;
ce->ring_size = ring_size;
i915_vm_put(ce->vm);
ce->vm = i915_vm_get(vm);
err = intel_context_pin(ce); /* perma-pin so it is always available */
if (err) {
intel_context_put(ce);
return ERR_PTR(err);
}
list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
/*
* Give our perma-pinned kernel timelines a separate lockdep class,
* so that we can use them from within the normal user timelines
* should we need to inject GPU operations during their request
* construction.
*/
lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
return ce;
}
void intel_engine_destroy_pinned_context(struct intel_context *ce)
{
struct intel_engine_cs *engine = ce->engine;
struct i915_vma *hwsp = engine->status_page.vma;
GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
mutex_lock(&hwsp->vm->mutex);
list_del(&ce->timeline->engine_link);
mutex_unlock(&hwsp->vm->mutex);
list_del(&ce->pinned_contexts_link);
intel_context_unpin(ce);
intel_context_put(ce);
}
static struct intel_context *
create_kernel_context(struct intel_engine_cs *engine)
{
static struct lock_class_key kernel;
return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
I915_GEM_HWS_SEQNO_ADDR,
&kernel, "kernel_context");
}
2023-10-24 12:59:35 +02:00
/*
* engine_init_common - initialize engine state which might require hw access
2023-08-30 17:31:07 +02:00
* @engine: Engine to initialize.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do require hardware access.
*
* Typcally done at later stages of submission mode specific engine setup.
*
* Returns zero on success or an error code on failure.
*/
static int engine_init_common(struct intel_engine_cs *engine)
{
struct intel_context *ce;
int ret;
engine->set_default_submission(engine);
/*
* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ce = create_kernel_context(engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
ret = measure_breadcrumb_dw(ce);
if (ret < 0)
goto err_context;
engine->emit_fini_breadcrumb_dw = ret;
engine->kernel_context = ce;
return 0;
err_context:
intel_engine_destroy_pinned_context(ce);
return ret;
}
int intel_engines_init(struct intel_gt *gt)
{
int (*setup)(struct intel_engine_cs *engine);
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
if (intel_uc_uses_guc_submission(&gt->uc)) {
gt->submission_method = INTEL_SUBMISSION_GUC;
setup = intel_guc_submission_setup;
} else if (HAS_EXECLISTS(gt->i915)) {
gt->submission_method = INTEL_SUBMISSION_ELSP;
setup = intel_execlists_submission_setup;
} else {
gt->submission_method = INTEL_SUBMISSION_RING;
setup = intel_ring_submission_setup;
}
for_each_engine(engine, gt, id) {
err = engine_setup_common(engine);
if (err)
return err;
err = setup(engine);
if (err) {
intel_engine_cleanup_common(engine);
return err;
}
/* The backend should now be responsible for cleanup */
GEM_BUG_ON(engine->release == NULL);
err = engine_init_common(engine);
if (err)
return err;
intel_engine_add_user(engine);
}
return 0;
}
/**
2023-10-24 12:59:35 +02:00
* intel_engine_cleanup_common - cleans up the engine state created by
2023-08-30 17:31:07 +02:00
* the common initiailizers.
* @engine: Engine to cleanup.
*
* This cleans up everything created by the common helpers.
*/
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
i915_sched_engine_put(engine->sched_engine);
intel_breadcrumbs_put(engine->breadcrumbs);
intel_engine_fini_retire(engine);
intel_engine_cleanup_cmd_parser(engine);
if (engine->default_state)
fput(engine->default_state);
if (engine->kernel_context)
intel_engine_destroy_pinned_context(engine->kernel_context);
GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
cleanup_status_page(engine);
intel_wa_list_free(&engine->ctx_wa_list);
intel_wa_list_free(&engine->wa_list);
intel_wa_list_free(&engine->whitelist);
}
/**
* intel_engine_resume - re-initializes the HW state of the engine
* @engine: Engine to resume.
*
* Returns zero on success or an error code on failure.
*/
int intel_engine_resume(struct intel_engine_cs *engine)
{
intel_engine_apply_workarounds(engine);
intel_engine_apply_whitelist(engine);
return engine->resume(engine);
}
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
u64 acthd;
if (GRAPHICS_VER(i915) >= 8)
acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
else if (GRAPHICS_VER(i915) >= 4)
acthd = ENGINE_READ(engine, RING_ACTHD);
else
acthd = ENGINE_READ(engine, ACTHD);
return acthd;
}
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
{
u64 bbaddr;
if (GRAPHICS_VER(engine->i915) >= 8)
bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
else
bbaddr = ENGINE_READ(engine, RING_BBADDR);
return bbaddr;
}
static unsigned long stop_timeout(const struct intel_engine_cs *engine)
{
if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
return 0;
/*
* If we are doing a normal GPU reset, we can take our time and allow
* the engine to quiesce. We've stopped submission to the engine, and
* if we wait long enough an innocent context should complete and
* leave the engine idle. So they should not be caught unaware by
* the forthcoming GPU reset (which usually follows the stop_cs)!
*/
return READ_ONCE(engine->props.stop_timeout_ms);
}
static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
int fast_timeout_us,
int slow_timeout_ms)
{
struct intel_uncore *uncore = engine->uncore;
const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
int err;
intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
/*
* Wa_22011802037: Prior to doing a reset, ensure CS is
* stopped, set ring stop bit and prefetch disable bit to halt CS
*/
if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
(GRAPHICS_VER(engine->i915) >= 11 &&
GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
_MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
err = __intel_wait_for_register_fw(engine->uncore, mode,
MODE_IDLE, MODE_IDLE,
fast_timeout_us,
slow_timeout_ms,
NULL);
/* A final mmio read to let GPU writes be hopefully flushed to memory */
intel_uncore_posting_read_fw(uncore, mode);
return err;
}
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
int err = 0;
if (GRAPHICS_VER(engine->i915) < 3)
return -ENODEV;
ENGINE_TRACE(engine, "\n");
/*
* TODO: Find out why occasionally stopping the CS times out. Seen
* especially with gem_eio tests.
*
* Occasionally trying to stop the cs times out, but does not adversely
* affect functionality. The timeout is set as a config parameter that
* defaults to 100ms. In most cases the follow up operation is to wait
* for pending MI_FORCE_WAKES. The assumption is that this timeout is
* sufficient for any pending MI_FORCEWAKEs to complete. Once root
* caused, the caller must check and handle the return from this
* function.
*/
if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
ENGINE_TRACE(engine,
"timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
/*
* Sometimes we observe that the idle flag is not
* set even though the ring is empty. So double
* check before giving up.
*/
if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
(ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
err = -ETIMEDOUT;
}
return err;
}
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
ENGINE_TRACE(engine, "\n");
ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
}
static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
{
static const i915_reg_t _reg[I915_NUM_ENGINES] = {
[RCS0] = MSG_IDLE_CS,
[BCS0] = MSG_IDLE_BCS,
[VCS0] = MSG_IDLE_VCS0,
[VCS1] = MSG_IDLE_VCS1,
[VCS2] = MSG_IDLE_VCS2,
[VCS3] = MSG_IDLE_VCS3,
[VCS4] = MSG_IDLE_VCS4,
[VCS5] = MSG_IDLE_VCS5,
[VCS6] = MSG_IDLE_VCS6,
[VCS7] = MSG_IDLE_VCS7,
[VECS0] = MSG_IDLE_VECS0,
[VECS1] = MSG_IDLE_VECS1,
[VECS2] = MSG_IDLE_VECS2,
[VECS3] = MSG_IDLE_VECS3,
[CCS0] = MSG_IDLE_CS,
[CCS1] = MSG_IDLE_CS,
[CCS2] = MSG_IDLE_CS,
[CCS3] = MSG_IDLE_CS,
};
u32 val;
if (!_reg[engine->id].reg)
return 0;
val = intel_uncore_read(engine->uncore, _reg[engine->id]);
/* bits[29:25] & bits[13:9] >> shift */
return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
}
static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
{
int ret;
/* Ensure GPM receives fw up/down after CS is stopped */
udelay(1);
/* Wait for forcewake request to complete in GPM */
ret = __intel_wait_for_register_fw(gt->uncore,
GEN9_PWRGT_DOMAIN_STATUS,
fw_mask, fw_mask, 5000, 0, NULL);
/* Ensure CS receives fw ack from GPM */
udelay(1);
if (ret)
GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
}
/*
* Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
* pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
* pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
* MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
* are concerned only with the gt reset here, we use a logical OR of pending
* forcewakeups from all reset domains and then wait for them to complete by
* querying PWRGT_DOMAIN_STATUS.
*/
void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
{
u32 fw_pending = __cs_pending_mi_force_wakes(engine);
if (fw_pending)
__gpm_wait_for_fw_complete(engine->gt, fw_pending);
}
/* NB: please notice the memset */
void intel_engine_get_instdone(const struct intel_engine_cs *engine,
struct intel_instdone *instdone)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_uncore *uncore = engine->uncore;
u32 mmio_base = engine->mmio_base;
int slice;
int subslice;
int iter;
memset(instdone, 0, sizeof(*instdone));
if (GRAPHICS_VER(i915) >= 8) {
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
return;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
if (GRAPHICS_VER(i915) >= 12) {
instdone->slice_common_extra[0] =
intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
instdone->slice_common_extra[1] =
intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
}
for_each_ss_steering(iter, engine->gt, slice, subslice) {
instdone->sampler[slice][subslice] =
intel_gt_mcr_read(engine->gt,
GEN8_SAMPLER_INSTDONE,
slice, subslice);
instdone->row[slice][subslice] =
intel_gt_mcr_read(engine->gt,
GEN8_ROW_INSTDONE,
slice, subslice);
}
if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
for_each_ss_steering(iter, engine->gt, slice, subslice)
instdone->geom_svg[slice][subslice] =
intel_gt_mcr_read(engine->gt,
XEHPG_INSTDONE_GEOM_SVG,
slice, subslice);
}
} else if (GRAPHICS_VER(i915) >= 7) {
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id != RCS0)
return;
instdone->slice_common =
intel_uncore_read(uncore, GEN7_SC_INSTDONE);
instdone->sampler[0][0] =
intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
instdone->row[0][0] =
intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
} else if (GRAPHICS_VER(i915) >= 4) {
instdone->instdone =
intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
if (engine->id == RCS0)
/* HACK: Using the wrong struct member */
instdone->slice_common =
intel_uncore_read(uncore, GEN4_INSTDONE1);
} else {
instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
}
}
static bool ring_is_idle(struct intel_engine_cs *engine)
{
bool idle = true;
if (I915_SELFTEST_ONLY(!engine->mmio_base))
return true;
if (!intel_engine_pm_get_if_awake(engine))
return true;
/* First check that no commands are left in the ring */
if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
(ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
idle = false;
/* No bit for gen2, so assume the CS parser is idle */
if (GRAPHICS_VER(engine->i915) > 2 &&
!(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
idle = false;
intel_engine_pm_put(engine);
return idle;
}
void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
{
struct tasklet_struct *t = &engine->sched_engine->tasklet;
if (!t->callback)
return;
local_bh_disable();
if (tasklet_trylock(t)) {
/* Must wait for any GPU reset in progress. */
if (__tasklet_is_enabled(t))
t->callback(t);
tasklet_unlock(t);
}
local_bh_enable();
/* Synchronise and wait for the tasklet on another CPU */
if (sync)
tasklet_unlock_wait(t);
}
/**
* intel_engine_is_idle() - Report if the engine has finished process all work
* @engine: the intel_engine_cs
*
* Return true if there are no requests pending, nothing left to be submitted
* to hardware, and that the engine is idle.
*/
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
/* More white lies, if wedged, hw state is inconsistent */
if (intel_gt_is_wedged(engine->gt))
return true;
if (!intel_engine_pm_is_awake(engine))
return true;
/* Waiting to drain ELSP? */
intel_synchronize_hardirq(engine->i915);
intel_engine_flush_submission(engine);
/* ELSP is empty, but there are ready requests? E.g. after reset */
if (!i915_sched_engine_is_empty(engine->sched_engine))
return false;
/* Ring stopped? */
return ring_is_idle(engine);
}
bool intel_engines_are_idle(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* If the driver is wedged, HW state may be very inconsistent and
* report that it is still busy, even though we have stopped using it.
*/
if (intel_gt_is_wedged(gt))
return true;
/* Already parked (and passed an idleness test); must still be idle */
if (!READ_ONCE(gt->awake))
return true;
for_each_engine(engine, gt, id) {
if (!intel_engine_is_idle(engine))
return false;
}
return true;
}
bool intel_engine_irq_enable(struct intel_engine_cs *engine)
{
if (!engine->irq_enable)
return false;
/* Caller disables interrupts */
spin_lock(engine->gt->irq_lock);
engine->irq_enable(engine);
spin_unlock(engine->gt->irq_lock);
return true;
}
void intel_engine_irq_disable(struct intel_engine_cs *engine)
{
if (!engine->irq_disable)
return;
/* Caller disables interrupts */
spin_lock(engine->gt->irq_lock);
engine->irq_disable(engine);
spin_unlock(engine->gt->irq_lock);
}
void intel_engines_reset_default_submission(struct intel_gt *gt)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, gt, id) {
if (engine->sanitize)
engine->sanitize(engine);
engine->set_default_submission(engine);
}
}
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
switch (GRAPHICS_VER(engine->i915)) {
case 2:
return false; /* uses physical not virtual addresses */
case 3:
/* maybe only uses physical not virtual addresses */
return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
case 4:
return !IS_I965G(engine->i915); /* who knows! */
case 6:
return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
default:
return true;
}
}
static struct intel_timeline *get_timeline(struct i915_request *rq)
{
struct intel_timeline *tl;
/*
* Even though we are holding the engine->sched_engine->lock here, there
* is no control over the submission queue per-se and we are
* inspecting the active state at a random point in time, with an
* unknown queue. Play safe and make sure the timeline remains valid.
* (Only being used for pretty printing, one extra kref shouldn't
* cause a camel stampede!)
*/
rcu_read_lock();
tl = rcu_dereference(rq->timeline);
if (!kref_get_unless_zero(&tl->kref))
tl = NULL;
rcu_read_unlock();
return tl;
}
static int print_ring(char *buf, int sz, struct i915_request *rq)
{
int len = 0;
if (!i915_request_signaled(rq)) {
struct intel_timeline *tl = get_timeline(rq);
len = scnprintf(buf, sz,
"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
i915_ggtt_offset(rq->ring->vma),
tl ? tl->hwsp_offset : 0,
hwsp_seqno(rq),
DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1000 * 1000));
if (tl)
intel_timeline_put(tl);
}
return len;
}
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
drm_printf(m, "*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
drm_printf(m, "[%04zx] %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static const char *repr_timer(const struct timer_list *t)
{
if (!READ_ONCE(t->expires))
return "inactive";
if (timer_pending(t))
return "active";
return "expired";
}
static void intel_engine_print_registers(struct intel_engine_cs *engine,
struct drm_printer *m)
{
2023-10-24 12:59:35 +02:00
struct drm_i915_private *i915 = engine->i915;
2023-08-30 17:31:07 +02:00
struct intel_engine_execlists * const execlists = &engine->execlists;
u64 addr;
2023-10-24 12:59:35 +02:00
if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2023-08-30 17:31:07 +02:00
drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2023-10-24 12:59:35 +02:00
if (HAS_EXECLISTS(i915)) {
2023-08-30 17:31:07 +02:00
drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
}
drm_printf(m, "\tRING_START: 0x%08x\n",
ENGINE_READ(engine, RING_START));
drm_printf(m, "\tRING_HEAD: 0x%08x\n",
ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
drm_printf(m, "\tRING_TAIL: 0x%08x\n",
ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
ENGINE_READ(engine, RING_CTL),
ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
if (GRAPHICS_VER(engine->i915) > 2) {
drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
ENGINE_READ(engine, RING_MI_MODE),
ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
}
2023-10-24 12:59:35 +02:00
if (GRAPHICS_VER(i915) >= 6) {
2023-08-30 17:31:07 +02:00
drm_printf(m, "\tRING_IMR: 0x%08x\n",
ENGINE_READ(engine, RING_IMR));
drm_printf(m, "\tRING_ESR: 0x%08x\n",
ENGINE_READ(engine, RING_ESR));
drm_printf(m, "\tRING_EMR: 0x%08x\n",
ENGINE_READ(engine, RING_EMR));
drm_printf(m, "\tRING_EIR: 0x%08x\n",
ENGINE_READ(engine, RING_EIR));
}
addr = intel_engine_get_active_head(engine);
drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
addr = intel_engine_get_last_batch_head(engine);
drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
2023-10-24 12:59:35 +02:00
if (GRAPHICS_VER(i915) >= 8)
2023-08-30 17:31:07 +02:00
addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2023-10-24 12:59:35 +02:00
else if (GRAPHICS_VER(i915) >= 4)
2023-08-30 17:31:07 +02:00
addr = ENGINE_READ(engine, RING_DMA_FADD);
else
addr = ENGINE_READ(engine, DMA_FADD_I8XX);
drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
2023-10-24 12:59:35 +02:00
if (GRAPHICS_VER(i915) >= 4) {
2023-08-30 17:31:07 +02:00
drm_printf(m, "\tIPEIR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n",
ENGINE_READ(engine, RING_IPEHR));
} else {
drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
}
2023-10-24 12:59:35 +02:00
if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2023-08-30 17:31:07 +02:00
struct i915_request * const *port, *rq;
const u32 *hws =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
const u8 num_entries = execlists->csb_size;
unsigned int idx;
u8 read, write;
drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
repr_timer(&engine->execlists.preempt),
repr_timer(&engine->execlists.timer));
read = execlists->csb_head;
write = READ_ONCE(*execlists->csb_write);
drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
read, write, num_entries);
if (read >= num_entries)
read = 0;
if (write >= num_entries)
write = 0;
if (read > write)
write += num_entries;
while (read < write) {
idx = ++read % num_entries;
drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
idx, hws[idx * 2], hws[idx * 2 + 1]);
}
i915_sched_engine_active_lock_bh(engine->sched_engine);
rcu_read_lock();
for (port = execlists->active; (rq = *port); port++) {
char hdr[160];
int len;
len = scnprintf(hdr, sizeof(hdr),
"\t\tActive[%d]: ccid:%08x%s%s, ",
(int)(port - execlists->active),
rq->context->lrc.ccid,
intel_context_is_closed(rq->context) ? "!" : "",
intel_context_is_banned(rq->context) ? "*" : "");
len += print_ring(hdr + len, sizeof(hdr) - len, rq);
scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
i915_request_show(m, rq, hdr, 0);
}
for (port = execlists->pending; (rq = *port); port++) {
char hdr[160];
int len;
len = scnprintf(hdr, sizeof(hdr),
"\t\tPending[%d]: ccid:%08x%s%s, ",
(int)(port - execlists->pending),
rq->context->lrc.ccid,
intel_context_is_closed(rq->context) ? "!" : "",
intel_context_is_banned(rq->context) ? "*" : "");
len += print_ring(hdr + len, sizeof(hdr) - len, rq);
scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
i915_request_show(m, rq, hdr, 0);
}
rcu_read_unlock();
i915_sched_engine_active_unlock_bh(engine->sched_engine);
2023-10-24 12:59:35 +02:00
} else if (GRAPHICS_VER(i915) > 6) {
2023-08-30 17:31:07 +02:00
drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE));
drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
ENGINE_READ(engine, RING_PP_DIR_DCLV));
}
}
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
struct i915_vma_resource *vma_res = rq->batch_res;
void *ring;
int size;
drm_printf(m,
"[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
rq->head, rq->postfix, rq->tail,
vma_res ? upper_32_bits(vma_res->start) : ~0u,
vma_res ? lower_32_bits(vma_res->start) : ~0u);
size = rq->tail - rq->head;
if (rq->tail < rq->head)
size += rq->ring->size;
ring = kmalloc(size, GFP_ATOMIC);
if (ring) {
const void *vaddr = rq->ring->vaddr;
unsigned int head = rq->head;
unsigned int len = 0;
if (rq->tail < head) {
len = rq->ring->size - head;
memcpy(ring, vaddr + head, len);
head = 0;
}
memcpy(ring + len, vaddr + head, size - len);
hexdump(m, ring, size);
kfree(ring);
}
}
static unsigned long read_ul(void *p, size_t x)
{
return *(unsigned long *)(p + x);
}
static void print_properties(struct intel_engine_cs *engine,
struct drm_printer *m)
{
static const struct pmap {
size_t offset;
const char *name;
} props[] = {
#define P(x) { \
.offset = offsetof(typeof(engine->props), x), \
.name = #x \
}
P(heartbeat_interval_ms),
P(max_busywait_duration_ns),
P(preempt_timeout_ms),
P(stop_timeout_ms),
P(timeslice_duration_ms),
{},
#undef P
};
const struct pmap *p;
drm_printf(m, "\tProperties:\n");
for (p = props; p->name; p++)
drm_printf(m, "\t\t%s: %lu [default %lu]\n",
p->name,
read_ul(&engine->props, p->offset),
read_ul(&engine->defaults, p->offset));
}
static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
{
struct intel_timeline *tl = get_timeline(rq);
i915_request_show(m, rq, msg, 0);
drm_printf(m, "\t\tring->start: 0x%08x\n",
i915_ggtt_offset(rq->ring->vma));
drm_printf(m, "\t\tring->head: 0x%08x\n",
rq->ring->head);
drm_printf(m, "\t\tring->tail: 0x%08x\n",
rq->ring->tail);
drm_printf(m, "\t\tring->emit: 0x%08x\n",
rq->ring->emit);
drm_printf(m, "\t\tring->space: 0x%08x\n",
rq->ring->space);
if (tl) {
drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
tl->hwsp_offset);
intel_timeline_put(tl);
}
print_request_ring(m, rq);
if (rq->context->lrc_reg_state) {
drm_printf(m, "Logical Ring Context:\n");
hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
}
}
void intel_engine_dump_active_requests(struct list_head *requests,
struct i915_request *hung_rq,
struct drm_printer *m)
{
struct i915_request *rq;
const char *msg;
enum i915_request_state state;
list_for_each_entry(rq, requests, sched.link) {
if (rq == hung_rq)
continue;
state = i915_test_request_state(rq);
if (state < I915_REQUEST_QUEUED)
continue;
if (state == I915_REQUEST_ACTIVE)
msg = "\t\tactive on engine";
else
msg = "\t\tactive in queue";
engine_dump_request(rq, m, msg);
}
}
static void engine_dump_active_requests(struct intel_engine_cs *engine,
struct drm_printer *m)
{
struct intel_context *hung_ce = NULL;
struct i915_request *hung_rq = NULL;
/*
* No need for an engine->irq_seqno_barrier() before the seqno reads.
* The GPU is still running so requests are still executing and any
* hardware reads will be out of date by the time they are reported.
* But the intention here is just to report an instantaneous snapshot
* so that's fine.
*/
intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
drm_printf(m, "\tRequests:\n");
if (hung_rq)
engine_dump_request(hung_rq, m, "\t\thung");
else if (hung_ce)
drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
if (intel_uc_uses_guc_submission(&engine->gt->uc))
intel_guc_dump_active_requests(engine, hung_rq, m);
else
intel_execlists_dump_active_requests(engine, hung_rq, m);
if (hung_rq)
i915_request_put(hung_rq);
}
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...)
{
struct i915_gpu_error * const error = &engine->i915->gpu_error;
struct i915_request *rq;
intel_wakeref_t wakeref;
ktime_t dummy;
if (header) {
va_list ap;
va_start(ap, header);
drm_vprintf(m, header, &ap);
va_end(ap);
}
if (intel_gt_is_wedged(engine->gt))
drm_printf(m, "*** WEDGED ***\n");
drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
drm_printf(m, "\tBarriers?: %s\n",
str_yes_no(!llist_empty(&engine->barrier_tasks)));
drm_printf(m, "\tLatency: %luus\n",
ewma__engine_latency_read(&engine->latency));
if (intel_engine_supports_stats(engine))
drm_printf(m, "\tRuntime: %llums\n",
ktime_to_ms(intel_engine_get_busy_time(engine,
&dummy)));
drm_printf(m, "\tForcewake: %x domains, %d active\n",
engine->fw_domain, READ_ONCE(engine->fw_active));
rcu_read_lock();
rq = READ_ONCE(engine->heartbeat.systole);
if (rq)
drm_printf(m, "\tHeartbeat: %d ms ago\n",
jiffies_to_msecs(jiffies - rq->emitted_jiffies));
rcu_read_unlock();
drm_printf(m, "\tReset count: %d (global %d)\n",
i915_reset_engine_count(error, engine),
i915_reset_count(error));
print_properties(engine, m);
engine_dump_active_requests(engine, m);
drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base);
wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
if (wakeref) {
intel_engine_print_registers(engine, m);
intel_runtime_pm_put(engine->uncore->rpm, wakeref);
} else {
drm_printf(m, "\tDevice is asleep; skipping register dump\n");
}
intel_execlists_show_requests(engine, m, i915_request_show, 8);
drm_printf(m, "HWSP:\n");
hexdump(m, engine->status_page.addr, PAGE_SIZE);
drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
intel_engine_print_breadcrumbs(engine, m);
}
/**
* intel_engine_get_busy_time() - Return current accumulated engine busyness
* @engine: engine to report on
* @now: monotonic timestamp of sampling
*
* Returns accumulated time @engine was busy since engine stats were enabled.
*/
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
{
return engine->busyness(engine, now);
}
struct intel_context *
intel_engine_create_virtual(struct intel_engine_cs **siblings,
unsigned int count, unsigned long flags)
{
if (count == 0)
return ERR_PTR(-EINVAL);
if (count == 1 && !(flags & FORCE_VIRTUAL))
return intel_context_create(siblings[0]);
GEM_BUG_ON(!siblings[0]->cops->create_virtual);
return siblings[0]->cops->create_virtual(siblings, count, flags);
}
static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
{
struct i915_request *request, *active = NULL;
/*
* This search does not work in GuC submission mode. However, the GuC
* will report the hanging context directly to the driver itself. So
* the driver should never get here when in GuC mode.
*/
GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
/*
* We are called by the error capture, reset and to dump engine
* state at random points in time. In particular, note that neither is
* crucially ordered with an interrupt. After a hang, the GPU is dead
* and we assume that no more writes can happen (we waited long enough
* for all writes that were in transaction to be flushed) - adding an
* extra delay for a recent interrupt is pointless. Hence, we do
* not need an engine->irq_seqno_barrier() before the seqno reads.
* At all other times, we must assume the GPU is still running, but
* we only care about the snapshot of this moment.
*/
lockdep_assert_held(&engine->sched_engine->lock);
rcu_read_lock();
request = execlists_active(&engine->execlists);
if (request) {
struct intel_timeline *tl = request->context->timeline;
list_for_each_entry_from_reverse(request, &tl->requests, link) {
if (__i915_request_is_complete(request))
break;
active = request;
}
}
rcu_read_unlock();
if (active)
return active;
list_for_each_entry(request, &engine->sched_engine->requests,
sched.link) {
if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
continue;
active = request;
break;
}
return active;
}
void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
struct intel_context **ce, struct i915_request **rq)
{
unsigned long flags;
*ce = intel_engine_get_hung_context(engine);
if (*ce) {
intel_engine_clear_hung_context(engine);
*rq = intel_context_get_active_request(*ce);
return;
}
/*
* Getting here with GuC enabled means it is a forced error capture
* with no actual hang. So, no need to attempt the execlist search.
*/
if (intel_uc_uses_guc_submission(&engine->gt->uc))
return;
spin_lock_irqsave(&engine->sched_engine->lock, flags);
*rq = engine_execlist_find_hung_request(engine);
if (*rq)
*rq = i915_request_get_rcu(*rq);
spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
}
void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
{
/*
* If there are any non-fused-off CCS engines, we need to enable CCS
* support in the RCU_MODE register. This only needs to be done once,
* so for simplicity we'll take care of this in the RCS engine's
* resume handler; since the RCS and all CCS engines belong to the
* same reset domain and are reset together, this will also take care
* of re-applying the setting after i915-triggered resets.
*/
if (!CCS_MASK(engine->gt))
return;
intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
_MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "mock_engine.c"
#include "selftest_engine.c"
#include "selftest_engine_cs.c"
#endif