linux-zen-desktop/drivers/gpu/drm/nouveau/dispnv50/crc.c

746 lines
18 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
#include <linux/string.h>
#include <drm/drm_crtc.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_vblank.h>
#include <drm/drm_vblank_work.h>
#include <nvif/class.h>
#include <nvif/cl0002.h>
#include <nvif/timer.h>
#include <nvhw/class/cl907d.h>
#include "nouveau_drv.h"
#include "core.h"
#include "head.h"
#include "wndw.h"
#include "handles.h"
#include "crc.h"
static const char * const nv50_crc_sources[] = {
[NV50_CRC_SOURCE_NONE] = "none",
[NV50_CRC_SOURCE_AUTO] = "auto",
[NV50_CRC_SOURCE_RG] = "rg",
[NV50_CRC_SOURCE_OUTP_ACTIVE] = "outp-active",
[NV50_CRC_SOURCE_OUTP_COMPLETE] = "outp-complete",
[NV50_CRC_SOURCE_OUTP_INACTIVE] = "outp-inactive",
};
static int nv50_crc_parse_source(const char *buf, enum nv50_crc_source *s)
{
int i;
if (!buf) {
*s = NV50_CRC_SOURCE_NONE;
return 0;
}
i = match_string(nv50_crc_sources, ARRAY_SIZE(nv50_crc_sources), buf);
if (i < 0)
return i;
*s = i;
return 0;
}
int
nv50_crc_verify_source(struct drm_crtc *crtc, const char *source_name,
size_t *values_cnt)
{
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
enum nv50_crc_source source;
if (nv50_crc_parse_source(source_name, &source) < 0) {
NV_DEBUG(drm, "unknown source %s\n", source_name);
return -EINVAL;
}
*values_cnt = 1;
return 0;
}
const char *const *nv50_crc_get_sources(struct drm_crtc *crtc, size_t *count)
{
*count = ARRAY_SIZE(nv50_crc_sources);
return nv50_crc_sources;
}
static void
nv50_crc_program_ctx(struct nv50_head *head,
struct nv50_crc_notifier_ctx *ctx)
{
struct nv50_disp *disp = nv50_disp(head->base.base.dev);
struct nv50_core *core = disp->core;
u32 interlock[NV50_DISP_INTERLOCK__SIZE] = { 0 };
core->func->crc->set_ctx(head, ctx);
core->func->update(core, interlock, false);
}
static void nv50_crc_ctx_flip_work(struct kthread_work *base)
{
struct drm_vblank_work *work = to_drm_vblank_work(base);
struct nv50_crc *crc = container_of(work, struct nv50_crc, flip_work);
struct nv50_head *head = container_of(crc, struct nv50_head, crc);
struct drm_crtc *crtc = &head->base.base;
struct drm_device *dev = crtc->dev;
struct nv50_disp *disp = nv50_disp(dev);
const uint64_t start_vbl = drm_crtc_vblank_count(crtc);
uint64_t end_vbl;
u8 new_idx = crc->ctx_idx ^ 1;
/*
* We don't want to accidentally wait for longer then the vblank, so
* try again for the next vblank if we don't grab the lock
*/
if (!mutex_trylock(&disp->mutex)) {
drm_dbg_kms(dev, "Lock contended, delaying CRC ctx flip for %s\n", crtc->name);
drm_vblank_work_schedule(work, start_vbl + 1, true);
return;
}
drm_dbg_kms(dev, "Flipping notifier ctx for %s (%d -> %d)\n",
crtc->name, crc->ctx_idx, new_idx);
nv50_crc_program_ctx(head, NULL);
nv50_crc_program_ctx(head, &crc->ctx[new_idx]);
mutex_unlock(&disp->mutex);
end_vbl = drm_crtc_vblank_count(crtc);
if (unlikely(end_vbl != start_vbl))
NV_ERROR(nouveau_drm(dev),
"Failed to flip CRC context on %s on time (%llu > %llu)\n",
crtc->name, end_vbl, start_vbl);
spin_lock_irq(&crc->lock);
crc->ctx_changed = true;
spin_unlock_irq(&crc->lock);
}
static inline void nv50_crc_reset_ctx(struct nv50_crc_notifier_ctx *ctx)
{
memset_io(ctx->mem.object.map.ptr, 0, ctx->mem.object.map.size);
}
static void
nv50_crc_get_entries(struct nv50_head *head,
const struct nv50_crc_func *func,
enum nv50_crc_source source)
{
struct drm_crtc *crtc = &head->base.base;
struct nv50_crc *crc = &head->crc;
u32 output_crc;
while (crc->entry_idx < func->num_entries) {
/*
* While Nvidia's documentation says CRCs are written on each
* subsequent vblank after being enabled, in practice they
* aren't written immediately.
*/
output_crc = func->get_entry(head, &crc->ctx[crc->ctx_idx],
source, crc->entry_idx);
if (!output_crc)
return;
drm_crtc_add_crc_entry(crtc, true, crc->frame, &output_crc);
crc->frame++;
crc->entry_idx++;
}
}
void nv50_crc_handle_vblank(struct nv50_head *head)
{
struct drm_crtc *crtc = &head->base.base;
struct nv50_crc *crc = &head->crc;
const struct nv50_crc_func *func =
nv50_disp(head->base.base.dev)->core->func->crc;
struct nv50_crc_notifier_ctx *ctx;
bool need_reschedule = false;
if (!func)
return;
/*
* We don't lose events if we aren't able to report CRCs until the
* next vblank, so only report CRCs if the locks we need aren't
* contended to prevent missing an actual vblank event
*/
if (!spin_trylock(&crc->lock))
return;
if (!crc->src)
goto out;
ctx = &crc->ctx[crc->ctx_idx];
if (crc->ctx_changed && func->ctx_finished(head, ctx)) {
nv50_crc_get_entries(head, func, crc->src);
crc->ctx_idx ^= 1;
crc->entry_idx = 0;
crc->ctx_changed = false;
/*
* Unfortunately when notifier contexts are changed during CRC
* capture, we will inevitably lose the CRC entry for the
* frame where the hardware actually latched onto the first
* UPDATE. According to Nvidia's hardware engineers, there's
* no workaround for this.
*
* Now, we could try to be smart here and calculate the number
* of missed CRCs based on audit timestamps, but those were
* removed starting with volta. Since we always flush our
* updates back-to-back without waiting, we'll just be
* optimistic and assume we always miss exactly one frame.
*/
drm_dbg_kms(head->base.base.dev,
"Notifier ctx flip for head-%d finished, lost CRC for frame %llu\n",
head->base.index, crc->frame);
crc->frame++;
nv50_crc_reset_ctx(ctx);
need_reschedule = true;
}
nv50_crc_get_entries(head, func, crc->src);
if (need_reschedule)
drm_vblank_work_schedule(&crc->flip_work,
drm_crtc_vblank_count(crtc)
+ crc->flip_threshold
- crc->entry_idx,
true);
out:
spin_unlock(&crc->lock);
}
static void nv50_crc_wait_ctx_finished(struct nv50_head *head,
const struct nv50_crc_func *func,
struct nv50_crc_notifier_ctx *ctx)
{
struct drm_device *dev = head->base.base.dev;
struct nouveau_drm *drm = nouveau_drm(dev);
s64 ret;
ret = nvif_msec(&drm->client.device, 50,
if (func->ctx_finished(head, ctx)) break;);
if (ret == -ETIMEDOUT)
NV_ERROR(drm,
"CRC notifier ctx for head %d not finished after 50ms\n",
head->base.index);
else if (ret)
NV_ATOMIC(drm,
"CRC notifier ctx for head-%d finished after %lldns\n",
head->base.index, ret);
}
void nv50_crc_atomic_stop_reporting(struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
struct nv50_crc *crc = &head->crc;
if (!asyh->clr.crc)
continue;
spin_lock_irq(&crc->lock);
crc->src = NV50_CRC_SOURCE_NONE;
spin_unlock_irq(&crc->lock);
drm_crtc_vblank_put(crtc);
drm_vblank_work_cancel_sync(&crc->flip_work);
NV_ATOMIC(nouveau_drm(crtc->dev),
"CRC reporting on vblank for head-%d disabled\n",
head->base.index);
/* CRC generation is still enabled in hw, we'll just report
* any remaining CRC entries ourselves after it gets disabled
* in hardware
*/
}
}
void nv50_crc_atomic_init_notifier_contexts(struct drm_atomic_state *state)
{
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
int i;
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_crc *crc = &head->crc;
int i;
if (!asyh->set.crc)
continue;
crc->entry_idx = 0;
crc->ctx_changed = false;
for (i = 0; i < ARRAY_SIZE(crc->ctx); i++)
nv50_crc_reset_ctx(&crc->ctx[i]);
}
}
void nv50_crc_atomic_release_notifier_contexts(struct drm_atomic_state *state)
{
const struct nv50_crc_func *func =
nv50_disp(state->dev)->core->func->crc;
struct drm_crtc_state *new_crtc_state;
struct drm_crtc *crtc;
int i;
for_each_new_crtc_in_state(state, crtc, new_crtc_state, i) {
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_crc *crc = &head->crc;
struct nv50_crc_notifier_ctx *ctx = &crc->ctx[crc->ctx_idx];
if (!asyh->clr.crc)
continue;
if (crc->ctx_changed) {
nv50_crc_wait_ctx_finished(head, func, ctx);
ctx = &crc->ctx[crc->ctx_idx ^ 1];
}
nv50_crc_wait_ctx_finished(head, func, ctx);
}
}
void nv50_crc_atomic_start_reporting(struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state;
struct drm_crtc *crtc;
int i;
for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
struct nv50_head *head = nv50_head(crtc);
struct nv50_head_atom *asyh = nv50_head_atom(crtc_state);
struct nv50_crc *crc = &head->crc;
u64 vbl_count;
if (!asyh->set.crc)
continue;
drm_crtc_vblank_get(crtc);
spin_lock_irq(&crc->lock);
vbl_count = drm_crtc_vblank_count(crtc);
crc->frame = vbl_count;
crc->src = asyh->crc.src;
drm_vblank_work_schedule(&crc->flip_work,
vbl_count + crc->flip_threshold,
true);
spin_unlock_irq(&crc->lock);
NV_ATOMIC(nouveau_drm(crtc->dev),
"CRC reporting on vblank for head-%d enabled\n",
head->base.index);
}
}
int nv50_crc_atomic_check_head(struct nv50_head *head,
struct nv50_head_atom *asyh,
struct nv50_head_atom *armh)
{
struct nv50_atom *atom = nv50_atom(asyh->state.state);
bool changed = armh->crc.src != asyh->crc.src;
if (!armh->crc.src && !asyh->crc.src) {
asyh->set.crc = false;
asyh->clr.crc = false;
return 0;
}
if (drm_atomic_crtc_needs_modeset(&asyh->state) || changed) {
asyh->clr.crc = armh->crc.src && armh->state.active;
asyh->set.crc = asyh->crc.src && asyh->state.active;
if (changed)
asyh->set.or |= armh->or.crc_raster !=
asyh->or.crc_raster;
if (asyh->clr.crc && asyh->set.crc)
atom->flush_disable = true;
} else {
asyh->set.crc = false;
asyh->clr.crc = false;
}
return 0;
}
void nv50_crc_atomic_check_outp(struct nv50_atom *atom)
{
struct drm_crtc *crtc;
struct drm_crtc_state *old_crtc_state, *new_crtc_state;
int i;
if (atom->flush_disable)
return;
for_each_oldnew_crtc_in_state(&atom->state, crtc, old_crtc_state,
new_crtc_state, i) {
struct nv50_head_atom *armh = nv50_head_atom(old_crtc_state);
struct nv50_head_atom *asyh = nv50_head_atom(new_crtc_state);
struct nv50_outp_atom *outp_atom;
struct nouveau_encoder *outp;
struct drm_encoder *encoder, *enc;
enc = nv50_head_atom_get_encoder(armh);
if (!enc)
continue;
outp = nv50_real_outp(enc);
if (!outp)
continue;
encoder = &outp->base.base;
if (!asyh->clr.crc)
continue;
/*
* Re-programming ORs can't be done in the same flush as
* disabling CRCs
*/
list_for_each_entry(outp_atom, &atom->outp, head) {
if (outp_atom->encoder == encoder) {
if (outp_atom->set.mask) {
atom->flush_disable = true;
return;
} else {
break;
}
}
}
}
}
static enum nv50_crc_source_type
nv50_crc_source_type(struct nouveau_encoder *outp,
enum nv50_crc_source source)
{
struct dcb_output *dcbe = outp->dcb;
switch (source) {
case NV50_CRC_SOURCE_NONE: return NV50_CRC_SOURCE_TYPE_NONE;
case NV50_CRC_SOURCE_RG: return NV50_CRC_SOURCE_TYPE_RG;
default: break;
}
if (dcbe->location != DCB_LOC_ON_CHIP)
return NV50_CRC_SOURCE_TYPE_PIOR;
switch (dcbe->type) {
case DCB_OUTPUT_DP: return NV50_CRC_SOURCE_TYPE_SF;
case DCB_OUTPUT_ANALOG: return NV50_CRC_SOURCE_TYPE_DAC;
default: return NV50_CRC_SOURCE_TYPE_SOR;
}
}
void nv50_crc_atomic_set(struct nv50_head *head,
struct nv50_head_atom *asyh)
{
struct drm_crtc *crtc = &head->base.base;
struct drm_device *dev = crtc->dev;
struct nv50_crc *crc = &head->crc;
const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc;
struct nouveau_encoder *outp;
struct drm_encoder *encoder;
encoder = nv50_head_atom_get_encoder(asyh);
if (!encoder)
return;
outp = nv50_real_outp(encoder);
if (!outp)
return;
func->set_src(head, outp->outp.or.id, nv50_crc_source_type(outp, asyh->crc.src),
&crc->ctx[crc->ctx_idx]);
}
void nv50_crc_atomic_clr(struct nv50_head *head)
{
const struct nv50_crc_func *func =
nv50_disp(head->base.base.dev)->core->func->crc;
func->set_src(head, 0, NV50_CRC_SOURCE_TYPE_NONE, NULL);
}
static inline int
nv50_crc_raster_type(enum nv50_crc_source source)
{
switch (source) {
case NV50_CRC_SOURCE_NONE:
case NV50_CRC_SOURCE_AUTO:
case NV50_CRC_SOURCE_RG:
case NV50_CRC_SOURCE_OUTP_ACTIVE:
return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_ACTIVE_RASTER;
case NV50_CRC_SOURCE_OUTP_COMPLETE:
return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_COMPLETE_RASTER;
case NV50_CRC_SOURCE_OUTP_INACTIVE:
return NV907D_HEAD_SET_CONTROL_OUTPUT_RESOURCE_CRC_MODE_NON_ACTIVE_RASTER;
}
return 0;
}
/* We handle mapping the memory for CRC notifiers ourselves, since each
* notifier needs it's own handle
*/
static inline int
nv50_crc_ctx_init(struct nv50_head *head, struct nvif_mmu *mmu,
struct nv50_crc_notifier_ctx *ctx, size_t len, int idx)
{
struct nv50_core *core = nv50_disp(head->base.base.dev)->core;
int ret;
ret = nvif_mem_ctor_map(mmu, "kmsCrcNtfy", NVIF_MEM_VRAM, len, &ctx->mem);
if (ret)
return ret;
ret = nvif_object_ctor(&core->chan.base.user, "kmsCrcNtfyCtxDma",
NV50_DISP_HANDLE_CRC_CTX(head, idx),
NV_DMA_IN_MEMORY,
&(struct nv_dma_v0) {
.target = NV_DMA_V0_TARGET_VRAM,
.access = NV_DMA_V0_ACCESS_RDWR,
.start = ctx->mem.addr,
.limit = ctx->mem.addr
+ ctx->mem.size - 1,
}, sizeof(struct nv_dma_v0),
&ctx->ntfy);
if (ret)
goto fail_fini;
return 0;
fail_fini:
nvif_mem_dtor(&ctx->mem);
return ret;
}
static inline void
nv50_crc_ctx_fini(struct nv50_crc_notifier_ctx *ctx)
{
nvif_object_dtor(&ctx->ntfy);
nvif_mem_dtor(&ctx->mem);
}
int nv50_crc_set_source(struct drm_crtc *crtc, const char *source_str)
{
struct drm_device *dev = crtc->dev;
struct drm_atomic_state *state;
struct drm_modeset_acquire_ctx ctx;
struct nv50_head *head = nv50_head(crtc);
struct nv50_crc *crc = &head->crc;
const struct nv50_crc_func *func = nv50_disp(dev)->core->func->crc;
struct nvif_mmu *mmu = &nouveau_drm(dev)->client.mmu;
struct nv50_head_atom *asyh;
struct drm_crtc_state *crtc_state;
enum nv50_crc_source source;
int ret = 0, ctx_flags = 0, i;
ret = nv50_crc_parse_source(source_str, &source);
if (ret)
return ret;
/*
* Since we don't want the user to accidentally interrupt us as we're
* disabling CRCs
*/
if (source)
ctx_flags |= DRM_MODESET_ACQUIRE_INTERRUPTIBLE;
drm_modeset_acquire_init(&ctx, ctx_flags);
state = drm_atomic_state_alloc(dev);
if (!state) {
ret = -ENOMEM;
goto out_acquire_fini;
}
state->acquire_ctx = &ctx;
if (source) {
for (i = 0; i < ARRAY_SIZE(head->crc.ctx); i++) {
ret = nv50_crc_ctx_init(head, mmu, &crc->ctx[i],
func->notifier_len, i);
if (ret)
goto out_ctx_fini;
}
}
retry:
crtc_state = drm_atomic_get_crtc_state(state, &head->base.base);
if (IS_ERR(crtc_state)) {
ret = PTR_ERR(crtc_state);
if (ret == -EDEADLK)
goto deadlock;
else if (ret)
goto out_drop_locks;
}
asyh = nv50_head_atom(crtc_state);
asyh->crc.src = source;
asyh->or.crc_raster = nv50_crc_raster_type(source);
ret = drm_atomic_commit(state);
if (ret == -EDEADLK)
goto deadlock;
else if (ret)
goto out_drop_locks;
if (!source) {
/*
* If the user specified a custom flip threshold through
* debugfs, reset it
*/
crc->flip_threshold = func->flip_threshold;
}
out_drop_locks:
drm_modeset_drop_locks(&ctx);
out_ctx_fini:
if (!source || ret) {
for (i = 0; i < ARRAY_SIZE(crc->ctx); i++)
nv50_crc_ctx_fini(&crc->ctx[i]);
}
drm_atomic_state_put(state);
out_acquire_fini:
drm_modeset_acquire_fini(&ctx);
return ret;
deadlock:
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
static int
nv50_crc_debugfs_flip_threshold_get(struct seq_file *m, void *data)
{
struct nv50_head *head = m->private;
struct drm_crtc *crtc = &head->base.base;
struct nv50_crc *crc = &head->crc;
int ret;
ret = drm_modeset_lock_single_interruptible(&crtc->mutex);
if (ret)
return ret;
seq_printf(m, "%d\n", crc->flip_threshold);
drm_modeset_unlock(&crtc->mutex);
return ret;
}
static int
nv50_crc_debugfs_flip_threshold_open(struct inode *inode, struct file *file)
{
return single_open(file, nv50_crc_debugfs_flip_threshold_get,
inode->i_private);
}
static ssize_t
nv50_crc_debugfs_flip_threshold_set(struct file *file,
const char __user *ubuf, size_t len,
loff_t *offp)
{
struct seq_file *m = file->private_data;
struct nv50_head *head = m->private;
struct nv50_head_atom *armh;
struct drm_crtc *crtc = &head->base.base;
struct nouveau_drm *drm = nouveau_drm(crtc->dev);
struct nv50_crc *crc = &head->crc;
const struct nv50_crc_func *func =
nv50_disp(crtc->dev)->core->func->crc;
int value, ret;
ret = kstrtoint_from_user(ubuf, len, 10, &value);
if (ret)
return ret;
if (value > func->flip_threshold)
return -EINVAL;
else if (value == -1)
value = func->flip_threshold;
else if (value < -1)
return -EINVAL;
ret = drm_modeset_lock_single_interruptible(&crtc->mutex);
if (ret)
return ret;
armh = nv50_head_atom(crtc->state);
if (armh->crc.src) {
ret = -EBUSY;
goto out;
}
NV_DEBUG(drm,
"Changing CRC flip threshold for next capture on head-%d to %d\n",
head->base.index, value);
crc->flip_threshold = value;
ret = len;
out:
drm_modeset_unlock(&crtc->mutex);
return ret;
}
static const struct file_operations nv50_crc_flip_threshold_fops = {
.owner = THIS_MODULE,
.open = nv50_crc_debugfs_flip_threshold_open,
.read = seq_read,
.write = nv50_crc_debugfs_flip_threshold_set,
.release = single_release,
};
int nv50_head_crc_late_register(struct nv50_head *head)
{
struct drm_crtc *crtc = &head->base.base;
const struct nv50_crc_func *func =
nv50_disp(crtc->dev)->core->func->crc;
struct dentry *root;
if (!func || !crtc->debugfs_entry)
return 0;
root = debugfs_create_dir("nv_crc", crtc->debugfs_entry);
debugfs_create_file("flip_threshold", 0644, root, head,
&nv50_crc_flip_threshold_fops);
return 0;
}
static inline void
nv50_crc_init_head(struct nv50_disp *disp, const struct nv50_crc_func *func,
struct nv50_head *head)
{
struct nv50_crc *crc = &head->crc;
crc->flip_threshold = func->flip_threshold;
spin_lock_init(&crc->lock);
drm_vblank_work_init(&crc->flip_work, &head->base.base,
nv50_crc_ctx_flip_work);
}
void nv50_crc_init(struct drm_device *dev)
{
struct nv50_disp *disp = nv50_disp(dev);
struct drm_crtc *crtc;
const struct nv50_crc_func *func = disp->core->func->crc;
if (!func)
return;
drm_for_each_crtc(crtc, dev)
nv50_crc_init_head(disp, func, nv50_head(crtc));
}