linux-zen-desktop/drivers/gpu/drm/imx/dcss/dcss-scaler.c

856 lines
23 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2019 NXP.
*
* Scaling algorithms were contributed by Dzung Hoang <dzung.hoang@nxp.com>
*/
#include <linux/device.h>
#include <linux/slab.h>
#include "dcss-dev.h"
#define DCSS_SCALER_CTRL 0x00
#define SCALER_EN BIT(0)
#define REPEAT_EN BIT(4)
#define SCALE2MEM_EN BIT(8)
#define MEM2OFIFO_EN BIT(12)
#define DCSS_SCALER_OFIFO_CTRL 0x04
#define OFIFO_LOW_THRES_POS 0
#define OFIFO_LOW_THRES_MASK GENMASK(9, 0)
#define OFIFO_HIGH_THRES_POS 16
#define OFIFO_HIGH_THRES_MASK GENMASK(25, 16)
#define UNDERRUN_DETECT_CLR BIT(26)
#define LOW_THRES_DETECT_CLR BIT(27)
#define HIGH_THRES_DETECT_CLR BIT(28)
#define UNDERRUN_DETECT_EN BIT(29)
#define LOW_THRES_DETECT_EN BIT(30)
#define HIGH_THRES_DETECT_EN BIT(31)
#define DCSS_SCALER_SDATA_CTRL 0x08
#define YUV_EN BIT(0)
#define RTRAM_8LINES BIT(1)
#define Y_UV_BYTE_SWAP BIT(4)
#define A2R10G10B10_FORMAT_POS 8
#define A2R10G10B10_FORMAT_MASK GENMASK(11, 8)
#define DCSS_SCALER_BIT_DEPTH 0x0C
#define LUM_BIT_DEPTH_POS 0
#define LUM_BIT_DEPTH_MASK GENMASK(1, 0)
#define CHR_BIT_DEPTH_POS 4
#define CHR_BIT_DEPTH_MASK GENMASK(5, 4)
#define DCSS_SCALER_SRC_FORMAT 0x10
#define DCSS_SCALER_DST_FORMAT 0x14
#define FORMAT_MASK GENMASK(1, 0)
#define DCSS_SCALER_SRC_LUM_RES 0x18
#define DCSS_SCALER_SRC_CHR_RES 0x1C
#define DCSS_SCALER_DST_LUM_RES 0x20
#define DCSS_SCALER_DST_CHR_RES 0x24
#define WIDTH_POS 0
#define WIDTH_MASK GENMASK(11, 0)
#define HEIGHT_POS 16
#define HEIGHT_MASK GENMASK(27, 16)
#define DCSS_SCALER_V_LUM_START 0x48
#define V_START_MASK GENMASK(15, 0)
#define DCSS_SCALER_V_LUM_INC 0x4C
#define V_INC_MASK GENMASK(15, 0)
#define DCSS_SCALER_H_LUM_START 0x50
#define H_START_MASK GENMASK(18, 0)
#define DCSS_SCALER_H_LUM_INC 0x54
#define H_INC_MASK GENMASK(15, 0)
#define DCSS_SCALER_V_CHR_START 0x58
#define DCSS_SCALER_V_CHR_INC 0x5C
#define DCSS_SCALER_H_CHR_START 0x60
#define DCSS_SCALER_H_CHR_INC 0x64
#define DCSS_SCALER_COEF_VLUM 0x80
#define DCSS_SCALER_COEF_HLUM 0x140
#define DCSS_SCALER_COEF_VCHR 0x200
#define DCSS_SCALER_COEF_HCHR 0x300
struct dcss_scaler_ch {
void __iomem *base_reg;
u32 base_ofs;
struct dcss_scaler *scl;
u32 sdata_ctrl;
u32 scaler_ctrl;
bool scaler_ctrl_chgd;
u32 c_vstart;
u32 c_hstart;
bool use_nn_interpolation;
};
struct dcss_scaler {
struct device *dev;
struct dcss_ctxld *ctxld;
u32 ctx_id;
struct dcss_scaler_ch ch[3];
};
/* scaler coefficients generator */
#define PSC_FRAC_BITS 30
#define PSC_FRAC_SCALE BIT(PSC_FRAC_BITS)
#define PSC_BITS_FOR_PHASE 4
#define PSC_NUM_PHASES 16
#define PSC_STORED_PHASES (PSC_NUM_PHASES / 2 + 1)
#define PSC_NUM_TAPS 7
#define PSC_NUM_TAPS_RGBA 5
#define PSC_COEFF_PRECISION 10
#define PSC_PHASE_FRACTION_BITS 13
#define PSC_PHASE_MASK (PSC_NUM_PHASES - 1)
#define PSC_Q_FRACTION 19
#define PSC_Q_ROUND_OFFSET (1 << (PSC_Q_FRACTION - 1))
/**
* mult_q() - Performs fixed-point multiplication.
* @A: multiplier
* @B: multiplicand
*/
static int mult_q(int A, int B)
{
int result;
s64 temp;
temp = (int64_t)A * (int64_t)B;
temp += PSC_Q_ROUND_OFFSET;
result = (int)(temp >> PSC_Q_FRACTION);
return result;
}
/**
* div_q() - Performs fixed-point division.
* @A: dividend
* @B: divisor
*/
static int div_q(int A, int B)
{
int result;
s64 temp;
temp = (int64_t)A << PSC_Q_FRACTION;
if ((temp >= 0 && B >= 0) || (temp < 0 && B < 0))
temp += B / 2;
else
temp -= B / 2;
result = (int)(temp / B);
return result;
}
/**
* exp_approx_q() - Compute approximation to exp(x) function using Taylor
* series.
* @x: fixed-point argument of exp function
*/
static int exp_approx_q(int x)
{
int sum = 1 << PSC_Q_FRACTION;
int term = 1 << PSC_Q_FRACTION;
term = mult_q(term, div_q(x, 1 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 2 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 3 << PSC_Q_FRACTION));
sum += term;
term = mult_q(term, div_q(x, 4 << PSC_Q_FRACTION));
sum += term;
return sum;
}
/**
* dcss_scaler_gaussian_filter() - Generate gaussian prototype filter.
* @fc_q: fixed-point cutoff frequency normalized to range [0, 1]
* @use_5_taps: indicates whether to use 5 taps or 7 taps
* @coef: output filter coefficients
*/
static void dcss_scaler_gaussian_filter(int fc_q, bool use_5_taps,
bool phase0_identity,
int coef[][PSC_NUM_TAPS])
{
int sigma_q, g0_q, g1_q, g2_q;
int tap_cnt1, tap_cnt2, tap_idx, phase_cnt;
int mid;
int phase;
int i;
int taps;
if (use_5_taps)
for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
coef[phase][0] = 0;
coef[phase][PSC_NUM_TAPS - 1] = 0;
}
/* seed coefficient scanner */
taps = use_5_taps ? PSC_NUM_TAPS_RGBA : PSC_NUM_TAPS;
mid = (PSC_NUM_PHASES * taps) / 2 - 1;
phase_cnt = (PSC_NUM_PHASES * (PSC_NUM_TAPS + 1)) / 2;
tap_cnt1 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
tap_cnt2 = (PSC_NUM_PHASES * PSC_NUM_TAPS) / 2;
/* seed gaussian filter generator */
sigma_q = div_q(PSC_Q_ROUND_OFFSET, fc_q);
g0_q = 1 << PSC_Q_FRACTION;
g1_q = exp_approx_q(div_q(-PSC_Q_ROUND_OFFSET,
mult_q(sigma_q, sigma_q)));
g2_q = mult_q(g1_q, g1_q);
coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = g0_q;
for (i = 0; i < mid; i++) {
phase_cnt++;
tap_cnt1--;
tap_cnt2++;
g0_q = mult_q(g0_q, g1_q);
g1_q = mult_q(g1_q, g2_q);
if ((phase_cnt & PSC_PHASE_MASK) <= 8) {
tap_idx = tap_cnt1 >> PSC_BITS_FOR_PHASE;
coef[phase_cnt & PSC_PHASE_MASK][tap_idx] = g0_q;
}
if (((-phase_cnt) & PSC_PHASE_MASK) <= 8) {
tap_idx = tap_cnt2 >> PSC_BITS_FOR_PHASE;
coef[(-phase_cnt) & PSC_PHASE_MASK][tap_idx] = g0_q;
}
}
phase_cnt++;
tap_cnt1--;
coef[phase_cnt & PSC_PHASE_MASK][tap_cnt1 >> PSC_BITS_FOR_PHASE] = 0;
/* override phase 0 with identity filter if specified */
if (phase0_identity)
for (i = 0; i < PSC_NUM_TAPS; i++)
coef[0][i] = i == (PSC_NUM_TAPS >> 1) ?
(1 << PSC_COEFF_PRECISION) : 0;
/* normalize coef */
for (phase = 0; phase < PSC_STORED_PHASES; phase++) {
int sum = 0;
s64 ll_temp;
for (i = 0; i < PSC_NUM_TAPS; i++)
sum += coef[phase][i];
for (i = 0; i < PSC_NUM_TAPS; i++) {
ll_temp = coef[phase][i];
ll_temp <<= PSC_COEFF_PRECISION;
ll_temp += sum >> 1;
ll_temp /= sum;
coef[phase][i] = (int)ll_temp;
}
}
}
static void dcss_scaler_nearest_neighbor_filter(bool use_5_taps,
int coef[][PSC_NUM_TAPS])
{
int i, j;
for (i = 0; i < PSC_STORED_PHASES; i++)
for (j = 0; j < PSC_NUM_TAPS; j++)
coef[i][j] = j == PSC_NUM_TAPS >> 1 ?
(1 << PSC_COEFF_PRECISION) : 0;
}
/**
* dcss_scaler_filter_design() - Compute filter coefficients using
* Gaussian filter.
* @src_length: length of input
* @dst_length: length of output
* @use_5_taps: 0 for 7 taps per phase, 1 for 5 taps
* @coef: output coefficients
*/
static void dcss_scaler_filter_design(int src_length, int dst_length,
bool use_5_taps, bool phase0_identity,
int coef[][PSC_NUM_TAPS],
bool nn_interpolation)
{
int fc_q;
/* compute cutoff frequency */
if (dst_length >= src_length)
fc_q = div_q(1, PSC_NUM_PHASES);
else
fc_q = div_q(dst_length, src_length * PSC_NUM_PHASES);
if (nn_interpolation)
dcss_scaler_nearest_neighbor_filter(use_5_taps, coef);
else
/* compute gaussian filter coefficients */
dcss_scaler_gaussian_filter(fc_q, use_5_taps, phase0_identity, coef);
}
static void dcss_scaler_write(struct dcss_scaler_ch *ch, u32 val, u32 ofs)
{
struct dcss_scaler *scl = ch->scl;
dcss_ctxld_write(scl->ctxld, scl->ctx_id, val, ch->base_ofs + ofs);
}
static int dcss_scaler_ch_init_all(struct dcss_scaler *scl,
unsigned long scaler_base)
{
struct dcss_scaler_ch *ch;
int i;
for (i = 0; i < 3; i++) {
ch = &scl->ch[i];
ch->base_ofs = scaler_base + i * 0x400;
ch->base_reg = ioremap(ch->base_ofs, SZ_4K);
if (!ch->base_reg) {
dev_err(scl->dev, "scaler: unable to remap ch base\n");
return -ENOMEM;
}
ch->scl = scl;
}
return 0;
}
int dcss_scaler_init(struct dcss_dev *dcss, unsigned long scaler_base)
{
struct dcss_scaler *scaler;
scaler = kzalloc(sizeof(*scaler), GFP_KERNEL);
if (!scaler)
return -ENOMEM;
dcss->scaler = scaler;
scaler->dev = dcss->dev;
scaler->ctxld = dcss->ctxld;
scaler->ctx_id = CTX_SB_HP;
if (dcss_scaler_ch_init_all(scaler, scaler_base)) {
int i;
for (i = 0; i < 3; i++) {
if (scaler->ch[i].base_reg)
iounmap(scaler->ch[i].base_reg);
}
kfree(scaler);
return -ENOMEM;
}
return 0;
}
void dcss_scaler_exit(struct dcss_scaler *scl)
{
int ch_no;
for (ch_no = 0; ch_no < 3; ch_no++) {
struct dcss_scaler_ch *ch = &scl->ch[ch_no];
dcss_writel(0, ch->base_reg + DCSS_SCALER_CTRL);
if (ch->base_reg)
iounmap(ch->base_reg);
}
kfree(scl);
}
void dcss_scaler_ch_enable(struct dcss_scaler *scl, int ch_num, bool en)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
u32 scaler_ctrl;
scaler_ctrl = en ? SCALER_EN | REPEAT_EN : 0;
if (en)
dcss_scaler_write(ch, ch->sdata_ctrl, DCSS_SCALER_SDATA_CTRL);
if (ch->scaler_ctrl != scaler_ctrl)
ch->scaler_ctrl_chgd = true;
ch->scaler_ctrl = scaler_ctrl;
}
static void dcss_scaler_yuv_enable(struct dcss_scaler_ch *ch, bool en)
{
ch->sdata_ctrl &= ~YUV_EN;
ch->sdata_ctrl |= en ? YUV_EN : 0;
}
static void dcss_scaler_rtr_8lines_enable(struct dcss_scaler_ch *ch, bool en)
{
ch->sdata_ctrl &= ~RTRAM_8LINES;
ch->sdata_ctrl |= en ? RTRAM_8LINES : 0;
}
static void dcss_scaler_bit_depth_set(struct dcss_scaler_ch *ch, int depth)
{
u32 val;
val = depth == 30 ? 2 : 0;
dcss_scaler_write(ch,
((val << CHR_BIT_DEPTH_POS) & CHR_BIT_DEPTH_MASK) |
((val << LUM_BIT_DEPTH_POS) & LUM_BIT_DEPTH_MASK),
DCSS_SCALER_BIT_DEPTH);
}
enum buffer_format {
BUF_FMT_YUV420,
BUF_FMT_YUV422,
BUF_FMT_ARGB8888_YUV444,
};
enum chroma_location {
PSC_LOC_HORZ_0_VERT_1_OVER_4 = 0,
PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4 = 1,
PSC_LOC_HORZ_0_VERT_0 = 2,
PSC_LOC_HORZ_1_OVER_4_VERT_0 = 3,
PSC_LOC_HORZ_0_VERT_1_OVER_2 = 4,
PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2 = 5
};
static void dcss_scaler_format_set(struct dcss_scaler_ch *ch,
enum buffer_format src_fmt,
enum buffer_format dst_fmt)
{
dcss_scaler_write(ch, src_fmt, DCSS_SCALER_SRC_FORMAT);
dcss_scaler_write(ch, dst_fmt, DCSS_SCALER_DST_FORMAT);
}
static void dcss_scaler_res_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres,
int dst_xres, int dst_yres,
u32 pix_format, enum buffer_format dst_format)
{
u32 lsrc_xres, lsrc_yres, csrc_xres, csrc_yres;
u32 ldst_xres, ldst_yres, cdst_xres, cdst_yres;
bool src_is_444 = true;
lsrc_xres = src_xres;
csrc_xres = src_xres;
lsrc_yres = src_yres;
csrc_yres = src_yres;
ldst_xres = dst_xres;
cdst_xres = dst_xres;
ldst_yres = dst_yres;
cdst_yres = dst_yres;
if (pix_format == DRM_FORMAT_UYVY || pix_format == DRM_FORMAT_VYUY ||
pix_format == DRM_FORMAT_YUYV || pix_format == DRM_FORMAT_YVYU) {
csrc_xres >>= 1;
src_is_444 = false;
} else if (pix_format == DRM_FORMAT_NV12 ||
pix_format == DRM_FORMAT_NV21) {
csrc_xres >>= 1;
csrc_yres >>= 1;
src_is_444 = false;
}
if (dst_format == BUF_FMT_YUV422)
cdst_xres >>= 1;
/* for 4:4:4 to 4:2:2 conversion, source height should be 1 less */
if (src_is_444 && dst_format == BUF_FMT_YUV422) {
lsrc_yres--;
csrc_yres--;
}
dcss_scaler_write(ch, (((lsrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((lsrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_SRC_LUM_RES);
dcss_scaler_write(ch, (((csrc_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((csrc_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_SRC_CHR_RES);
dcss_scaler_write(ch, (((ldst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((ldst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_DST_LUM_RES);
dcss_scaler_write(ch, (((cdst_yres - 1) << HEIGHT_POS) & HEIGHT_MASK) |
(((cdst_xres - 1) << WIDTH_POS) & WIDTH_MASK),
DCSS_SCALER_DST_CHR_RES);
}
#define downscale_fp(factor, fp_pos) ((factor) << (fp_pos))
#define upscale_fp(factor, fp_pos) ((1 << (fp_pos)) / (factor))
struct dcss_scaler_factors {
int downscale;
int upscale;
};
static const struct dcss_scaler_factors dcss_scaler_factors[] = {
{3, 8}, {5, 8}, {5, 8},
};
static void dcss_scaler_fractions_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres,
int dst_xres, int dst_yres,
u32 src_format, u32 dst_format,
enum chroma_location src_chroma_loc)
{
int src_c_xres, src_c_yres, dst_c_xres, dst_c_yres;
u32 l_vinc, l_hinc, c_vinc, c_hinc;
u32 c_vstart, c_hstart;
src_c_xres = src_xres;
src_c_yres = src_yres;
dst_c_xres = dst_xres;
dst_c_yres = dst_yres;
c_vstart = 0;
c_hstart = 0;
/* adjustments for source chroma location */
if (src_format == BUF_FMT_YUV420) {
/* vertical input chroma position adjustment */
switch (src_chroma_loc) {
case PSC_LOC_HORZ_0_VERT_1_OVER_4:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
/*
* move chroma up to first luma line
* (1/4 chroma input line spacing)
*/
c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
break;
case PSC_LOC_HORZ_0_VERT_1_OVER_2:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
/*
* move chroma up to first luma line
* (1/2 chroma input line spacing)
*/
c_vstart -= (1 << (PSC_PHASE_FRACTION_BITS - 1));
break;
default:
break;
}
/* horizontal input chroma position adjustment */
switch (src_chroma_loc) {
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_4:
case PSC_LOC_HORZ_1_OVER_4_VERT_0:
case PSC_LOC_HORZ_1_OVER_4_VERT_1_OVER_2:
/* move chroma left 1/4 chroma input sample spacing */
c_hstart -= (1 << (PSC_PHASE_FRACTION_BITS - 2));
break;
default:
break;
}
}
/* adjustments to chroma resolution */
if (src_format == BUF_FMT_YUV420) {
src_c_xres >>= 1;
src_c_yres >>= 1;
} else if (src_format == BUF_FMT_YUV422) {
src_c_xres >>= 1;
}
if (dst_format == BUF_FMT_YUV422)
dst_c_xres >>= 1;
l_vinc = ((src_yres << 13) + (dst_yres >> 1)) / dst_yres;
c_vinc = ((src_c_yres << 13) + (dst_c_yres >> 1)) / dst_c_yres;
l_hinc = ((src_xres << 13) + (dst_xres >> 1)) / dst_xres;
c_hinc = ((src_c_xres << 13) + (dst_c_xres >> 1)) / dst_c_xres;
/* save chroma start phase */
ch->c_vstart = c_vstart;
ch->c_hstart = c_hstart;
dcss_scaler_write(ch, 0, DCSS_SCALER_V_LUM_START);
dcss_scaler_write(ch, l_vinc, DCSS_SCALER_V_LUM_INC);
dcss_scaler_write(ch, 0, DCSS_SCALER_H_LUM_START);
dcss_scaler_write(ch, l_hinc, DCSS_SCALER_H_LUM_INC);
dcss_scaler_write(ch, c_vstart, DCSS_SCALER_V_CHR_START);
dcss_scaler_write(ch, c_vinc, DCSS_SCALER_V_CHR_INC);
dcss_scaler_write(ch, c_hstart, DCSS_SCALER_H_CHR_START);
dcss_scaler_write(ch, c_hinc, DCSS_SCALER_H_CHR_INC);
}
int dcss_scaler_get_min_max_ratios(struct dcss_scaler *scl, int ch_num,
int *min, int *max)
{
*min = upscale_fp(dcss_scaler_factors[ch_num].upscale, 16);
*max = downscale_fp(dcss_scaler_factors[ch_num].downscale, 16);
return 0;
}
static void dcss_scaler_program_5_coef_set(struct dcss_scaler_ch *ch,
int base_addr,
int coef[][PSC_NUM_TAPS])
{
int i, phase;
for (i = 0; i < PSC_STORED_PHASES; i++) {
dcss_scaler_write(ch, ((coef[i][1] & 0xfff) << 16 |
(coef[i][2] & 0xfff) << 4 |
(coef[i][3] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][3] & 0x0ff) << 20 |
(coef[i][4] & 0xfff) << 8 |
(coef[i][5] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][5] & 0x00f) << 24),
base_addr + 0x80 + i * sizeof(u32));
}
/* reverse both phase and tap orderings */
for (phase = (PSC_NUM_PHASES >> 1) - 1;
i < PSC_NUM_PHASES; i++, phase--) {
dcss_scaler_write(ch, ((coef[phase][5] & 0xfff) << 16 |
(coef[phase][4] & 0xfff) << 4 |
(coef[phase][3] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][3] & 0x0ff) << 20 |
(coef[phase][2] & 0xfff) << 8 |
(coef[phase][1] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][1] & 0x00f) << 24),
base_addr + 0x80 + i * sizeof(u32));
}
}
static void dcss_scaler_program_7_coef_set(struct dcss_scaler_ch *ch,
int base_addr,
int coef[][PSC_NUM_TAPS])
{
int i, phase;
for (i = 0; i < PSC_STORED_PHASES; i++) {
dcss_scaler_write(ch, ((coef[i][0] & 0xfff) << 16 |
(coef[i][1] & 0xfff) << 4 |
(coef[i][2] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][2] & 0x0ff) << 20 |
(coef[i][3] & 0xfff) << 8 |
(coef[i][4] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[i][4] & 0x00f) << 24 |
(coef[i][5] & 0xfff) << 12 |
(coef[i][6] & 0xfff)),
base_addr + 0x80 + i * sizeof(u32));
}
/* reverse both phase and tap orderings */
for (phase = (PSC_NUM_PHASES >> 1) - 1;
i < PSC_NUM_PHASES; i++, phase--) {
dcss_scaler_write(ch, ((coef[phase][6] & 0xfff) << 16 |
(coef[phase][5] & 0xfff) << 4 |
(coef[phase][4] & 0xf00) >> 8),
base_addr + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][4] & 0x0ff) << 20 |
(coef[phase][3] & 0xfff) << 8 |
(coef[phase][2] & 0xff0) >> 4),
base_addr + 0x40 + i * sizeof(u32));
dcss_scaler_write(ch, ((coef[phase][2] & 0x00f) << 24 |
(coef[phase][1] & 0xfff) << 12 |
(coef[phase][0] & 0xfff)),
base_addr + 0x80 + i * sizeof(u32));
}
}
static void dcss_scaler_yuv_coef_set(struct dcss_scaler_ch *ch,
enum buffer_format src_format,
enum buffer_format dst_format,
bool use_5_taps,
int src_xres, int src_yres, int dst_xres,
int dst_yres)
{
int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
bool program_5_taps = use_5_taps ||
(dst_format == BUF_FMT_YUV422 &&
src_format == BUF_FMT_ARGB8888_YUV444);
/* horizontal luma */
dcss_scaler_filter_design(src_xres, dst_xres, false,
src_xres == dst_xres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
/* vertical luma */
dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
src_yres == dst_yres, coef,
ch->use_nn_interpolation);
if (program_5_taps)
dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
else
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
/* adjust chroma resolution */
if (src_format != BUF_FMT_ARGB8888_YUV444)
src_xres >>= 1;
if (src_format == BUF_FMT_YUV420)
src_yres >>= 1;
if (dst_format != BUF_FMT_ARGB8888_YUV444)
dst_xres >>= 1;
if (dst_format == BUF_FMT_YUV420) /* should not happen */
dst_yres >>= 1;
/* horizontal chroma */
dcss_scaler_filter_design(src_xres, dst_xres, false,
(src_xres == dst_xres) && (ch->c_hstart == 0),
coef, ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HCHR, coef);
/* vertical chroma */
dcss_scaler_filter_design(src_yres, dst_yres, program_5_taps,
(src_yres == dst_yres) && (ch->c_vstart == 0),
coef, ch->use_nn_interpolation);
if (program_5_taps)
dcss_scaler_program_5_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
else
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VCHR, coef);
}
static void dcss_scaler_rgb_coef_set(struct dcss_scaler_ch *ch,
int src_xres, int src_yres, int dst_xres,
int dst_yres)
{
int coef[PSC_STORED_PHASES][PSC_NUM_TAPS];
/* horizontal RGB */
dcss_scaler_filter_design(src_xres, dst_xres, false,
src_xres == dst_xres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_HLUM, coef);
/* vertical RGB */
dcss_scaler_filter_design(src_yres, dst_yres, false,
src_yres == dst_yres, coef,
ch->use_nn_interpolation);
dcss_scaler_program_7_coef_set(ch, DCSS_SCALER_COEF_VLUM, coef);
}
static void dcss_scaler_set_rgb10_order(struct dcss_scaler_ch *ch,
const struct drm_format_info *format)
{
u32 a2r10g10b10_format;
if (format->is_yuv)
return;
ch->sdata_ctrl &= ~A2R10G10B10_FORMAT_MASK;
if (format->depth != 30)
return;
switch (format->format) {
case DRM_FORMAT_ARGB2101010:
case DRM_FORMAT_XRGB2101010:
a2r10g10b10_format = 0;
break;
case DRM_FORMAT_ABGR2101010:
case DRM_FORMAT_XBGR2101010:
a2r10g10b10_format = 5;
break;
case DRM_FORMAT_RGBA1010102:
case DRM_FORMAT_RGBX1010102:
a2r10g10b10_format = 6;
break;
case DRM_FORMAT_BGRA1010102:
case DRM_FORMAT_BGRX1010102:
a2r10g10b10_format = 11;
break;
default:
a2r10g10b10_format = 0;
break;
}
ch->sdata_ctrl |= a2r10g10b10_format << A2R10G10B10_FORMAT_POS;
}
void dcss_scaler_set_filter(struct dcss_scaler *scl, int ch_num,
enum drm_scaling_filter scaling_filter)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
ch->use_nn_interpolation = scaling_filter == DRM_SCALING_FILTER_NEAREST_NEIGHBOR;
}
void dcss_scaler_setup(struct dcss_scaler *scl, int ch_num,
const struct drm_format_info *format,
int src_xres, int src_yres, int dst_xres, int dst_yres,
u32 vrefresh_hz)
{
struct dcss_scaler_ch *ch = &scl->ch[ch_num];
unsigned int pixel_depth = 0;
bool rtr_8line_en = false;
bool use_5_taps = false;
enum buffer_format src_format = BUF_FMT_ARGB8888_YUV444;
enum buffer_format dst_format = BUF_FMT_ARGB8888_YUV444;
u32 pix_format = format->format;
if (format->is_yuv) {
dcss_scaler_yuv_enable(ch, true);
if (pix_format == DRM_FORMAT_NV12 ||
pix_format == DRM_FORMAT_NV21) {
rtr_8line_en = true;
src_format = BUF_FMT_YUV420;
} else if (pix_format == DRM_FORMAT_UYVY ||
pix_format == DRM_FORMAT_VYUY ||
pix_format == DRM_FORMAT_YUYV ||
pix_format == DRM_FORMAT_YVYU) {
src_format = BUF_FMT_YUV422;
}
use_5_taps = !rtr_8line_en;
} else {
dcss_scaler_yuv_enable(ch, false);
pixel_depth = format->depth;
}
dcss_scaler_fractions_set(ch, src_xres, src_yres, dst_xres,
dst_yres, src_format, dst_format,
PSC_LOC_HORZ_0_VERT_1_OVER_4);
if (format->is_yuv)
dcss_scaler_yuv_coef_set(ch, src_format, dst_format,
use_5_taps, src_xres, src_yres,
dst_xres, dst_yres);
else
dcss_scaler_rgb_coef_set(ch, src_xres, src_yres,
dst_xres, dst_yres);
dcss_scaler_rtr_8lines_enable(ch, rtr_8line_en);
dcss_scaler_bit_depth_set(ch, pixel_depth);
dcss_scaler_set_rgb10_order(ch, format);
dcss_scaler_format_set(ch, src_format, dst_format);
dcss_scaler_res_set(ch, src_xres, src_yres, dst_xres, dst_yres,
pix_format, dst_format);
}
/* This function will be called from interrupt context. */
void dcss_scaler_write_sclctrl(struct dcss_scaler *scl)
{
int chnum;
dcss_ctxld_assert_locked(scl->ctxld);
for (chnum = 0; chnum < 3; chnum++) {
struct dcss_scaler_ch *ch = &scl->ch[chnum];
if (ch->scaler_ctrl_chgd) {
dcss_ctxld_write_irqsafe(scl->ctxld, scl->ctx_id,
ch->scaler_ctrl,
ch->base_ofs +
DCSS_SCALER_CTRL);
ch->scaler_ctrl_chgd = false;
}
}
}