linux-zen-desktop/drivers/gpu/drm/renesas/rcar-du/rcar_du_crtc.c

1339 lines
35 KiB
C
Raw Normal View History

2023-10-24 12:59:35 +02:00
// SPDX-License-Identifier: GPL-2.0+
/*
* R-Car Display Unit CRTCs
*
* Copyright (C) 2013-2015 Renesas Electronics Corporation
*
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
*/
#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_device.h>
#include <drm/drm_gem_dma_helper.h>
#include <drm/drm_vblank.h>
#include "rcar_cmm.h"
#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_encoder.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
#include "rcar_du_vsp.h"
#include "rcar_lvds.h"
#include "rcar_mipi_dsi.h"
static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
struct rcar_du_device *rcdu = rcrtc->dev;
return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}
static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
struct rcar_du_device *rcdu = rcrtc->dev;
rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}
static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
struct rcar_du_device *rcdu = rcrtc->dev;
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}
static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
struct rcar_du_device *rcdu = rcrtc->dev;
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
{
struct rcar_du_device *rcdu = rcrtc->dev;
rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
}
/* -----------------------------------------------------------------------------
* Hardware Setup
*/
struct dpll_info {
unsigned int output;
unsigned int fdpll;
unsigned int n;
unsigned int m;
};
static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
struct dpll_info *dpll,
unsigned long input,
unsigned long target)
{
unsigned long best_diff = (unsigned long)-1;
unsigned long diff;
unsigned int fdpll;
unsigned int m;
unsigned int n;
/*
* fin fvco fout fclkout
* in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
* +-> | | |
* | |
* +---------------- [1/N] <------------+
*
* fclkout = fvco / P / FDPLL -- (1)
*
* fin/M = fvco/P/N
*
* fvco = fin * P * N / M -- (2)
*
* (1) + (2) indicates
*
* fclkout = fin * N / M / FDPLL
*
* NOTES
* N : (n + 1)
* M : (m + 1)
* FDPLL : (fdpll + 1)
* P : 2
* 2kHz < fvco < 4096MHz
*
* To minimize the jitter,
* N : as large as possible
* M : as small as possible
*/
for (m = 0; m < 4; m++) {
for (n = 119; n > 38; n--) {
/*
* This code only runs on 64-bit architectures, the
* unsigned long type can thus be used for 64-bit
* computation. It will still compile without any
* warning on 32-bit architectures.
*
* To optimize calculations, use fout instead of fvco
* to verify the VCO frequency constraint.
*/
unsigned long fout = input * (n + 1) / (m + 1);
if (fout < 1000 || fout > 2048 * 1000 * 1000U)
continue;
for (fdpll = 1; fdpll < 32; fdpll++) {
unsigned long output;
output = fout / (fdpll + 1);
if (output >= 400 * 1000 * 1000)
continue;
diff = abs((long)output - (long)target);
if (best_diff > diff) {
best_diff = diff;
dpll->n = n;
dpll->m = m;
dpll->fdpll = fdpll;
dpll->output = output;
}
if (diff == 0)
goto done;
}
}
}
done:
dev_dbg(rcrtc->dev->dev,
"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
}
struct du_clk_params {
struct clk *clk;
unsigned long rate;
unsigned long diff;
u32 escr;
};
static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
u32 escr, struct du_clk_params *params)
{
unsigned long rate;
unsigned long diff;
u32 div;
/*
* If the target rate has already been achieved perfectly we can't do
* better.
*/
if (params->diff == 0)
return;
/*
* Compute the input clock rate and internal divisor values to obtain
* the clock rate closest to the target frequency.
*/
rate = clk_round_rate(clk, target);
div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
diff = abs(rate / (div + 1) - target);
/*
* Store the parameters if the resulting frequency is better than any
* previously calculated value.
*/
if (diff < params->diff) {
params->clk = clk;
params->rate = rate;
params->diff = diff;
params->escr = escr | div;
}
}
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
struct rcar_du_device *rcdu = rcrtc->dev;
unsigned long mode_clock = mode->clock * 1000;
unsigned int hdse_offset;
u32 dsmr;
u32 escr;
if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
unsigned long target = mode_clock;
struct dpll_info dpll = { 0 };
unsigned long extclk;
u32 dpllcr;
u32 div = 0;
/*
* DU channels that have a display PLL can't use the internal
* system clock, and have no internal clock divider.
*/
extclk = clk_get_rate(rcrtc->extclock);
rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
dpllcr = DPLLCR_CODE | DPLLCR_CLKE
| DPLLCR_FDPLL(dpll.fdpll)
| DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
| DPLLCR_STBY;
if (rcrtc->index == 1)
dpllcr |= DPLLCR_PLCS1
| DPLLCR_INCS_DOTCLKIN1;
else
dpllcr |= DPLLCR_PLCS0
| DPLLCR_INCS_DOTCLKIN0;
rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
escr = ESCR_DCLKSEL_DCLKIN | div;
} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) ||
rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) {
/*
* Use the external LVDS or DSI PLL output as the dot clock when
* outputting to the LVDS or DSI encoder on an SoC that supports
* this clock routing option. We use the clock directly in that
* case, without any additional divider.
*/
escr = ESCR_DCLKSEL_DCLKIN;
} else {
struct du_clk_params params = { .diff = (unsigned long)-1 };
rcar_du_escr_divider(rcrtc->clock, mode_clock,
ESCR_DCLKSEL_CLKS, &params);
if (rcrtc->extclock)
rcar_du_escr_divider(rcrtc->extclock, mode_clock,
ESCR_DCLKSEL_DCLKIN, &params);
dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
params.rate);
clk_set_rate(params.clk, params.rate);
escr = params.escr;
}
/*
* The ESCR register only exists in DU channels that can output to an
* LVDS or DPAT, and the OTAR register in DU channels that can output
* to a DPAD.
*/
if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs |
rcdu->info->routes[RCAR_DU_OUTPUT_LVDS0].possible_crtcs |
rcdu->info->routes[RCAR_DU_OUTPUT_LVDS1].possible_crtcs) &
BIT(rcrtc->index)) {
dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
}
if ((rcdu->info->routes[RCAR_DU_OUTPUT_DPAD0].possible_crtcs |
rcdu->info->routes[RCAR_DU_OUTPUT_DPAD1].possible_crtcs) &
BIT(rcrtc->index))
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
/* Signal polarities */
dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
| ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
| ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
| DSMR_DIPM_DISP | DSMR_CSPM;
rcar_du_crtc_write(rcrtc, DSMR, dsmr);
/*
* When the CMM is enabled, an additional offset of 25 pixels must be
* subtracted from the HDS (horizontal display start) and HDE
* (horizontal display end) registers.
*/
hdse_offset = 19;
if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
hdse_offset += 25;
/* Display timings */
rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start -
hdse_offset);
rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
mode->hdisplay - hdse_offset);
rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
mode->hsync_start - 1);
rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
mode->crtc_vsync_end - 2);
rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
mode->crtc_vsync_end +
mode->crtc_vdisplay - 2);
rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
mode->crtc_vsync_end +
mode->crtc_vsync_start - 1);
rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
}
static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
return plane->plane.state->normalized_zpos;
}
static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
return to_rcar_plane_state(plane->plane.state)->format;
}
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
{
struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
struct rcar_du_device *rcdu = rcrtc->dev;
unsigned int num_planes = 0;
unsigned int dptsr_planes;
unsigned int hwplanes = 0;
unsigned int prio = 0;
unsigned int i;
u32 dspr = 0;
for (i = 0; i < rcrtc->group->num_planes; ++i) {
struct rcar_du_plane *plane = &rcrtc->group->planes[i];
unsigned int j;
if (plane->plane.state->crtc != &rcrtc->crtc ||
!plane->plane.state->visible)
continue;
/* Insert the plane in the sorted planes array. */
for (j = num_planes++; j > 0; --j) {
if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
break;
planes[j] = planes[j-1];
}
planes[j] = plane;
prio += plane_format(plane)->planes * 4;
}
for (i = 0; i < num_planes; ++i) {
struct rcar_du_plane *plane = planes[i];
struct drm_plane_state *state = plane->plane.state;
unsigned int index = to_rcar_plane_state(state)->hwindex;
prio -= 4;
dspr |= (index + 1) << prio;
hwplanes |= 1 << index;
if (plane_format(plane)->planes == 2) {
index = (index + 1) % 8;
prio -= 4;
dspr |= (index + 1) << prio;
hwplanes |= 1 << index;
}
}
/* If VSP+DU integration is enabled the plane assignment is fixed. */
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
if (rcdu->info->gen < 3) {
dspr = (rcrtc->index % 2) + 1;
hwplanes = 1 << (rcrtc->index % 2);
} else {
dspr = (rcrtc->index % 2) ? 3 : 1;
hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
}
}
/*
* Update the planes to display timing and dot clock generator
* associations.
*
* Updating the DPTSR register requires restarting the CRTC group,
* resulting in visible flicker. To mitigate the issue only update the
* association if needed by enabled planes. Planes being disabled will
* keep their current association.
*/
mutex_lock(&rcrtc->group->lock);
dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
: rcrtc->group->dptsr_planes & ~hwplanes;
if (dptsr_planes != rcrtc->group->dptsr_planes) {
rcar_du_group_write(rcrtc->group, DPTSR,
(dptsr_planes << 16) | dptsr_planes);
rcrtc->group->dptsr_planes = dptsr_planes;
if (rcrtc->group->used_crtcs)
rcar_du_group_restart(rcrtc->group);
}
/* Restart the group if plane sources have changed. */
if (rcrtc->group->need_restart)
rcar_du_group_restart(rcrtc->group);
mutex_unlock(&rcrtc->group->lock);
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
dspr);
}
/* -----------------------------------------------------------------------------
* Page Flip
*/
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
struct drm_pending_vblank_event *event;
struct drm_device *dev = rcrtc->crtc.dev;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
event = rcrtc->event;
rcrtc->event = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
if (event == NULL)
return;
spin_lock_irqsave(&dev->event_lock, flags);
drm_crtc_send_vblank_event(&rcrtc->crtc, event);
wake_up(&rcrtc->flip_wait);
spin_unlock_irqrestore(&dev->event_lock, flags);
drm_crtc_vblank_put(&rcrtc->crtc);
}
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
struct drm_device *dev = rcrtc->crtc.dev;
unsigned long flags;
bool pending;
spin_lock_irqsave(&dev->event_lock, flags);
pending = rcrtc->event != NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
return pending;
}
static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
struct rcar_du_device *rcdu = rcrtc->dev;
if (wait_event_timeout(rcrtc->flip_wait,
!rcar_du_crtc_page_flip_pending(rcrtc),
msecs_to_jiffies(50)))
return;
dev_warn(rcdu->dev, "page flip timeout\n");
rcar_du_crtc_finish_page_flip(rcrtc);
}
/* -----------------------------------------------------------------------------
* Color Management Module (CMM)
*/
static int rcar_du_cmm_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct drm_property_blob *drm_lut = state->gamma_lut;
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct device *dev = rcrtc->dev->dev;
if (!drm_lut)
return 0;
/* We only accept fully populated LUT tables. */
if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
dev_err(dev, "invalid gamma lut size: %zu bytes\n",
drm_lut->length);
return -EINVAL;
}
return 0;
}
static void rcar_du_cmm_setup(struct drm_crtc *crtc)
{
struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct rcar_cmm_config cmm_config = {};
if (!rcrtc->cmm)
return;
if (drm_lut)
cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
rcar_cmm_setup(rcrtc->cmm, &cmm_config);
}
/* -----------------------------------------------------------------------------
* Start/Stop and Suspend/Resume
*/
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
{
/* Set display off and background to black */
rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
/* Configure display timings and output routing */
rcar_du_crtc_set_display_timing(rcrtc);
rcar_du_group_set_routing(rcrtc->group);
/* Start with all planes disabled. */
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
/* Enable the VSP compositor. */
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
rcar_du_vsp_enable(rcrtc);
/* Turn vertical blanking interrupt reporting on. */
drm_crtc_vblank_on(&rcrtc->crtc);
}
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
int ret;
/*
* Guard against double-get, as the function is called from both the
* .atomic_enable() and .atomic_begin() handlers.
*/
if (rcrtc->initialized)
return 0;
ret = clk_prepare_enable(rcrtc->clock);
if (ret < 0)
return ret;
ret = clk_prepare_enable(rcrtc->extclock);
if (ret < 0)
goto error_clock;
ret = rcar_du_group_get(rcrtc->group);
if (ret < 0)
goto error_group;
rcar_du_crtc_setup(rcrtc);
rcrtc->initialized = true;
return 0;
error_group:
clk_disable_unprepare(rcrtc->extclock);
error_clock:
clk_disable_unprepare(rcrtc->clock);
return ret;
}
static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
rcar_du_group_put(rcrtc->group);
clk_disable_unprepare(rcrtc->extclock);
clk_disable_unprepare(rcrtc->clock);
rcrtc->initialized = false;
}
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
bool interlaced;
/*
* Select master sync mode. This enables display operation in master
* sync mode (with the HSYNC and VSYNC signals configured as outputs and
* actively driven).
*/
interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
(interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
DSYSR_TVM_MASTER);
rcar_du_group_start_stop(rcrtc->group, true);
}
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
struct rcar_du_device *rcdu = rcrtc->dev;
struct drm_crtc *crtc = &rcrtc->crtc;
u32 status;
/* Make sure vblank interrupts are enabled. */
drm_crtc_vblank_get(crtc);
/*
* Disable planes and calculate how many vertical blanking interrupts we
* have to wait for. If a vertical blanking interrupt has been triggered
* but not processed yet, we don't know whether it occurred before or
* after the planes got disabled. We thus have to wait for two vblank
* interrupts in that case.
*/
spin_lock_irq(&rcrtc->vblank_lock);
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
status = rcar_du_crtc_read(rcrtc, DSSR);
rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
spin_unlock_irq(&rcrtc->vblank_lock);
if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
msecs_to_jiffies(100)))
dev_warn(rcdu->dev, "vertical blanking timeout\n");
drm_crtc_vblank_put(crtc);
}
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
struct drm_crtc *crtc = &rcrtc->crtc;
/*
* Disable all planes and wait for the change to take effect. This is
* required as the plane enable registers are updated on vblank, and no
* vblank will occur once the CRTC is stopped. Disabling planes when
* starting the CRTC thus wouldn't be enough as it would start scanning
* out immediately from old frame buffers until the next vblank.
*
* This increases the CRTC stop delay, especially when multiple CRTCs
* are stopped in one operation as we now wait for one vblank per CRTC.
* Whether this can be improved needs to be researched.
*/
rcar_du_crtc_disable_planes(rcrtc);
/*
* Disable vertical blanking interrupt reporting. We first need to wait
* for page flip completion before stopping the CRTC as userspace
* expects page flips to eventually complete.
*/
rcar_du_crtc_wait_page_flip(rcrtc);
drm_crtc_vblank_off(crtc);
/* Disable the VSP compositor. */
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
rcar_du_vsp_disable(rcrtc);
if (rcrtc->cmm)
rcar_cmm_disable(rcrtc->cmm);
/*
* Select switch sync mode. This stops display operation and configures
* the HSYNC and VSYNC signals as inputs.
*
* TODO: Find another way to stop the display for DUs that don't support
* TVM sync.
*/
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
DSYSR_TVM_SWITCH);
rcar_du_group_start_stop(rcrtc->group, false);
}
/* -----------------------------------------------------------------------------
* CRTC Functions
*/
static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
crtc);
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc_state);
struct drm_encoder *encoder;
int ret;
ret = rcar_du_cmm_check(crtc, crtc_state);
if (ret)
return ret;
/* Store the routes from the CRTC output to the DU outputs. */
rstate->outputs = 0;
drm_for_each_encoder_mask(encoder, crtc->dev,
crtc_state->encoder_mask) {
struct rcar_du_encoder *renc;
/* Skip the writeback encoder. */
if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
continue;
renc = to_rcar_encoder(encoder);
rstate->outputs |= BIT(renc->output);
}
return 0;
}
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
struct rcar_du_device *rcdu = rcrtc->dev;
if (rcrtc->cmm)
rcar_cmm_enable(rcrtc->cmm);
rcar_du_crtc_get(rcrtc);
/*
* On D3/E3 the dot clock is provided by the LVDS encoder attached to
* the DU channel. We need to enable its clock output explicitly before
* starting the CRTC, as the bridge hasn't been enabled by the atomic
* helpers yet.
*/
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
const struct drm_display_mode *mode =
&crtc->state->adjusted_mode;
rcar_lvds_pclk_enable(bridge, mode->clock * 1000, dot_clk_only);
}
/*
* Similarly to LVDS, on V3U the dot clock is provided by the DSI
* encoder, and we need to enable the DSI clocks before enabling the CRTC.
*/
if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
(rstate->outputs &
(BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
rcar_mipi_dsi_pclk_enable(bridge, state);
}
rcar_du_crtc_start(rcrtc);
/*
* TODO: The chip manual indicates that CMM tables should be written
* after the DU channel has been activated. Investigate the impact
* of this restriction on the first displayed frame.
*/
rcar_du_cmm_setup(crtc);
}
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
crtc);
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
struct rcar_du_device *rcdu = rcrtc->dev;
rcar_du_crtc_stop(rcrtc);
rcar_du_crtc_put(rcrtc);
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
bool dot_clk_only = rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0);
struct drm_bridge *bridge = rcdu->lvds[rcrtc->index];
/*
* Disable the LVDS clock output, see
* rcar_du_crtc_atomic_enable(). When the LVDS output is used,
* this also disables the LVDS encoder.
*/
rcar_lvds_pclk_disable(bridge, dot_clk_only);
}
if ((rcdu->info->dsi_clk_mask & BIT(rcrtc->index)) &&
(rstate->outputs &
(BIT(RCAR_DU_OUTPUT_DSI0) | BIT(RCAR_DU_OUTPUT_DSI1)))) {
struct drm_bridge *bridge = rcdu->dsi[rcrtc->index];
/*
* Disable the DSI clock output, see
* rcar_du_crtc_atomic_enable().
*/
rcar_mipi_dsi_pclk_disable(bridge);
}
spin_lock_irq(&crtc->dev->event_lock);
if (crtc->state->event) {
drm_crtc_send_vblank_event(crtc, crtc->state->event);
crtc->state->event = NULL;
}
spin_unlock_irq(&crtc->dev->event_lock);
}
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
WARN_ON(!crtc->state->enable);
/*
* If a mode set is in progress we can be called with the CRTC disabled.
* We thus need to first get and setup the CRTC in order to configure
* planes. We must *not* put the CRTC in .atomic_flush(), as it must be
* kept awake until the .atomic_enable() call that will follow. The get
* operation in .atomic_enable() will in that case be a no-op, and the
* CRTC will be put later in .atomic_disable().
*
* If a mode set is not in progress the CRTC is enabled, and the
* following get call will be a no-op. There is thus no need to balance
* it in .atomic_flush() either.
*/
rcar_du_crtc_get(rcrtc);
/* If the active state changed, we let .atomic_enable handle CMM. */
if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
rcar_du_cmm_setup(crtc);
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
rcar_du_vsp_atomic_begin(rcrtc);
}
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_atomic_state *state)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct drm_device *dev = rcrtc->crtc.dev;
unsigned long flags;
rcar_du_crtc_update_planes(rcrtc);
if (crtc->state->event) {
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
spin_lock_irqsave(&dev->event_lock, flags);
rcrtc->event = crtc->state->event;
crtc->state->event = NULL;
spin_unlock_irqrestore(&dev->event_lock, flags);
}
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
rcar_du_vsp_atomic_flush(rcrtc);
}
static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
const struct drm_display_mode *mode)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct rcar_du_device *rcdu = rcrtc->dev;
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
unsigned int min_sync_porch;
unsigned int vbp;
if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
return MODE_NO_INTERLACE;
/*
* The hardware requires a minimum combined horizontal sync and back
* porch of 20 pixels (when CMM isn't used) or 45 pixels (when CMM is
* used), and a minimum vertical back porch of 3 lines.
*/
min_sync_porch = 20;
if (rcrtc->group->cmms_mask & BIT(rcrtc->index % 2))
min_sync_porch += 25;
if (mode->htotal - mode->hsync_start < min_sync_porch)
return MODE_HBLANK_NARROW;
vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
if (vbp < 3)
return MODE_VBLANK_NARROW;
return MODE_OK;
}
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
.atomic_check = rcar_du_crtc_atomic_check,
.atomic_begin = rcar_du_crtc_atomic_begin,
.atomic_flush = rcar_du_crtc_atomic_flush,
.atomic_enable = rcar_du_crtc_atomic_enable,
.atomic_disable = rcar_du_crtc_atomic_disable,
.mode_valid = rcar_du_crtc_mode_valid,
};
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
struct rcar_du_device *rcdu = rcrtc->dev;
const char **sources;
unsigned int count;
int i = -1;
/* CRC available only on Gen3 HW. */
if (rcdu->info->gen < 3)
return;
/* Reserve 1 for "auto" source. */
count = rcrtc->vsp->num_planes + 1;
sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
if (!sources)
return;
sources[0] = kstrdup("auto", GFP_KERNEL);
if (!sources[0])
goto error;
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
char name[16];
sprintf(name, "plane%u", plane->base.id);
sources[i + 1] = kstrdup(name, GFP_KERNEL);
if (!sources[i + 1])
goto error;
}
rcrtc->sources = sources;
rcrtc->sources_count = count;
return;
error:
while (i >= 0) {
kfree(sources[i]);
i--;
}
kfree(sources);
}
static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
unsigned int i;
if (!rcrtc->sources)
return;
for (i = 0; i < rcrtc->sources_count; i++)
kfree(rcrtc->sources[i]);
kfree(rcrtc->sources);
rcrtc->sources = NULL;
rcrtc->sources_count = 0;
}
static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
struct rcar_du_crtc_state *state;
struct rcar_du_crtc_state *copy;
if (WARN_ON(!crtc->state))
return NULL;
state = to_rcar_crtc_state(crtc->state);
copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
if (copy == NULL)
return NULL;
__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
return &copy->state;
}
static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
__drm_atomic_helper_crtc_destroy_state(state);
kfree(to_rcar_crtc_state(state));
}
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
rcar_du_crtc_crc_cleanup(rcrtc);
return drm_crtc_cleanup(crtc);
}
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
struct rcar_du_crtc_state *state;
if (crtc->state) {
rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
crtc->state = NULL;
}
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (state == NULL)
return;
state->crc.source = VSP1_DU_CRC_NONE;
state->crc.index = 0;
__drm_atomic_helper_crtc_reset(crtc, &state->state);
}
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
rcrtc->vblank_enable = true;
return 0;
}
static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
rcrtc->vblank_enable = false;
}
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
const char *source_name,
enum vsp1_du_crc_source *source)
{
unsigned int index;
int ret;
/*
* Parse the source name. Supported values are "plane%u" to compute the
* CRC on an input plane (%u is the plane ID), and "auto" to compute the
* CRC on the composer (VSP) output.
*/
if (!source_name) {
*source = VSP1_DU_CRC_NONE;
return 0;
} else if (!strcmp(source_name, "auto")) {
*source = VSP1_DU_CRC_OUTPUT;
return 0;
} else if (strstarts(source_name, "plane")) {
unsigned int i;
*source = VSP1_DU_CRC_PLANE;
ret = kstrtouint(source_name + strlen("plane"), 10, &index);
if (ret < 0)
return ret;
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
if (index == rcrtc->vsp->planes[i].plane.base.id)
return i;
}
}
return -EINVAL;
}
static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
const char *source_name,
size_t *values_cnt)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
enum vsp1_du_crc_source source;
if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
return -EINVAL;
}
*values_cnt = 1;
return 0;
}
static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
*count = rcrtc->sources_count;
return rcrtc->sources;
}
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
const char *source_name)
{
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
struct drm_modeset_acquire_ctx ctx;
struct drm_crtc_state *crtc_state;
struct drm_atomic_state *state;
enum vsp1_du_crc_source source;
unsigned int index;
int ret;
ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
if (ret < 0)
return ret;
index = ret;
/* Perform an atomic commit to set the CRC source. */
drm_modeset_acquire_init(&ctx, 0);
state = drm_atomic_state_alloc(crtc->dev);
if (!state) {
ret = -ENOMEM;
goto unlock;
}
state->acquire_ctx = &ctx;
retry:
crtc_state = drm_atomic_get_crtc_state(state, crtc);
if (!IS_ERR(crtc_state)) {
struct rcar_du_crtc_state *rcrtc_state;
rcrtc_state = to_rcar_crtc_state(crtc_state);
rcrtc_state->crc.source = source;
rcrtc_state->crc.index = index;
ret = drm_atomic_commit(state);
} else {
ret = PTR_ERR(crtc_state);
}
if (ret == -EDEADLK) {
drm_atomic_state_clear(state);
drm_modeset_backoff(&ctx);
goto retry;
}
drm_atomic_state_put(state);
unlock:
drm_modeset_drop_locks(&ctx);
drm_modeset_acquire_fini(&ctx);
return ret;
}
static const struct drm_crtc_funcs crtc_funcs_gen2 = {
.reset = rcar_du_crtc_reset,
.destroy = drm_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
.enable_vblank = rcar_du_crtc_enable_vblank,
.disable_vblank = rcar_du_crtc_disable_vblank,
};
static const struct drm_crtc_funcs crtc_funcs_gen3 = {
.reset = rcar_du_crtc_reset,
.destroy = rcar_du_crtc_cleanup,
.set_config = drm_atomic_helper_set_config,
.page_flip = drm_atomic_helper_page_flip,
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
.enable_vblank = rcar_du_crtc_enable_vblank,
.disable_vblank = rcar_du_crtc_disable_vblank,
.set_crc_source = rcar_du_crtc_set_crc_source,
.verify_crc_source = rcar_du_crtc_verify_crc_source,
.get_crc_sources = rcar_du_crtc_get_crc_sources,
};
/* -----------------------------------------------------------------------------
* Interrupt Handling
*/
static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
struct rcar_du_crtc *rcrtc = arg;
struct rcar_du_device *rcdu = rcrtc->dev;
irqreturn_t ret = IRQ_NONE;
u32 status;
spin_lock(&rcrtc->vblank_lock);
status = rcar_du_crtc_read(rcrtc, DSSR);
rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
if (status & DSSR_VBK) {
/*
* Wake up the vblank wait if the counter reaches 0. This must
* be protected by the vblank_lock to avoid races in
* rcar_du_crtc_disable_planes().
*/
if (rcrtc->vblank_count) {
if (--rcrtc->vblank_count == 0)
wake_up(&rcrtc->vblank_wait);
}
}
spin_unlock(&rcrtc->vblank_lock);
if (status & DSSR_VBK) {
if (rcdu->info->gen < 3) {
drm_crtc_handle_vblank(&rcrtc->crtc);
rcar_du_crtc_finish_page_flip(rcrtc);
}
ret = IRQ_HANDLED;
}
return ret;
}
/* -----------------------------------------------------------------------------
* Initialization
*/
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
unsigned int hwindex)
{
static const unsigned int mmio_offsets[] = {
DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
};
struct rcar_du_device *rcdu = rgrp->dev;
struct platform_device *pdev = to_platform_device(rcdu->dev);
struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
struct drm_crtc *crtc = &rcrtc->crtc;
struct drm_plane *primary;
unsigned int irqflags;
struct clk *clk;
char clk_name[9];
char *name;
int irq;
int ret;
/* Get the CRTC clock and the optional external clock. */
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_CLOCK)) {
sprintf(clk_name, "du.%u", hwindex);
name = clk_name;
} else {
name = NULL;
}
rcrtc->clock = devm_clk_get(rcdu->dev, name);
if (IS_ERR(rcrtc->clock)) {
dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
return PTR_ERR(rcrtc->clock);
}
sprintf(clk_name, "dclkin.%u", hwindex);
clk = devm_clk_get(rcdu->dev, clk_name);
if (!IS_ERR(clk)) {
rcrtc->extclock = clk;
} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
return -EPROBE_DEFER;
} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
/*
* DU channels that have a display PLL can't use the internal
* system clock and thus require an external clock.
*/
ret = PTR_ERR(clk);
dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
return ret;
}
init_waitqueue_head(&rcrtc->flip_wait);
init_waitqueue_head(&rcrtc->vblank_wait);
spin_lock_init(&rcrtc->vblank_lock);
rcrtc->dev = rcdu;
rcrtc->group = rgrp;
rcrtc->mmio_offset = mmio_offsets[hwindex];
rcrtc->index = hwindex;
rcrtc->dsysr = rcrtc->index % 2 ? 0 : DSYSR_DRES;
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_TVM_SYNC))
rcrtc->dsysr |= DSYSR_TVM_TVSYNC;
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
else
primary = &rgrp->planes[swindex % 2].plane;
ret = drm_crtc_init_with_planes(&rcdu->ddev, crtc, primary, NULL,
rcdu->info->gen <= 2 ?
&crtc_funcs_gen2 : &crtc_funcs_gen3,
NULL);
if (ret < 0)
return ret;
/* CMM might be disabled for this CRTC. */
if (rcdu->cmms[swindex]) {
rcrtc->cmm = rcdu->cmms[swindex];
rgrp->cmms_mask |= BIT(hwindex % 2);
drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
}
drm_crtc_helper_add(crtc, &crtc_helper_funcs);
/* Register the interrupt handler. */
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ)) {
/* The IRQ's are associated with the CRTC (sw)index. */
irq = platform_get_irq(pdev, swindex);
irqflags = 0;
} else {
irq = platform_get_irq(pdev, 0);
irqflags = IRQF_SHARED;
}
if (irq < 0) {
dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
return irq;
}
ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
dev_name(rcdu->dev), rcrtc);
if (ret < 0) {
dev_err(rcdu->dev,
"failed to register IRQ for CRTC %u\n", swindex);
return ret;
}
rcar_du_crtc_crc_init(rcrtc);
return 0;
}