linux-zen-desktop/drivers/i2c/busses/i2c-exynos5.c

960 lines
25 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* i2c-exynos5.c - Samsung Exynos5 I2C Controller Driver
*
* Copyright (C) 2013 Samsung Electronics Co., Ltd.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/time.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
/*
* HSI2C controller from Samsung supports 2 modes of operation
* 1. Auto mode: Where in master automatically controls the whole transaction
* 2. Manual mode: Software controls the transaction by issuing commands
* START, READ, WRITE, STOP, RESTART in I2C_MANUAL_CMD register.
*
* Operation mode can be selected by setting AUTO_MODE bit in I2C_CONF register
*
* Special bits are available for both modes of operation to set commands
* and for checking transfer status
*/
/* Register Map */
#define HSI2C_CTL 0x00
#define HSI2C_FIFO_CTL 0x04
#define HSI2C_TRAILIG_CTL 0x08
#define HSI2C_CLK_CTL 0x0C
#define HSI2C_CLK_SLOT 0x10
#define HSI2C_INT_ENABLE 0x20
#define HSI2C_INT_STATUS 0x24
#define HSI2C_ERR_STATUS 0x2C
#define HSI2C_FIFO_STATUS 0x30
#define HSI2C_TX_DATA 0x34
#define HSI2C_RX_DATA 0x38
#define HSI2C_CONF 0x40
#define HSI2C_AUTO_CONF 0x44
#define HSI2C_TIMEOUT 0x48
#define HSI2C_MANUAL_CMD 0x4C
#define HSI2C_TRANS_STATUS 0x50
#define HSI2C_TIMING_HS1 0x54
#define HSI2C_TIMING_HS2 0x58
#define HSI2C_TIMING_HS3 0x5C
#define HSI2C_TIMING_FS1 0x60
#define HSI2C_TIMING_FS2 0x64
#define HSI2C_TIMING_FS3 0x68
#define HSI2C_TIMING_SLA 0x6C
#define HSI2C_ADDR 0x70
/* I2C_CTL Register bits */
#define HSI2C_FUNC_MODE_I2C (1u << 0)
#define HSI2C_MASTER (1u << 3)
#define HSI2C_RXCHON (1u << 6)
#define HSI2C_TXCHON (1u << 7)
#define HSI2C_SW_RST (1u << 31)
/* I2C_FIFO_CTL Register bits */
#define HSI2C_RXFIFO_EN (1u << 0)
#define HSI2C_TXFIFO_EN (1u << 1)
#define HSI2C_RXFIFO_TRIGGER_LEVEL(x) ((x) << 4)
#define HSI2C_TXFIFO_TRIGGER_LEVEL(x) ((x) << 16)
/* I2C_TRAILING_CTL Register bits */
#define HSI2C_TRAILING_COUNT (0xf)
/* I2C_INT_EN Register bits */
#define HSI2C_INT_TX_ALMOSTEMPTY_EN (1u << 0)
#define HSI2C_INT_RX_ALMOSTFULL_EN (1u << 1)
#define HSI2C_INT_TRAILING_EN (1u << 6)
/* I2C_INT_STAT Register bits */
#define HSI2C_INT_TX_ALMOSTEMPTY (1u << 0)
#define HSI2C_INT_RX_ALMOSTFULL (1u << 1)
#define HSI2C_INT_TX_UNDERRUN (1u << 2)
#define HSI2C_INT_TX_OVERRUN (1u << 3)
#define HSI2C_INT_RX_UNDERRUN (1u << 4)
#define HSI2C_INT_RX_OVERRUN (1u << 5)
#define HSI2C_INT_TRAILING (1u << 6)
#define HSI2C_INT_I2C (1u << 9)
#define HSI2C_INT_TRANS_DONE (1u << 7)
#define HSI2C_INT_TRANS_ABORT (1u << 8)
#define HSI2C_INT_NO_DEV_ACK (1u << 9)
#define HSI2C_INT_NO_DEV (1u << 10)
#define HSI2C_INT_TIMEOUT (1u << 11)
#define HSI2C_INT_I2C_TRANS (HSI2C_INT_TRANS_DONE | \
HSI2C_INT_TRANS_ABORT | \
HSI2C_INT_NO_DEV_ACK | \
HSI2C_INT_NO_DEV | \
HSI2C_INT_TIMEOUT)
/* I2C_FIFO_STAT Register bits */
#define HSI2C_RX_FIFO_EMPTY (1u << 24)
#define HSI2C_RX_FIFO_FULL (1u << 23)
#define HSI2C_RX_FIFO_LVL(x) ((x >> 16) & 0x7f)
#define HSI2C_TX_FIFO_EMPTY (1u << 8)
#define HSI2C_TX_FIFO_FULL (1u << 7)
#define HSI2C_TX_FIFO_LVL(x) ((x >> 0) & 0x7f)
/* I2C_CONF Register bits */
#define HSI2C_AUTO_MODE (1u << 31)
#define HSI2C_10BIT_ADDR_MODE (1u << 30)
#define HSI2C_HS_MODE (1u << 29)
/* I2C_AUTO_CONF Register bits */
#define HSI2C_READ_WRITE (1u << 16)
#define HSI2C_STOP_AFTER_TRANS (1u << 17)
#define HSI2C_MASTER_RUN (1u << 31)
/* I2C_TIMEOUT Register bits */
#define HSI2C_TIMEOUT_EN (1u << 31)
#define HSI2C_TIMEOUT_MASK 0xff
/* I2C_MANUAL_CMD register bits */
#define HSI2C_CMD_READ_DATA (1u << 4)
#define HSI2C_CMD_SEND_STOP (1u << 2)
/* I2C_TRANS_STATUS register bits */
#define HSI2C_MASTER_BUSY (1u << 17)
#define HSI2C_SLAVE_BUSY (1u << 16)
/* I2C_TRANS_STATUS register bits for Exynos5 variant */
#define HSI2C_TIMEOUT_AUTO (1u << 4)
#define HSI2C_NO_DEV (1u << 3)
#define HSI2C_NO_DEV_ACK (1u << 2)
#define HSI2C_TRANS_ABORT (1u << 1)
#define HSI2C_TRANS_DONE (1u << 0)
/* I2C_TRANS_STATUS register bits for Exynos7 variant */
#define HSI2C_MASTER_ST_MASK 0xf
#define HSI2C_MASTER_ST_IDLE 0x0
#define HSI2C_MASTER_ST_START 0x1
#define HSI2C_MASTER_ST_RESTART 0x2
#define HSI2C_MASTER_ST_STOP 0x3
#define HSI2C_MASTER_ST_MASTER_ID 0x4
#define HSI2C_MASTER_ST_ADDR0 0x5
#define HSI2C_MASTER_ST_ADDR1 0x6
#define HSI2C_MASTER_ST_ADDR2 0x7
#define HSI2C_MASTER_ST_ADDR_SR 0x8
#define HSI2C_MASTER_ST_READ 0x9
#define HSI2C_MASTER_ST_WRITE 0xa
#define HSI2C_MASTER_ST_NO_ACK 0xb
#define HSI2C_MASTER_ST_LOSE 0xc
#define HSI2C_MASTER_ST_WAIT 0xd
#define HSI2C_MASTER_ST_WAIT_CMD 0xe
/* I2C_ADDR register bits */
#define HSI2C_SLV_ADDR_SLV(x) ((x & 0x3ff) << 0)
#define HSI2C_SLV_ADDR_MAS(x) ((x & 0x3ff) << 10)
#define HSI2C_MASTER_ID(x) ((x & 0xff) << 24)
#define MASTER_ID(x) ((x & 0x7) + 0x08)
#define EXYNOS5_I2C_TIMEOUT (msecs_to_jiffies(100))
enum i2c_type_exynos {
I2C_TYPE_EXYNOS5,
I2C_TYPE_EXYNOS7,
I2C_TYPE_EXYNOSAUTOV9,
};
struct exynos5_i2c {
struct i2c_adapter adap;
struct i2c_msg *msg;
struct completion msg_complete;
unsigned int msg_ptr;
unsigned int irq;
void __iomem *regs;
struct clk *clk; /* operating clock */
struct clk *pclk; /* bus clock */
struct device *dev;
int state;
spinlock_t lock; /* IRQ synchronization */
/*
* Since the TRANS_DONE bit is cleared on read, and we may read it
* either during an IRQ or after a transaction, keep track of its
* state here.
*/
int trans_done;
/* Controller operating frequency */
unsigned int op_clock;
/* Version of HS-I2C Hardware */
const struct exynos_hsi2c_variant *variant;
};
/**
* struct exynos_hsi2c_variant - platform specific HSI2C driver data
* @fifo_depth: the fifo depth supported by the HSI2C module
* @hw: the hardware variant of Exynos I2C controller
*
* Specifies platform specific configuration of HSI2C module.
* Note: A structure for driver specific platform data is used for future
* expansion of its usage.
*/
struct exynos_hsi2c_variant {
unsigned int fifo_depth;
enum i2c_type_exynos hw;
};
static const struct exynos_hsi2c_variant exynos5250_hsi2c_data = {
.fifo_depth = 64,
.hw = I2C_TYPE_EXYNOS5,
};
static const struct exynos_hsi2c_variant exynos5260_hsi2c_data = {
.fifo_depth = 16,
.hw = I2C_TYPE_EXYNOS5,
};
static const struct exynos_hsi2c_variant exynos7_hsi2c_data = {
.fifo_depth = 16,
.hw = I2C_TYPE_EXYNOS7,
};
static const struct exynos_hsi2c_variant exynosautov9_hsi2c_data = {
.fifo_depth = 64,
.hw = I2C_TYPE_EXYNOSAUTOV9,
};
static const struct of_device_id exynos5_i2c_match[] = {
{
.compatible = "samsung,exynos5-hsi2c",
.data = &exynos5250_hsi2c_data
}, {
.compatible = "samsung,exynos5250-hsi2c",
.data = &exynos5250_hsi2c_data
}, {
.compatible = "samsung,exynos5260-hsi2c",
.data = &exynos5260_hsi2c_data
}, {
.compatible = "samsung,exynos7-hsi2c",
.data = &exynos7_hsi2c_data
}, {
.compatible = "samsung,exynosautov9-hsi2c",
.data = &exynosautov9_hsi2c_data
}, {},
};
MODULE_DEVICE_TABLE(of, exynos5_i2c_match);
static void exynos5_i2c_clr_pend_irq(struct exynos5_i2c *i2c)
{
writel(readl(i2c->regs + HSI2C_INT_STATUS),
i2c->regs + HSI2C_INT_STATUS);
}
/*
* exynos5_i2c_set_timing: updates the registers with appropriate
* timing values calculated
*
* Timing values for operation are calculated against either 100kHz
* or 1MHz controller operating frequency.
*
* Returns 0 on success, -EINVAL if the cycle length cannot
* be calculated.
*/
static int exynos5_i2c_set_timing(struct exynos5_i2c *i2c, bool hs_timings)
{
u32 i2c_timing_s1;
u32 i2c_timing_s2;
u32 i2c_timing_s3;
u32 i2c_timing_sla;
unsigned int t_start_su, t_start_hd;
unsigned int t_stop_su;
unsigned int t_data_su, t_data_hd;
unsigned int t_scl_l, t_scl_h;
unsigned int t_sr_release;
unsigned int t_ftl_cycle;
unsigned int clkin = clk_get_rate(i2c->clk);
unsigned int op_clk = hs_timings ? i2c->op_clock :
(i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) ? I2C_MAX_STANDARD_MODE_FREQ :
i2c->op_clock;
int div, clk_cycle, temp;
/*
* In case of HSI2C controllers in ExynosAutoV9:
*
* FSCL = IPCLK / ((CLK_DIV + 1) * 16)
* T_SCL_LOW = IPCLK * (CLK_DIV + 1) * (N + M)
* [N : number of 0's in the TSCL_H_HS]
* [M : number of 0's in the TSCL_L_HS]
* T_SCL_HIGH = IPCLK * (CLK_DIV + 1) * (N + M)
* [N : number of 1's in the TSCL_H_HS]
* [M : number of 1's in the TSCL_L_HS]
*
* Result of (N + M) is always 8.
* In general case, we don't need to control timing_s1 and timing_s2.
*/
if (i2c->variant->hw == I2C_TYPE_EXYNOSAUTOV9) {
div = ((clkin / (16 * i2c->op_clock)) - 1);
i2c_timing_s3 = div << 16;
if (hs_timings)
writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
else
writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
return 0;
}
/*
* In case of HSI2C controller in Exynos5 series
* FPCLK / FI2C =
* (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + 2 * FLT_CYCLE
*
* In case of HSI2C controllers in Exynos7 series
* FPCLK / FI2C =
* (CLK_DIV + 1) * (TSCLK_L + TSCLK_H + 2) + 8 + FLT_CYCLE
*
* clk_cycle := TSCLK_L + TSCLK_H
* temp := (CLK_DIV + 1) * (clk_cycle + 2)
*
* Constraints: 4 <= temp, 0 <= CLK_DIV < 256, 2 <= clk_cycle <= 510
*
*/
t_ftl_cycle = (readl(i2c->regs + HSI2C_CONF) >> 16) & 0x7;
temp = clkin / op_clk - 8 - t_ftl_cycle;
if (i2c->variant->hw != I2C_TYPE_EXYNOS7)
temp -= t_ftl_cycle;
div = temp / 512;
clk_cycle = temp / (div + 1) - 2;
if (temp < 4 || div >= 256 || clk_cycle < 2) {
dev_err(i2c->dev, "%s clock set-up failed\n",
hs_timings ? "HS" : "FS");
return -EINVAL;
}
t_scl_l = clk_cycle / 2;
t_scl_h = clk_cycle / 2;
t_start_su = t_scl_l;
t_start_hd = t_scl_l;
t_stop_su = t_scl_l;
t_data_su = t_scl_l / 2;
t_data_hd = t_scl_l / 2;
t_sr_release = clk_cycle;
i2c_timing_s1 = t_start_su << 24 | t_start_hd << 16 | t_stop_su << 8;
i2c_timing_s2 = t_data_su << 24 | t_scl_l << 8 | t_scl_h << 0;
i2c_timing_s3 = div << 16 | t_sr_release << 0;
i2c_timing_sla = t_data_hd << 0;
dev_dbg(i2c->dev, "tSTART_SU: %X, tSTART_HD: %X, tSTOP_SU: %X\n",
t_start_su, t_start_hd, t_stop_su);
dev_dbg(i2c->dev, "tDATA_SU: %X, tSCL_L: %X, tSCL_H: %X\n",
t_data_su, t_scl_l, t_scl_h);
dev_dbg(i2c->dev, "nClkDiv: %X, tSR_RELEASE: %X\n",
div, t_sr_release);
dev_dbg(i2c->dev, "tDATA_HD: %X\n", t_data_hd);
if (hs_timings) {
writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_HS1);
writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_HS2);
writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_HS3);
} else {
writel(i2c_timing_s1, i2c->regs + HSI2C_TIMING_FS1);
writel(i2c_timing_s2, i2c->regs + HSI2C_TIMING_FS2);
writel(i2c_timing_s3, i2c->regs + HSI2C_TIMING_FS3);
}
writel(i2c_timing_sla, i2c->regs + HSI2C_TIMING_SLA);
return 0;
}
static int exynos5_hsi2c_clock_setup(struct exynos5_i2c *i2c)
{
/* always set Fast Speed timings */
int ret = exynos5_i2c_set_timing(i2c, false);
if (ret < 0 || i2c->op_clock < I2C_MAX_FAST_MODE_PLUS_FREQ)
return ret;
return exynos5_i2c_set_timing(i2c, true);
}
/*
* exynos5_i2c_init: configures the controller for I2C functionality
* Programs I2C controller for Master mode operation
*/
static void exynos5_i2c_init(struct exynos5_i2c *i2c)
{
u32 i2c_conf = readl(i2c->regs + HSI2C_CONF);
u32 i2c_timeout = readl(i2c->regs + HSI2C_TIMEOUT);
/* Clear to disable Timeout */
i2c_timeout &= ~HSI2C_TIMEOUT_EN;
writel(i2c_timeout, i2c->regs + HSI2C_TIMEOUT);
writel((HSI2C_FUNC_MODE_I2C | HSI2C_MASTER),
i2c->regs + HSI2C_CTL);
writel(HSI2C_TRAILING_COUNT, i2c->regs + HSI2C_TRAILIG_CTL);
if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ) {
writel(HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr)),
i2c->regs + HSI2C_ADDR);
i2c_conf |= HSI2C_HS_MODE;
}
writel(i2c_conf | HSI2C_AUTO_MODE, i2c->regs + HSI2C_CONF);
}
static void exynos5_i2c_reset(struct exynos5_i2c *i2c)
{
u32 i2c_ctl;
/* Set and clear the bit for reset */
i2c_ctl = readl(i2c->regs + HSI2C_CTL);
i2c_ctl |= HSI2C_SW_RST;
writel(i2c_ctl, i2c->regs + HSI2C_CTL);
i2c_ctl = readl(i2c->regs + HSI2C_CTL);
i2c_ctl &= ~HSI2C_SW_RST;
writel(i2c_ctl, i2c->regs + HSI2C_CTL);
/* We don't expect calculations to fail during the run */
exynos5_hsi2c_clock_setup(i2c);
/* Initialize the configure registers */
exynos5_i2c_init(i2c);
}
/*
* exynos5_i2c_irq: top level IRQ servicing routine
*
* INT_STATUS registers gives the interrupt details. Further,
* FIFO_STATUS or TRANS_STATUS registers are to be check for detailed
* state of the bus.
*/
static irqreturn_t exynos5_i2c_irq(int irqno, void *dev_id)
{
struct exynos5_i2c *i2c = dev_id;
u32 fifo_level, int_status, fifo_status, trans_status;
unsigned char byte;
int len = 0;
i2c->state = -EINVAL;
spin_lock(&i2c->lock);
int_status = readl(i2c->regs + HSI2C_INT_STATUS);
writel(int_status, i2c->regs + HSI2C_INT_STATUS);
/* handle interrupt related to the transfer status */
switch (i2c->variant->hw) {
case I2C_TYPE_EXYNOSAUTOV9:
fallthrough;
case I2C_TYPE_EXYNOS7:
if (int_status & HSI2C_INT_TRANS_DONE) {
i2c->trans_done = 1;
i2c->state = 0;
} else if (int_status & HSI2C_INT_TRANS_ABORT) {
dev_dbg(i2c->dev, "Deal with arbitration lose\n");
i2c->state = -EAGAIN;
goto stop;
} else if (int_status & HSI2C_INT_NO_DEV_ACK) {
dev_dbg(i2c->dev, "No ACK from device\n");
i2c->state = -ENXIO;
goto stop;
} else if (int_status & HSI2C_INT_NO_DEV) {
dev_dbg(i2c->dev, "No device\n");
i2c->state = -ENXIO;
goto stop;
} else if (int_status & HSI2C_INT_TIMEOUT) {
dev_dbg(i2c->dev, "Accessing device timed out\n");
i2c->state = -ETIMEDOUT;
goto stop;
}
break;
case I2C_TYPE_EXYNOS5:
if (!(int_status & HSI2C_INT_I2C))
break;
trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
if (trans_status & HSI2C_NO_DEV_ACK) {
dev_dbg(i2c->dev, "No ACK from device\n");
i2c->state = -ENXIO;
goto stop;
} else if (trans_status & HSI2C_NO_DEV) {
dev_dbg(i2c->dev, "No device\n");
i2c->state = -ENXIO;
goto stop;
} else if (trans_status & HSI2C_TRANS_ABORT) {
dev_dbg(i2c->dev, "Deal with arbitration lose\n");
i2c->state = -EAGAIN;
goto stop;
} else if (trans_status & HSI2C_TIMEOUT_AUTO) {
dev_dbg(i2c->dev, "Accessing device timed out\n");
i2c->state = -ETIMEDOUT;
goto stop;
} else if (trans_status & HSI2C_TRANS_DONE) {
i2c->trans_done = 1;
i2c->state = 0;
}
break;
}
if ((i2c->msg->flags & I2C_M_RD) && (int_status &
(HSI2C_INT_TRAILING | HSI2C_INT_RX_ALMOSTFULL))) {
fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
fifo_level = HSI2C_RX_FIFO_LVL(fifo_status);
len = min(fifo_level, i2c->msg->len - i2c->msg_ptr);
while (len > 0) {
byte = (unsigned char)
readl(i2c->regs + HSI2C_RX_DATA);
i2c->msg->buf[i2c->msg_ptr++] = byte;
len--;
}
i2c->state = 0;
} else if (int_status & HSI2C_INT_TX_ALMOSTEMPTY) {
fifo_status = readl(i2c->regs + HSI2C_FIFO_STATUS);
fifo_level = HSI2C_TX_FIFO_LVL(fifo_status);
len = i2c->variant->fifo_depth - fifo_level;
if (len > (i2c->msg->len - i2c->msg_ptr)) {
u32 int_en = readl(i2c->regs + HSI2C_INT_ENABLE);
int_en &= ~HSI2C_INT_TX_ALMOSTEMPTY_EN;
writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
len = i2c->msg->len - i2c->msg_ptr;
}
while (len > 0) {
byte = i2c->msg->buf[i2c->msg_ptr++];
writel(byte, i2c->regs + HSI2C_TX_DATA);
len--;
}
i2c->state = 0;
}
stop:
if ((i2c->trans_done && (i2c->msg->len == i2c->msg_ptr)) ||
(i2c->state < 0)) {
writel(0, i2c->regs + HSI2C_INT_ENABLE);
exynos5_i2c_clr_pend_irq(i2c);
complete(&i2c->msg_complete);
}
spin_unlock(&i2c->lock);
return IRQ_HANDLED;
}
/*
* exynos5_i2c_wait_bus_idle
*
* Wait for the bus to go idle, indicated by the MASTER_BUSY bit being
* cleared.
*
* Returns -EBUSY if the bus cannot be bought to idle
*/
static int exynos5_i2c_wait_bus_idle(struct exynos5_i2c *i2c)
{
unsigned long stop_time;
u32 trans_status;
/* wait for 100 milli seconds for the bus to be idle */
stop_time = jiffies + msecs_to_jiffies(100) + 1;
do {
trans_status = readl(i2c->regs + HSI2C_TRANS_STATUS);
if (!(trans_status & HSI2C_MASTER_BUSY))
return 0;
usleep_range(50, 200);
} while (time_before(jiffies, stop_time));
return -EBUSY;
}
static void exynos5_i2c_bus_recover(struct exynos5_i2c *i2c)
{
u32 val;
val = readl(i2c->regs + HSI2C_CTL) | HSI2C_RXCHON;
writel(val, i2c->regs + HSI2C_CTL);
val = readl(i2c->regs + HSI2C_CONF) & ~HSI2C_AUTO_MODE;
writel(val, i2c->regs + HSI2C_CONF);
/*
* Specification says master should send nine clock pulses. It can be
* emulated by sending manual read command (nine pulses for read eight
* bits + one pulse for NACK).
*/
writel(HSI2C_CMD_READ_DATA, i2c->regs + HSI2C_MANUAL_CMD);
exynos5_i2c_wait_bus_idle(i2c);
writel(HSI2C_CMD_SEND_STOP, i2c->regs + HSI2C_MANUAL_CMD);
exynos5_i2c_wait_bus_idle(i2c);
val = readl(i2c->regs + HSI2C_CTL) & ~HSI2C_RXCHON;
writel(val, i2c->regs + HSI2C_CTL);
val = readl(i2c->regs + HSI2C_CONF) | HSI2C_AUTO_MODE;
writel(val, i2c->regs + HSI2C_CONF);
}
static void exynos5_i2c_bus_check(struct exynos5_i2c *i2c)
{
unsigned long timeout;
if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
return;
/*
* HSI2C_MASTER_ST_LOSE state (in Exynos7 and ExynosAutoV9 variants)
* before transaction indicates that bus is stuck (SDA is low).
* In such case bus recovery can be performed.
*/
timeout = jiffies + msecs_to_jiffies(100);
for (;;) {
u32 st = readl(i2c->regs + HSI2C_TRANS_STATUS);
if ((st & HSI2C_MASTER_ST_MASK) != HSI2C_MASTER_ST_LOSE)
return;
if (time_is_before_jiffies(timeout))
return;
exynos5_i2c_bus_recover(i2c);
}
}
/*
* exynos5_i2c_message_start: Configures the bus and starts the xfer
* i2c: struct exynos5_i2c pointer for the current bus
* stop: Enables stop after transfer if set. Set for last transfer of
* in the list of messages.
*
* Configures the bus for read/write function
* Sets chip address to talk to, message length to be sent.
* Enables appropriate interrupts and sends start xfer command.
*/
static void exynos5_i2c_message_start(struct exynos5_i2c *i2c, int stop)
{
u32 i2c_ctl;
u32 int_en = 0;
u32 i2c_auto_conf = 0;
u32 i2c_addr = 0;
u32 fifo_ctl;
unsigned long flags;
unsigned short trig_lvl;
if (i2c->variant->hw == I2C_TYPE_EXYNOS5)
int_en |= HSI2C_INT_I2C;
else
int_en |= HSI2C_INT_I2C_TRANS;
i2c_ctl = readl(i2c->regs + HSI2C_CTL);
i2c_ctl &= ~(HSI2C_TXCHON | HSI2C_RXCHON);
fifo_ctl = HSI2C_RXFIFO_EN | HSI2C_TXFIFO_EN;
if (i2c->msg->flags & I2C_M_RD) {
i2c_ctl |= HSI2C_RXCHON;
i2c_auto_conf |= HSI2C_READ_WRITE;
trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
(i2c->variant->fifo_depth * 3 / 4) : i2c->msg->len;
fifo_ctl |= HSI2C_RXFIFO_TRIGGER_LEVEL(trig_lvl);
int_en |= (HSI2C_INT_RX_ALMOSTFULL_EN |
HSI2C_INT_TRAILING_EN);
} else {
i2c_ctl |= HSI2C_TXCHON;
trig_lvl = (i2c->msg->len > i2c->variant->fifo_depth) ?
(i2c->variant->fifo_depth * 1 / 4) : i2c->msg->len;
fifo_ctl |= HSI2C_TXFIFO_TRIGGER_LEVEL(trig_lvl);
int_en |= HSI2C_INT_TX_ALMOSTEMPTY_EN;
}
i2c_addr = HSI2C_SLV_ADDR_MAS(i2c->msg->addr);
if (i2c->op_clock >= I2C_MAX_FAST_MODE_PLUS_FREQ)
i2c_addr |= HSI2C_MASTER_ID(MASTER_ID(i2c->adap.nr));
writel(i2c_addr, i2c->regs + HSI2C_ADDR);
writel(fifo_ctl, i2c->regs + HSI2C_FIFO_CTL);
writel(i2c_ctl, i2c->regs + HSI2C_CTL);
exynos5_i2c_bus_check(i2c);
/*
* Enable interrupts before starting the transfer so that we don't
* miss any INT_I2C interrupts.
*/
spin_lock_irqsave(&i2c->lock, flags);
writel(int_en, i2c->regs + HSI2C_INT_ENABLE);
if (stop == 1)
i2c_auto_conf |= HSI2C_STOP_AFTER_TRANS;
i2c_auto_conf |= i2c->msg->len;
i2c_auto_conf |= HSI2C_MASTER_RUN;
writel(i2c_auto_conf, i2c->regs + HSI2C_AUTO_CONF);
spin_unlock_irqrestore(&i2c->lock, flags);
}
static int exynos5_i2c_xfer_msg(struct exynos5_i2c *i2c,
struct i2c_msg *msgs, int stop)
{
unsigned long timeout;
int ret;
i2c->msg = msgs;
i2c->msg_ptr = 0;
i2c->trans_done = 0;
reinit_completion(&i2c->msg_complete);
exynos5_i2c_message_start(i2c, stop);
timeout = wait_for_completion_timeout(&i2c->msg_complete,
EXYNOS5_I2C_TIMEOUT);
if (timeout == 0)
ret = -ETIMEDOUT;
else
ret = i2c->state;
/*
* If this is the last message to be transfered (stop == 1)
* Then check if the bus can be brought back to idle.
*/
if (ret == 0 && stop)
ret = exynos5_i2c_wait_bus_idle(i2c);
if (ret < 0) {
exynos5_i2c_reset(i2c);
if (ret == -ETIMEDOUT)
dev_warn(i2c->dev, "%s timeout\n",
(msgs->flags & I2C_M_RD) ? "rx" : "tx");
}
/* Return the state as in interrupt routine */
return ret;
}
static int exynos5_i2c_xfer(struct i2c_adapter *adap,
struct i2c_msg *msgs, int num)
{
struct exynos5_i2c *i2c = adap->algo_data;
int i, ret;
ret = clk_enable(i2c->pclk);
if (ret)
return ret;
ret = clk_enable(i2c->clk);
if (ret)
goto err_pclk;
for (i = 0; i < num; ++i) {
ret = exynos5_i2c_xfer_msg(i2c, msgs + i, i + 1 == num);
if (ret)
break;
}
clk_disable(i2c->clk);
err_pclk:
clk_disable(i2c->pclk);
return ret ?: num;
}
static u32 exynos5_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | (I2C_FUNC_SMBUS_EMUL & ~I2C_FUNC_SMBUS_QUICK);
}
static const struct i2c_algorithm exynos5_i2c_algorithm = {
.master_xfer = exynos5_i2c_xfer,
.functionality = exynos5_i2c_func,
};
static int exynos5_i2c_probe(struct platform_device *pdev)
{
struct device_node *np = pdev->dev.of_node;
struct exynos5_i2c *i2c;
int ret;
i2c = devm_kzalloc(&pdev->dev, sizeof(struct exynos5_i2c), GFP_KERNEL);
if (!i2c)
return -ENOMEM;
if (of_property_read_u32(np, "clock-frequency", &i2c->op_clock))
i2c->op_clock = I2C_MAX_STANDARD_MODE_FREQ;
strscpy(i2c->adap.name, "exynos5-i2c", sizeof(i2c->adap.name));
i2c->adap.owner = THIS_MODULE;
i2c->adap.algo = &exynos5_i2c_algorithm;
i2c->adap.retries = 3;
i2c->dev = &pdev->dev;
i2c->clk = devm_clk_get(&pdev->dev, "hsi2c");
if (IS_ERR(i2c->clk)) {
dev_err(&pdev->dev, "cannot get clock\n");
return -ENOENT;
}
i2c->pclk = devm_clk_get_optional(&pdev->dev, "hsi2c_pclk");
if (IS_ERR(i2c->pclk)) {
return dev_err_probe(&pdev->dev, PTR_ERR(i2c->pclk),
"cannot get pclk");
}
ret = clk_prepare_enable(i2c->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(i2c->clk);
if (ret)
goto err_pclk;
i2c->regs = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(i2c->regs)) {
ret = PTR_ERR(i2c->regs);
goto err_clk;
}
i2c->adap.dev.of_node = np;
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &pdev->dev;
/* Clear pending interrupts from u-boot or misc causes */
exynos5_i2c_clr_pend_irq(i2c);
spin_lock_init(&i2c->lock);
init_completion(&i2c->msg_complete);
i2c->irq = ret = platform_get_irq(pdev, 0);
if (ret < 0)
goto err_clk;
ret = devm_request_irq(&pdev->dev, i2c->irq, exynos5_i2c_irq,
IRQF_NO_SUSPEND, dev_name(&pdev->dev), i2c);
if (ret != 0) {
dev_err(&pdev->dev, "cannot request HS-I2C IRQ %d\n", i2c->irq);
goto err_clk;
}
i2c->variant = of_device_get_match_data(&pdev->dev);
ret = exynos5_hsi2c_clock_setup(i2c);
if (ret)
goto err_clk;
exynos5_i2c_reset(i2c);
ret = i2c_add_adapter(&i2c->adap);
if (ret < 0)
goto err_clk;
platform_set_drvdata(pdev, i2c);
clk_disable(i2c->clk);
clk_disable(i2c->pclk);
return 0;
err_clk:
clk_disable_unprepare(i2c->clk);
err_pclk:
clk_disable_unprepare(i2c->pclk);
return ret;
}
2023-10-24 12:59:35 +02:00
static void exynos5_i2c_remove(struct platform_device *pdev)
2023-08-30 17:31:07 +02:00
{
struct exynos5_i2c *i2c = platform_get_drvdata(pdev);
i2c_del_adapter(&i2c->adap);
clk_unprepare(i2c->clk);
clk_unprepare(i2c->pclk);
}
#ifdef CONFIG_PM_SLEEP
static int exynos5_i2c_suspend_noirq(struct device *dev)
{
struct exynos5_i2c *i2c = dev_get_drvdata(dev);
i2c_mark_adapter_suspended(&i2c->adap);
clk_unprepare(i2c->clk);
clk_unprepare(i2c->pclk);
return 0;
}
static int exynos5_i2c_resume_noirq(struct device *dev)
{
struct exynos5_i2c *i2c = dev_get_drvdata(dev);
int ret = 0;
ret = clk_prepare_enable(i2c->pclk);
if (ret)
return ret;
ret = clk_prepare_enable(i2c->clk);
if (ret)
goto err_pclk;
ret = exynos5_hsi2c_clock_setup(i2c);
if (ret)
goto err_clk;
exynos5_i2c_init(i2c);
clk_disable(i2c->clk);
clk_disable(i2c->pclk);
i2c_mark_adapter_resumed(&i2c->adap);
return 0;
err_clk:
clk_disable_unprepare(i2c->clk);
err_pclk:
clk_disable_unprepare(i2c->pclk);
return ret;
}
#endif
static const struct dev_pm_ops exynos5_i2c_dev_pm_ops = {
SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(exynos5_i2c_suspend_noirq,
exynos5_i2c_resume_noirq)
};
static struct platform_driver exynos5_i2c_driver = {
.probe = exynos5_i2c_probe,
2023-10-24 12:59:35 +02:00
.remove_new = exynos5_i2c_remove,
2023-08-30 17:31:07 +02:00
.driver = {
.name = "exynos5-hsi2c",
.pm = &exynos5_i2c_dev_pm_ops,
.of_match_table = exynos5_i2c_match,
},
};
module_platform_driver(exynos5_i2c_driver);
MODULE_DESCRIPTION("Exynos5 HS-I2C Bus driver");
MODULE_AUTHOR("Naveen Krishna Chatradhi <ch.naveen@samsung.com>");
MODULE_AUTHOR("Taekgyun Ko <taeggyun.ko@samsung.com>");
MODULE_LICENSE("GPL v2");