linux-zen-desktop/drivers/net/ethernet/mellanox/mlxbf_gige/mlxbf_gige_tx.c

285 lines
8.2 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only OR BSD-3-Clause
/* Packet transmit logic for Mellanox Gigabit Ethernet driver
*
* Copyright (C) 2020-2021 NVIDIA CORPORATION & AFFILIATES
*/
#include <linux/skbuff.h>
#include "mlxbf_gige.h"
#include "mlxbf_gige_regs.h"
/* Transmit Initialization
* 1) Allocates TX WQE array using coherent DMA mapping
* 2) Allocates TX completion counter using coherent DMA mapping
*/
int mlxbf_gige_tx_init(struct mlxbf_gige *priv)
{
size_t size;
size = MLXBF_GIGE_TX_WQE_SZ * priv->tx_q_entries;
priv->tx_wqe_base = dma_alloc_coherent(priv->dev, size,
&priv->tx_wqe_base_dma,
GFP_KERNEL);
if (!priv->tx_wqe_base)
return -ENOMEM;
priv->tx_wqe_next = priv->tx_wqe_base;
/* Write TX WQE base address into MMIO reg */
writeq(priv->tx_wqe_base_dma, priv->base + MLXBF_GIGE_TX_WQ_BASE);
/* Allocate address for TX completion count */
priv->tx_cc = dma_alloc_coherent(priv->dev, MLXBF_GIGE_TX_CC_SZ,
&priv->tx_cc_dma, GFP_KERNEL);
if (!priv->tx_cc) {
dma_free_coherent(priv->dev, size,
priv->tx_wqe_base, priv->tx_wqe_base_dma);
return -ENOMEM;
}
/* Write TX CC base address into MMIO reg */
writeq(priv->tx_cc_dma, priv->base + MLXBF_GIGE_TX_CI_UPDATE_ADDRESS);
writeq(ilog2(priv->tx_q_entries),
priv->base + MLXBF_GIGE_TX_WQ_SIZE_LOG2);
priv->prev_tx_ci = 0;
priv->tx_pi = 0;
return 0;
}
/* Transmit Deinitialization
* This routine will free allocations done by mlxbf_gige_tx_init(),
* namely the TX WQE array and the TX completion counter
*/
void mlxbf_gige_tx_deinit(struct mlxbf_gige *priv)
{
u64 *tx_wqe_addr;
size_t size;
int i;
tx_wqe_addr = priv->tx_wqe_base;
for (i = 0; i < priv->tx_q_entries; i++) {
if (priv->tx_skb[i]) {
dma_unmap_single(priv->dev, *tx_wqe_addr,
priv->tx_skb[i]->len, DMA_TO_DEVICE);
dev_kfree_skb(priv->tx_skb[i]);
priv->tx_skb[i] = NULL;
}
tx_wqe_addr += 2;
}
size = MLXBF_GIGE_TX_WQE_SZ * priv->tx_q_entries;
dma_free_coherent(priv->dev, size,
priv->tx_wqe_base, priv->tx_wqe_base_dma);
dma_free_coherent(priv->dev, MLXBF_GIGE_TX_CC_SZ,
priv->tx_cc, priv->tx_cc_dma);
priv->tx_wqe_base = NULL;
priv->tx_wqe_base_dma = 0;
priv->tx_cc = NULL;
priv->tx_cc_dma = 0;
priv->tx_wqe_next = NULL;
writeq(0, priv->base + MLXBF_GIGE_TX_WQ_BASE);
writeq(0, priv->base + MLXBF_GIGE_TX_CI_UPDATE_ADDRESS);
}
/* Function that returns status of TX ring:
* 0: TX ring is full, i.e. there are no
* available un-used entries in TX ring.
* non-null: TX ring is not full, i.e. there are
* some available entries in TX ring.
* The non-null value is a measure of
* how many TX entries are available, but
* it is not the exact number of available
* entries (see below).
*
* The algorithm makes the assumption that if
* (prev_tx_ci == tx_pi) then the TX ring is empty.
* An empty ring actually has (tx_q_entries-1)
* entries, which allows the algorithm to differentiate
* the case of an empty ring vs. a full ring.
*/
static u16 mlxbf_gige_tx_buffs_avail(struct mlxbf_gige *priv)
{
unsigned long flags;
u16 avail;
spin_lock_irqsave(&priv->lock, flags);
if (priv->prev_tx_ci == priv->tx_pi)
avail = priv->tx_q_entries - 1;
else
avail = ((priv->tx_q_entries + priv->prev_tx_ci - priv->tx_pi)
% priv->tx_q_entries) - 1;
spin_unlock_irqrestore(&priv->lock, flags);
return avail;
}
bool mlxbf_gige_handle_tx_complete(struct mlxbf_gige *priv)
{
struct net_device_stats *stats;
u16 tx_wqe_index;
u64 *tx_wqe_addr;
u64 tx_status;
u16 tx_ci;
tx_status = readq(priv->base + MLXBF_GIGE_TX_STATUS);
if (tx_status & MLXBF_GIGE_TX_STATUS_DATA_FIFO_FULL)
priv->stats.tx_fifo_full++;
tx_ci = readq(priv->base + MLXBF_GIGE_TX_CONSUMER_INDEX);
stats = &priv->netdev->stats;
/* Transmit completion logic needs to loop until the completion
* index (in SW) equals TX consumer index (from HW). These
* parameters are unsigned 16-bit values and the wrap case needs
* to be supported, that is TX consumer index wrapped from 0xFFFF
* to 0 while TX completion index is still < 0xFFFF.
*/
for (; priv->prev_tx_ci != tx_ci; priv->prev_tx_ci++) {
tx_wqe_index = priv->prev_tx_ci % priv->tx_q_entries;
/* Each TX WQE is 16 bytes. The 8 MSB store the 2KB TX
* buffer address and the 8 LSB contain information
* about the TX WQE.
*/
tx_wqe_addr = priv->tx_wqe_base +
(tx_wqe_index * MLXBF_GIGE_TX_WQE_SZ_QWORDS);
stats->tx_packets++;
stats->tx_bytes += MLXBF_GIGE_TX_WQE_PKT_LEN(tx_wqe_addr);
dma_unmap_single(priv->dev, *tx_wqe_addr,
priv->tx_skb[tx_wqe_index]->len, DMA_TO_DEVICE);
dev_consume_skb_any(priv->tx_skb[tx_wqe_index]);
priv->tx_skb[tx_wqe_index] = NULL;
/* Ensure completion of updates across all cores */
mb();
}
/* Since the TX ring was likely just drained, check if TX queue
* had previously been stopped and now that there are TX buffers
* available the TX queue can be awakened.
*/
if (netif_queue_stopped(priv->netdev) &&
mlxbf_gige_tx_buffs_avail(priv))
netif_wake_queue(priv->netdev);
return true;
}
/* Function to advance the tx_wqe_next pointer to next TX WQE */
void mlxbf_gige_update_tx_wqe_next(struct mlxbf_gige *priv)
{
/* Advance tx_wqe_next pointer */
priv->tx_wqe_next += MLXBF_GIGE_TX_WQE_SZ_QWORDS;
/* Check if 'next' pointer is beyond end of TX ring */
/* If so, set 'next' back to 'base' pointer of ring */
if (priv->tx_wqe_next == (priv->tx_wqe_base +
(priv->tx_q_entries * MLXBF_GIGE_TX_WQE_SZ_QWORDS)))
priv->tx_wqe_next = priv->tx_wqe_base;
}
netdev_tx_t mlxbf_gige_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct mlxbf_gige *priv = netdev_priv(netdev);
long buff_addr, start_dma_page, end_dma_page;
struct sk_buff *tx_skb;
dma_addr_t tx_buf_dma;
unsigned long flags;
u64 *tx_wqe_addr;
u64 word2;
/* If needed, linearize TX SKB as hardware DMA expects this */
if (skb->len > MLXBF_GIGE_DEFAULT_BUF_SZ || skb_linearize(skb)) {
dev_kfree_skb(skb);
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
buff_addr = (long)skb->data;
start_dma_page = buff_addr >> MLXBF_GIGE_DMA_PAGE_SHIFT;
end_dma_page = (buff_addr + skb->len - 1) >> MLXBF_GIGE_DMA_PAGE_SHIFT;
/* Verify that payload pointer and data length of SKB to be
* transmitted does not violate the hardware DMA limitation.
*/
if (start_dma_page != end_dma_page) {
/* DMA operation would fail as-is, alloc new aligned SKB */
tx_skb = mlxbf_gige_alloc_skb(priv, skb->len,
&tx_buf_dma, DMA_TO_DEVICE);
if (!tx_skb) {
/* Free original skb, could not alloc new aligned SKB */
dev_kfree_skb(skb);
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
skb_put_data(tx_skb, skb->data, skb->len);
/* Free the original SKB */
dev_kfree_skb(skb);
} else {
tx_skb = skb;
tx_buf_dma = dma_map_single(priv->dev, skb->data,
skb->len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, tx_buf_dma)) {
dev_kfree_skb(skb);
netdev->stats.tx_dropped++;
return NETDEV_TX_OK;
}
}
/* Get address of TX WQE */
tx_wqe_addr = priv->tx_wqe_next;
mlxbf_gige_update_tx_wqe_next(priv);
/* Put PA of buffer address into first 64-bit word of TX WQE */
*tx_wqe_addr = tx_buf_dma;
/* Set TX WQE pkt_len appropriately
* NOTE: GigE silicon will automatically pad up to
* minimum packet length if needed.
*/
word2 = tx_skb->len & MLXBF_GIGE_TX_WQE_PKT_LEN_MASK;
/* Write entire 2nd word of TX WQE */
*(tx_wqe_addr + 1) = word2;
spin_lock_irqsave(&priv->lock, flags);
priv->tx_skb[priv->tx_pi % priv->tx_q_entries] = tx_skb;
priv->tx_pi++;
spin_unlock_irqrestore(&priv->lock, flags);
if (!netdev_xmit_more()) {
/* Create memory barrier before write to TX PI */
wmb();
writeq(priv->tx_pi, priv->base + MLXBF_GIGE_TX_PRODUCER_INDEX);
}
/* Check if the last TX entry was just used */
if (!mlxbf_gige_tx_buffs_avail(priv)) {
/* TX ring is full, inform stack */
netif_stop_queue(netdev);
/* Since there is no separate "TX complete" interrupt, need
* to explicitly schedule NAPI poll. This will trigger logic
* which processes TX completions, and will hopefully drain
* the TX ring allowing the TX queue to be awakened.
*/
napi_schedule(&priv->napi);
}
return NETDEV_TX_OK;
}