linux-zen-desktop/drivers/net/ethernet/mellanox/mlx4/icm.c

494 lines
12 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/*
* Copyright (c) 2005, 2006, 2007, 2008 Mellanox Technologies. All rights reserved.
* Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/mlx4/cmd.h>
#include "mlx4.h"
#include "icm.h"
#include "fw.h"
/*
* We allocate in as big chunks as we can, up to a maximum of 256 KB
* per chunk. Note that the chunks are not necessarily in contiguous
* physical memory.
*/
enum {
MLX4_ICM_ALLOC_SIZE = 1 << 18,
MLX4_TABLE_CHUNK_SIZE = 1 << 18,
};
static void mlx4_free_icm_pages(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
{
int i;
if (chunk->nsg > 0)
dma_unmap_sg(&dev->persist->pdev->dev, chunk->sg, chunk->npages,
DMA_BIDIRECTIONAL);
for (i = 0; i < chunk->npages; ++i)
__free_pages(sg_page(&chunk->sg[i]),
get_order(chunk->sg[i].length));
}
static void mlx4_free_icm_coherent(struct mlx4_dev *dev, struct mlx4_icm_chunk *chunk)
{
int i;
for (i = 0; i < chunk->npages; ++i)
dma_free_coherent(&dev->persist->pdev->dev,
chunk->buf[i].size,
chunk->buf[i].addr,
chunk->buf[i].dma_addr);
}
void mlx4_free_icm(struct mlx4_dev *dev, struct mlx4_icm *icm, int coherent)
{
struct mlx4_icm_chunk *chunk, *tmp;
if (!icm)
return;
list_for_each_entry_safe(chunk, tmp, &icm->chunk_list, list) {
if (coherent)
mlx4_free_icm_coherent(dev, chunk);
else
mlx4_free_icm_pages(dev, chunk);
kfree(chunk);
}
kfree(icm);
}
static int mlx4_alloc_icm_pages(struct scatterlist *mem, int order,
gfp_t gfp_mask, int node)
{
struct page *page;
page = alloc_pages_node(node, gfp_mask, order);
if (!page) {
page = alloc_pages(gfp_mask, order);
if (!page)
return -ENOMEM;
}
sg_set_page(mem, page, PAGE_SIZE << order, 0);
return 0;
}
static int mlx4_alloc_icm_coherent(struct device *dev, struct mlx4_icm_buf *buf,
int order, gfp_t gfp_mask)
{
buf->addr = dma_alloc_coherent(dev, PAGE_SIZE << order,
&buf->dma_addr, gfp_mask);
if (!buf->addr)
return -ENOMEM;
if (offset_in_page(buf->addr)) {
dma_free_coherent(dev, PAGE_SIZE << order, buf->addr,
buf->dma_addr);
return -ENOMEM;
}
buf->size = PAGE_SIZE << order;
return 0;
}
struct mlx4_icm *mlx4_alloc_icm(struct mlx4_dev *dev, int npages,
gfp_t gfp_mask, int coherent)
{
struct mlx4_icm *icm;
struct mlx4_icm_chunk *chunk = NULL;
int cur_order;
gfp_t mask;
int ret;
/* We use sg_set_buf for coherent allocs, which assumes low memory */
BUG_ON(coherent && (gfp_mask & __GFP_HIGHMEM));
icm = kmalloc_node(sizeof(*icm),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN),
dev->numa_node);
if (!icm) {
icm = kmalloc(sizeof(*icm),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!icm)
return NULL;
}
icm->refcount = 0;
INIT_LIST_HEAD(&icm->chunk_list);
cur_order = get_order(MLX4_ICM_ALLOC_SIZE);
while (npages > 0) {
if (!chunk) {
chunk = kzalloc_node(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM |
__GFP_NOWARN),
dev->numa_node);
if (!chunk) {
chunk = kzalloc(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM |
__GFP_NOWARN));
if (!chunk)
goto fail;
}
chunk->coherent = coherent;
if (!coherent)
sg_init_table(chunk->sg, MLX4_ICM_CHUNK_LEN);
list_add_tail(&chunk->list, &icm->chunk_list);
}
while (1 << cur_order > npages)
--cur_order;
mask = gfp_mask;
if (cur_order)
mask &= ~__GFP_DIRECT_RECLAIM;
if (coherent)
ret = mlx4_alloc_icm_coherent(&dev->persist->pdev->dev,
&chunk->buf[chunk->npages],
cur_order, mask);
else
ret = mlx4_alloc_icm_pages(&chunk->sg[chunk->npages],
cur_order, mask,
dev->numa_node);
if (ret) {
if (--cur_order < 0)
goto fail;
else
continue;
}
++chunk->npages;
if (coherent)
++chunk->nsg;
else if (chunk->npages == MLX4_ICM_CHUNK_LEN) {
chunk->nsg = dma_map_sg(&dev->persist->pdev->dev,
chunk->sg, chunk->npages,
DMA_BIDIRECTIONAL);
if (!chunk->nsg)
goto fail;
}
if (chunk->npages == MLX4_ICM_CHUNK_LEN)
chunk = NULL;
npages -= 1 << cur_order;
}
if (!coherent && chunk) {
chunk->nsg = dma_map_sg(&dev->persist->pdev->dev, chunk->sg,
chunk->npages, DMA_BIDIRECTIONAL);
if (!chunk->nsg)
goto fail;
}
return icm;
fail:
mlx4_free_icm(dev, icm, coherent);
return NULL;
}
static int mlx4_MAP_ICM(struct mlx4_dev *dev, struct mlx4_icm *icm, u64 virt)
{
return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM, icm, virt);
}
static int mlx4_UNMAP_ICM(struct mlx4_dev *dev, u64 virt, u32 page_count)
{
return mlx4_cmd(dev, virt, page_count, 0, MLX4_CMD_UNMAP_ICM,
MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
}
int mlx4_MAP_ICM_AUX(struct mlx4_dev *dev, struct mlx4_icm *icm)
{
return mlx4_map_cmd(dev, MLX4_CMD_MAP_ICM_AUX, icm, -1);
}
int mlx4_UNMAP_ICM_AUX(struct mlx4_dev *dev)
{
return mlx4_cmd(dev, 0, 0, 0, MLX4_CMD_UNMAP_ICM_AUX,
MLX4_CMD_TIME_CLASS_B, MLX4_CMD_NATIVE);
}
int mlx4_table_get(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
{
u32 i = (obj & (table->num_obj - 1)) /
(MLX4_TABLE_CHUNK_SIZE / table->obj_size);
int ret = 0;
mutex_lock(&table->mutex);
if (table->icm[i]) {
++table->icm[i]->refcount;
goto out;
}
table->icm[i] = mlx4_alloc_icm(dev, MLX4_TABLE_CHUNK_SIZE >> PAGE_SHIFT,
(table->lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
__GFP_NOWARN, table->coherent);
if (!table->icm[i]) {
ret = -ENOMEM;
goto out;
}
if (mlx4_MAP_ICM(dev, table->icm[i], table->virt +
(u64) i * MLX4_TABLE_CHUNK_SIZE)) {
mlx4_free_icm(dev, table->icm[i], table->coherent);
table->icm[i] = NULL;
ret = -ENOMEM;
goto out;
}
++table->icm[i]->refcount;
out:
mutex_unlock(&table->mutex);
return ret;
}
void mlx4_table_put(struct mlx4_dev *dev, struct mlx4_icm_table *table, u32 obj)
{
u32 i;
u64 offset;
i = (obj & (table->num_obj - 1)) / (MLX4_TABLE_CHUNK_SIZE / table->obj_size);
mutex_lock(&table->mutex);
if (--table->icm[i]->refcount == 0) {
offset = (u64) i * MLX4_TABLE_CHUNK_SIZE;
mlx4_UNMAP_ICM(dev, table->virt + offset,
MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
mlx4_free_icm(dev, table->icm[i], table->coherent);
table->icm[i] = NULL;
}
mutex_unlock(&table->mutex);
}
void *mlx4_table_find(struct mlx4_icm_table *table, u32 obj,
dma_addr_t *dma_handle)
{
int offset, dma_offset, i;
u64 idx;
struct mlx4_icm_chunk *chunk;
struct mlx4_icm *icm;
void *addr = NULL;
if (!table->lowmem)
return NULL;
mutex_lock(&table->mutex);
idx = (u64) (obj & (table->num_obj - 1)) * table->obj_size;
icm = table->icm[idx / MLX4_TABLE_CHUNK_SIZE];
dma_offset = offset = idx % MLX4_TABLE_CHUNK_SIZE;
if (!icm)
goto out;
list_for_each_entry(chunk, &icm->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i) {
dma_addr_t dma_addr;
size_t len;
if (table->coherent) {
len = chunk->buf[i].size;
dma_addr = chunk->buf[i].dma_addr;
addr = chunk->buf[i].addr;
} else {
struct page *page;
len = sg_dma_len(&chunk->sg[i]);
dma_addr = sg_dma_address(&chunk->sg[i]);
/* XXX: we should never do this for highmem
* allocation. This function either needs
* to be split, or the kernel virtual address
* return needs to be made optional.
*/
page = sg_page(&chunk->sg[i]);
addr = lowmem_page_address(page);
}
if (dma_handle && dma_offset >= 0) {
if (len > dma_offset)
*dma_handle = dma_addr + dma_offset;
dma_offset -= len;
}
/*
* DMA mapping can merge pages but not split them,
* so if we found the page, dma_handle has already
* been assigned to.
*/
if (len > offset)
goto out;
offset -= len;
}
}
addr = NULL;
out:
mutex_unlock(&table->mutex);
return addr ? addr + offset : NULL;
}
int mlx4_table_get_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
u32 start, u32 end)
{
int inc = MLX4_TABLE_CHUNK_SIZE / table->obj_size;
int err;
u32 i;
for (i = start; i <= end; i += inc) {
err = mlx4_table_get(dev, table, i);
if (err)
goto fail;
}
return 0;
fail:
while (i > start) {
i -= inc;
mlx4_table_put(dev, table, i);
}
return err;
}
void mlx4_table_put_range(struct mlx4_dev *dev, struct mlx4_icm_table *table,
u32 start, u32 end)
{
u32 i;
for (i = start; i <= end; i += MLX4_TABLE_CHUNK_SIZE / table->obj_size)
mlx4_table_put(dev, table, i);
}
int mlx4_init_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table,
u64 virt, int obj_size, u32 nobj, int reserved,
int use_lowmem, int use_coherent)
{
int obj_per_chunk;
int num_icm;
unsigned chunk_size;
int i;
u64 size;
obj_per_chunk = MLX4_TABLE_CHUNK_SIZE / obj_size;
if (WARN_ON(!obj_per_chunk))
return -EINVAL;
num_icm = DIV_ROUND_UP(nobj, obj_per_chunk);
table->icm = kvcalloc(num_icm, sizeof(*table->icm), GFP_KERNEL);
if (!table->icm)
return -ENOMEM;
table->virt = virt;
table->num_icm = num_icm;
table->num_obj = nobj;
table->obj_size = obj_size;
table->lowmem = use_lowmem;
table->coherent = use_coherent;
mutex_init(&table->mutex);
size = (u64) nobj * obj_size;
for (i = 0; i * MLX4_TABLE_CHUNK_SIZE < reserved * obj_size; ++i) {
chunk_size = MLX4_TABLE_CHUNK_SIZE;
if ((i + 1) * MLX4_TABLE_CHUNK_SIZE > size)
chunk_size = PAGE_ALIGN(size -
i * MLX4_TABLE_CHUNK_SIZE);
table->icm[i] = mlx4_alloc_icm(dev, chunk_size >> PAGE_SHIFT,
(use_lowmem ? GFP_KERNEL : GFP_HIGHUSER) |
__GFP_NOWARN, use_coherent);
if (!table->icm[i])
goto err;
if (mlx4_MAP_ICM(dev, table->icm[i], virt + i * MLX4_TABLE_CHUNK_SIZE)) {
mlx4_free_icm(dev, table->icm[i], use_coherent);
table->icm[i] = NULL;
goto err;
}
/*
* Add a reference to this ICM chunk so that it never
* gets freed (since it contains reserved firmware objects).
*/
++table->icm[i]->refcount;
}
return 0;
err:
for (i = 0; i < num_icm; ++i)
if (table->icm[i]) {
mlx4_UNMAP_ICM(dev, virt + i * MLX4_TABLE_CHUNK_SIZE,
MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
mlx4_free_icm(dev, table->icm[i], use_coherent);
}
kvfree(table->icm);
return -ENOMEM;
}
void mlx4_cleanup_icm_table(struct mlx4_dev *dev, struct mlx4_icm_table *table)
{
int i;
for (i = 0; i < table->num_icm; ++i)
if (table->icm[i]) {
mlx4_UNMAP_ICM(dev, table->virt + i * MLX4_TABLE_CHUNK_SIZE,
MLX4_TABLE_CHUNK_SIZE / MLX4_ICM_PAGE_SIZE);
mlx4_free_icm(dev, table->icm[i], table->coherent);
}
kvfree(table->icm);
}