linux-zen-desktop/drivers/gpu/drm/i915/gt/uc/intel_guc_slpc.c

861 lines
21 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include <drm/drm_cache.h>
#include <linux/string_helpers.h>
#include "i915_drv.h"
#include "i915_reg.h"
#include "intel_guc_slpc.h"
2023-10-24 12:59:35 +02:00
#include "intel_guc_print.h"
2023-08-30 17:31:07 +02:00
#include "intel_mchbar_regs.h"
#include "gt/intel_gt.h"
#include "gt/intel_gt_regs.h"
#include "gt/intel_rps.h"
static inline struct intel_guc *slpc_to_guc(struct intel_guc_slpc *slpc)
{
return container_of(slpc, struct intel_guc, slpc);
}
static inline struct intel_gt *slpc_to_gt(struct intel_guc_slpc *slpc)
{
return guc_to_gt(slpc_to_guc(slpc));
}
static inline struct drm_i915_private *slpc_to_i915(struct intel_guc_slpc *slpc)
{
return slpc_to_gt(slpc)->i915;
}
static bool __detect_slpc_supported(struct intel_guc *guc)
{
/* GuC SLPC is unavailable for pre-Gen12 */
return guc->submission_supported &&
GRAPHICS_VER(guc_to_gt(guc)->i915) >= 12;
}
static bool __guc_slpc_selected(struct intel_guc *guc)
{
if (!intel_guc_slpc_is_supported(guc))
return false;
return guc->submission_selected;
}
void intel_guc_slpc_init_early(struct intel_guc_slpc *slpc)
{
struct intel_guc *guc = slpc_to_guc(slpc);
slpc->supported = __detect_slpc_supported(guc);
slpc->selected = __guc_slpc_selected(guc);
}
static void slpc_mem_set_param(struct slpc_shared_data *data,
u32 id, u32 value)
{
GEM_BUG_ON(id >= SLPC_MAX_OVERRIDE_PARAMETERS);
/*
* When the flag bit is set, corresponding value will be read
* and applied by SLPC.
*/
data->override_params.bits[id >> 5] |= (1 << (id % 32));
data->override_params.values[id] = value;
}
static void slpc_mem_set_enabled(struct slpc_shared_data *data,
u8 enable_id, u8 disable_id)
{
/*
* Enabling a param involves setting the enable_id
* to 1 and disable_id to 0.
*/
slpc_mem_set_param(data, enable_id, 1);
slpc_mem_set_param(data, disable_id, 0);
}
static void slpc_mem_set_disabled(struct slpc_shared_data *data,
u8 enable_id, u8 disable_id)
{
/*
* Disabling a param involves setting the enable_id
* to 0 and disable_id to 1.
*/
slpc_mem_set_param(data, disable_id, 1);
slpc_mem_set_param(data, enable_id, 0);
}
static u32 slpc_get_state(struct intel_guc_slpc *slpc)
{
struct slpc_shared_data *data;
GEM_BUG_ON(!slpc->vma);
drm_clflush_virt_range(slpc->vaddr, sizeof(u32));
data = slpc->vaddr;
return data->header.global_state;
}
static int guc_action_slpc_set_param_nb(struct intel_guc *guc, u8 id, u32 value)
{
u32 request[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
id,
value,
};
int ret;
ret = intel_guc_send_nb(guc, request, ARRAY_SIZE(request), 0);
return ret > 0 ? -EPROTO : ret;
}
static int slpc_set_param_nb(struct intel_guc_slpc *slpc, u8 id, u32 value)
{
struct intel_guc *guc = slpc_to_guc(slpc);
GEM_BUG_ON(id >= SLPC_MAX_PARAM);
return guc_action_slpc_set_param_nb(guc, id, value);
}
static int guc_action_slpc_set_param(struct intel_guc *guc, u8 id, u32 value)
{
u32 request[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_SET, 2),
id,
value,
};
int ret;
ret = intel_guc_send(guc, request, ARRAY_SIZE(request));
return ret > 0 ? -EPROTO : ret;
}
static int guc_action_slpc_unset_param(struct intel_guc *guc, u8 id)
{
u32 request[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_PARAMETER_UNSET, 1),
id,
};
return intel_guc_send(guc, request, ARRAY_SIZE(request));
}
static bool slpc_is_running(struct intel_guc_slpc *slpc)
{
return slpc_get_state(slpc) == SLPC_GLOBAL_STATE_RUNNING;
}
static int guc_action_slpc_query(struct intel_guc *guc, u32 offset)
{
u32 request[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_QUERY_TASK_STATE, 2),
offset,
0,
};
int ret;
ret = intel_guc_send(guc, request, ARRAY_SIZE(request));
return ret > 0 ? -EPROTO : ret;
}
static int slpc_query_task_state(struct intel_guc_slpc *slpc)
{
struct intel_guc *guc = slpc_to_guc(slpc);
u32 offset = intel_guc_ggtt_offset(guc, slpc->vma);
int ret;
ret = guc_action_slpc_query(guc, offset);
if (unlikely(ret))
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "Failed to query task state: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
drm_clflush_virt_range(slpc->vaddr, SLPC_PAGE_SIZE_BYTES);
return ret;
}
static int slpc_set_param(struct intel_guc_slpc *slpc, u8 id, u32 value)
{
struct intel_guc *guc = slpc_to_guc(slpc);
int ret;
GEM_BUG_ON(id >= SLPC_MAX_PARAM);
ret = guc_action_slpc_set_param(guc, id, value);
if (ret)
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "Failed to set param %d to %u: %pe\n",
id, value, ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return ret;
}
static int slpc_unset_param(struct intel_guc_slpc *slpc, u8 id)
{
struct intel_guc *guc = slpc_to_guc(slpc);
GEM_BUG_ON(id >= SLPC_MAX_PARAM);
return guc_action_slpc_unset_param(guc, id);
}
static int slpc_force_min_freq(struct intel_guc_slpc *slpc, u32 freq)
{
struct intel_guc *guc = slpc_to_guc(slpc);
2023-10-24 12:59:35 +02:00
struct drm_i915_private *i915 = slpc_to_i915(slpc);
2023-08-30 17:31:07 +02:00
intel_wakeref_t wakeref;
int ret = 0;
lockdep_assert_held(&slpc->lock);
if (!intel_guc_is_ready(guc))
return -ENODEV;
/*
* This function is a little different as compared to
* intel_guc_slpc_set_min_freq(). Softlimit will not be updated
* here since this is used to temporarily change min freq,
* for example, during a waitboost. Caller is responsible for
* checking bounds.
*/
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
/* Non-blocking request will avoid stalls */
ret = slpc_set_param_nb(slpc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
freq);
if (ret)
2023-10-24 12:59:35 +02:00
guc_notice(guc, "Failed to send set_param for min freq(%d): %pe\n",
freq, ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
}
return ret;
}
static void slpc_boost_work(struct work_struct *work)
{
struct intel_guc_slpc *slpc = container_of(work, typeof(*slpc), boost_work);
int err;
/*
* Raise min freq to boost. It's possible that
* this is greater than current max. But it will
* certainly be limited by RP0. An error setting
* the min param is not fatal.
*/
mutex_lock(&slpc->lock);
if (atomic_read(&slpc->num_waiters)) {
err = slpc_force_min_freq(slpc, slpc->boost_freq);
if (!err)
slpc->num_boosts++;
}
mutex_unlock(&slpc->lock);
}
int intel_guc_slpc_init(struct intel_guc_slpc *slpc)
{
struct intel_guc *guc = slpc_to_guc(slpc);
u32 size = PAGE_ALIGN(sizeof(struct slpc_shared_data));
int err;
GEM_BUG_ON(slpc->vma);
err = intel_guc_allocate_and_map_vma(guc, size, &slpc->vma, (void **)&slpc->vaddr);
if (unlikely(err)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "Failed to allocate SLPC struct: %pe\n", ERR_PTR(err));
2023-08-30 17:31:07 +02:00
return err;
}
slpc->max_freq_softlimit = 0;
slpc->min_freq_softlimit = 0;
2023-10-24 12:59:35 +02:00
slpc->ignore_eff_freq = false;
2023-08-30 17:31:07 +02:00
slpc->min_is_rpmax = false;
slpc->boost_freq = 0;
atomic_set(&slpc->num_waiters, 0);
slpc->num_boosts = 0;
slpc->media_ratio_mode = SLPC_MEDIA_RATIO_MODE_DYNAMIC_CONTROL;
mutex_init(&slpc->lock);
INIT_WORK(&slpc->boost_work, slpc_boost_work);
return err;
}
static const char *slpc_global_state_to_string(enum slpc_global_state state)
{
switch (state) {
case SLPC_GLOBAL_STATE_NOT_RUNNING:
return "not running";
case SLPC_GLOBAL_STATE_INITIALIZING:
return "initializing";
case SLPC_GLOBAL_STATE_RESETTING:
return "resetting";
case SLPC_GLOBAL_STATE_RUNNING:
return "running";
case SLPC_GLOBAL_STATE_SHUTTING_DOWN:
return "shutting down";
case SLPC_GLOBAL_STATE_ERROR:
return "error";
default:
return "unknown";
}
}
static const char *slpc_get_state_string(struct intel_guc_slpc *slpc)
{
return slpc_global_state_to_string(slpc_get_state(slpc));
}
static int guc_action_slpc_reset(struct intel_guc *guc, u32 offset)
{
u32 request[] = {
GUC_ACTION_HOST2GUC_PC_SLPC_REQUEST,
SLPC_EVENT(SLPC_EVENT_RESET, 2),
offset,
0,
};
int ret;
ret = intel_guc_send(guc, request, ARRAY_SIZE(request));
return ret > 0 ? -EPROTO : ret;
}
static int slpc_reset(struct intel_guc_slpc *slpc)
{
struct intel_guc *guc = slpc_to_guc(slpc);
u32 offset = intel_guc_ggtt_offset(guc, slpc->vma);
int ret;
ret = guc_action_slpc_reset(guc, offset);
if (unlikely(ret < 0)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "SLPC reset action failed: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return ret;
}
if (!ret) {
if (wait_for(slpc_is_running(slpc), SLPC_RESET_TIMEOUT_MS)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "SLPC not enabled! State = %s\n",
slpc_get_state_string(slpc));
2023-08-30 17:31:07 +02:00
return -EIO;
}
}
return 0;
}
static u32 slpc_decode_min_freq(struct intel_guc_slpc *slpc)
{
struct slpc_shared_data *data = slpc->vaddr;
GEM_BUG_ON(!slpc->vma);
return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MIN_UNSLICE_FREQ_MASK,
data->task_state_data.freq) *
GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER);
}
static u32 slpc_decode_max_freq(struct intel_guc_slpc *slpc)
{
struct slpc_shared_data *data = slpc->vaddr;
GEM_BUG_ON(!slpc->vma);
return DIV_ROUND_CLOSEST(REG_FIELD_GET(SLPC_MAX_UNSLICE_FREQ_MASK,
data->task_state_data.freq) *
GT_FREQUENCY_MULTIPLIER, GEN9_FREQ_SCALER);
}
static void slpc_shared_data_reset(struct slpc_shared_data *data)
{
memset(data, 0, sizeof(struct slpc_shared_data));
data->header.size = sizeof(struct slpc_shared_data);
/* Enable only GTPERF task, disable others */
slpc_mem_set_enabled(data, SLPC_PARAM_TASK_ENABLE_GTPERF,
SLPC_PARAM_TASK_DISABLE_GTPERF);
slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_BALANCER,
SLPC_PARAM_TASK_DISABLE_BALANCER);
slpc_mem_set_disabled(data, SLPC_PARAM_TASK_ENABLE_DCC,
SLPC_PARAM_TASK_DISABLE_DCC);
}
/**
* intel_guc_slpc_set_max_freq() - Set max frequency limit for SLPC.
* @slpc: pointer to intel_guc_slpc.
* @val: frequency (MHz)
*
* This function will invoke GuC SLPC action to update the max frequency
* limit for unslice.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret;
if (val < slpc->min_freq ||
val > slpc->rp0_freq ||
val < slpc->min_freq_softlimit)
return -EINVAL;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
ret = slpc_set_param(slpc,
SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
val);
/* Return standardized err code for sysfs calls */
if (ret)
ret = -EIO;
}
if (!ret)
slpc->max_freq_softlimit = val;
return ret;
}
/**
* intel_guc_slpc_get_max_freq() - Get max frequency limit for SLPC.
* @slpc: pointer to intel_guc_slpc.
* @val: pointer to val which will hold max frequency (MHz)
*
* This function will invoke GuC SLPC action to read the max frequency
* limit for unslice.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_get_max_freq(struct intel_guc_slpc *slpc, u32 *val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret = 0;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
/* Force GuC to update task data */
ret = slpc_query_task_state(slpc);
if (!ret)
*val = slpc_decode_max_freq(slpc);
}
return ret;
}
2023-10-24 12:59:35 +02:00
int intel_guc_slpc_set_ignore_eff_freq(struct intel_guc_slpc *slpc, bool val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret;
mutex_lock(&slpc->lock);
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
ret = slpc_set_param(slpc,
SLPC_PARAM_IGNORE_EFFICIENT_FREQUENCY,
val);
if (ret) {
guc_probe_error(slpc_to_guc(slpc), "Failed to set efficient freq(%d): %pe\n",
val, ERR_PTR(ret));
} else {
slpc->ignore_eff_freq = val;
/* Set min to RPn when we disable efficient freq */
if (val)
ret = slpc_set_param(slpc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
slpc->min_freq);
}
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
mutex_unlock(&slpc->lock);
return ret;
}
2023-08-30 17:31:07 +02:00
/**
* intel_guc_slpc_set_min_freq() - Set min frequency limit for SLPC.
* @slpc: pointer to intel_guc_slpc.
* @val: frequency (MHz)
*
* This function will invoke GuC SLPC action to update the min unslice
* frequency.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret;
if (val < slpc->min_freq ||
val > slpc->rp0_freq ||
val > slpc->max_freq_softlimit)
return -EINVAL;
/* Need a lock now since waitboost can be modifying min as well */
mutex_lock(&slpc->lock);
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
ret = slpc_set_param(slpc,
SLPC_PARAM_GLOBAL_MIN_GT_UNSLICE_FREQ_MHZ,
val);
if (!ret)
slpc->min_freq_softlimit = val;
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
mutex_unlock(&slpc->lock);
/* Return standardized err code for sysfs calls */
if (ret)
ret = -EIO;
return ret;
}
/**
* intel_guc_slpc_get_min_freq() - Get min frequency limit for SLPC.
* @slpc: pointer to intel_guc_slpc.
* @val: pointer to val which will hold min frequency (MHz)
*
* This function will invoke GuC SLPC action to read the min frequency
* limit for unslice.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_get_min_freq(struct intel_guc_slpc *slpc, u32 *val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret = 0;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
/* Force GuC to update task data */
ret = slpc_query_task_state(slpc);
if (!ret)
*val = slpc_decode_min_freq(slpc);
}
return ret;
}
int intel_guc_slpc_set_media_ratio_mode(struct intel_guc_slpc *slpc, u32 val)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret = 0;
if (!HAS_MEDIA_RATIO_MODE(i915))
return -ENODEV;
with_intel_runtime_pm(&i915->runtime_pm, wakeref)
ret = slpc_set_param(slpc,
SLPC_PARAM_MEDIA_FF_RATIO_MODE,
val);
return ret;
}
void intel_guc_pm_intrmsk_enable(struct intel_gt *gt)
{
u32 pm_intrmsk_mbz = 0;
/*
* Allow GuC to receive ARAT timer expiry event.
* This interrupt register is setup by RPS code
* when host based Turbo is enabled.
*/
pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
intel_uncore_rmw(gt->uncore,
GEN6_PMINTRMSK, pm_intrmsk_mbz, 0);
}
static int slpc_set_softlimits(struct intel_guc_slpc *slpc)
{
int ret = 0;
/*
* Softlimits are initially equivalent to platform limits
* unless they have deviated from defaults, in which case,
* we retain the values and set min/max accordingly.
*/
if (!slpc->max_freq_softlimit) {
slpc->max_freq_softlimit = slpc->rp0_freq;
slpc_to_gt(slpc)->defaults.max_freq = slpc->max_freq_softlimit;
} else if (slpc->max_freq_softlimit != slpc->rp0_freq) {
ret = intel_guc_slpc_set_max_freq(slpc,
slpc->max_freq_softlimit);
}
if (unlikely(ret))
return ret;
if (!slpc->min_freq_softlimit) {
2023-10-24 12:59:35 +02:00
/* Min softlimit is initialized to RPn */
slpc->min_freq_softlimit = slpc->min_freq;
2023-08-30 17:31:07 +02:00
slpc_to_gt(slpc)->defaults.min_freq = slpc->min_freq_softlimit;
2023-10-24 12:59:35 +02:00
} else {
2023-08-30 17:31:07 +02:00
return intel_guc_slpc_set_min_freq(slpc,
slpc->min_freq_softlimit);
}
return 0;
}
static bool is_slpc_min_freq_rpmax(struct intel_guc_slpc *slpc)
{
int slpc_min_freq;
int ret;
ret = intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq);
if (ret) {
2023-10-24 12:59:35 +02:00
guc_err(slpc_to_guc(slpc), "Failed to get min freq: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return false;
}
if (slpc_min_freq == SLPC_MAX_FREQ_MHZ)
return true;
else
return false;
}
static void update_server_min_softlimit(struct intel_guc_slpc *slpc)
{
/* For server parts, SLPC min will be at RPMax.
* Use min softlimit to clamp it to RP0 instead.
*/
if (!slpc->min_freq_softlimit &&
is_slpc_min_freq_rpmax(slpc)) {
slpc->min_is_rpmax = true;
slpc->min_freq_softlimit = slpc->rp0_freq;
(slpc_to_gt(slpc))->defaults.min_freq = slpc->min_freq_softlimit;
}
}
static int slpc_use_fused_rp0(struct intel_guc_slpc *slpc)
{
/* Force SLPC to used platform rp0 */
return slpc_set_param(slpc,
SLPC_PARAM_GLOBAL_MAX_GT_UNSLICE_FREQ_MHZ,
slpc->rp0_freq);
}
static void slpc_get_rp_values(struct intel_guc_slpc *slpc)
{
struct intel_rps *rps = &slpc_to_gt(slpc)->rps;
struct intel_rps_freq_caps caps;
gen6_rps_get_freq_caps(rps, &caps);
slpc->rp0_freq = intel_gpu_freq(rps, caps.rp0_freq);
slpc->rp1_freq = intel_gpu_freq(rps, caps.rp1_freq);
slpc->min_freq = intel_gpu_freq(rps, caps.min_freq);
if (!slpc->boost_freq)
slpc->boost_freq = slpc->rp0_freq;
}
/**
* intel_guc_slpc_override_gucrc_mode() - override GUCRC mode
* @slpc: pointer to intel_guc_slpc.
* @mode: new value of the mode.
*
* This function will override the GUCRC mode.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_override_gucrc_mode(struct intel_guc_slpc *slpc, u32 mode)
{
int ret;
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
if (mode >= SLPC_GUCRC_MODE_MAX)
return -EINVAL;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
ret = slpc_set_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE, mode);
if (ret)
2023-10-24 12:59:35 +02:00
guc_err(slpc_to_guc(slpc), "Override RC mode %d failed: %pe\n",
mode, ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
}
return ret;
}
int intel_guc_slpc_unset_gucrc_mode(struct intel_guc_slpc *slpc)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
intel_wakeref_t wakeref;
int ret = 0;
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
ret = slpc_unset_param(slpc, SLPC_PARAM_PWRGATE_RC_MODE);
if (ret)
2023-10-24 12:59:35 +02:00
guc_err(slpc_to_guc(slpc), "Unsetting RC mode failed: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
}
return ret;
}
/*
* intel_guc_slpc_enable() - Start SLPC
* @slpc: pointer to intel_guc_slpc.
*
* SLPC is enabled by setting up the shared data structure and
* sending reset event to GuC SLPC. Initial data is setup in
* intel_guc_slpc_init. Here we send the reset event. We do
* not currently need a slpc_disable since this is taken care
* of automatically when a reset/suspend occurs and the GuC
* CTB is destroyed.
*
* Return: 0 on success, non-zero error code on failure.
*/
int intel_guc_slpc_enable(struct intel_guc_slpc *slpc)
{
2023-10-24 12:59:35 +02:00
struct intel_guc *guc = slpc_to_guc(slpc);
2023-08-30 17:31:07 +02:00
int ret;
GEM_BUG_ON(!slpc->vma);
slpc_shared_data_reset(slpc->vaddr);
ret = slpc_reset(slpc);
if (unlikely(ret < 0)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "SLPC Reset event returned: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return ret;
}
ret = slpc_query_task_state(slpc);
if (unlikely(ret < 0))
return ret;
2023-10-24 12:59:35 +02:00
intel_guc_pm_intrmsk_enable(slpc_to_gt(slpc));
2023-08-30 17:31:07 +02:00
slpc_get_rp_values(slpc);
/* Handle the case where min=max=RPmax */
update_server_min_softlimit(slpc);
/* Set SLPC max limit to RP0 */
ret = slpc_use_fused_rp0(slpc);
if (unlikely(ret)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "Failed to set SLPC max to RP0: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return ret;
}
2023-10-24 12:59:35 +02:00
/* Set cached value of ignore efficient freq */
intel_guc_slpc_set_ignore_eff_freq(slpc, slpc->ignore_eff_freq);
2023-08-30 17:31:07 +02:00
/* Revert SLPC min/max to softlimits if necessary */
ret = slpc_set_softlimits(slpc);
if (unlikely(ret)) {
2023-10-24 12:59:35 +02:00
guc_probe_error(guc, "Failed to set SLPC softlimits: %pe\n", ERR_PTR(ret));
2023-08-30 17:31:07 +02:00
return ret;
}
/* Set cached media freq ratio mode */
intel_guc_slpc_set_media_ratio_mode(slpc, slpc->media_ratio_mode);
return 0;
}
int intel_guc_slpc_set_boost_freq(struct intel_guc_slpc *slpc, u32 val)
{
int ret = 0;
if (val < slpc->min_freq || val > slpc->rp0_freq)
return -EINVAL;
mutex_lock(&slpc->lock);
if (slpc->boost_freq != val) {
/* Apply only if there are active waiters */
if (atomic_read(&slpc->num_waiters)) {
ret = slpc_force_min_freq(slpc, val);
if (ret) {
ret = -EIO;
goto done;
}
}
slpc->boost_freq = val;
}
done:
mutex_unlock(&slpc->lock);
return ret;
}
void intel_guc_slpc_dec_waiters(struct intel_guc_slpc *slpc)
{
/*
* Return min back to the softlimit.
* This is called during request retire,
* so we don't need to fail that if the
* set_param fails.
*/
mutex_lock(&slpc->lock);
if (atomic_dec_and_test(&slpc->num_waiters))
slpc_force_min_freq(slpc, slpc->min_freq_softlimit);
mutex_unlock(&slpc->lock);
}
int intel_guc_slpc_print_info(struct intel_guc_slpc *slpc, struct drm_printer *p)
{
struct drm_i915_private *i915 = slpc_to_i915(slpc);
struct slpc_shared_data *data = slpc->vaddr;
struct slpc_task_state_data *slpc_tasks;
intel_wakeref_t wakeref;
int ret = 0;
GEM_BUG_ON(!slpc->vma);
with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
ret = slpc_query_task_state(slpc);
if (!ret) {
slpc_tasks = &data->task_state_data;
drm_printf(p, "\tSLPC state: %s\n", slpc_get_state_string(slpc));
drm_printf(p, "\tGTPERF task active: %s\n",
str_yes_no(slpc_tasks->status & SLPC_GTPERF_TASK_ENABLED));
drm_printf(p, "\tMax freq: %u MHz\n",
slpc_decode_max_freq(slpc));
drm_printf(p, "\tMin freq: %u MHz\n",
slpc_decode_min_freq(slpc));
drm_printf(p, "\twaitboosts: %u\n",
slpc->num_boosts);
2023-10-24 12:59:35 +02:00
drm_printf(p, "\tBoosts outstanding: %u\n",
atomic_read(&slpc->num_waiters));
2023-08-30 17:31:07 +02:00
}
}
return ret;
}
void intel_guc_slpc_fini(struct intel_guc_slpc *slpc)
{
if (!slpc->vma)
return;
i915_vma_unpin_and_release(&slpc->vma, I915_VMA_RELEASE_MAP);
}