linux-zen-desktop/drivers/soc/qcom/ice.c

367 lines
9.5 KiB
C
Raw Normal View History

2023-10-24 12:59:35 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* Qualcomm ICE (Inline Crypto Engine) support.
*
* Copyright (c) 2013-2019, The Linux Foundation. All rights reserved.
* Copyright (c) 2019, Google LLC
* Copyright (c) 2023, Linaro Limited
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/iopoll.h>
#include <linux/of_platform.h>
#include <linux/firmware/qcom/qcom_scm.h>
#include <soc/qcom/ice.h>
#define AES_256_XTS_KEY_SIZE 64
/* QCOM ICE registers */
#define QCOM_ICE_REG_VERSION 0x0008
#define QCOM_ICE_REG_FUSE_SETTING 0x0010
#define QCOM_ICE_REG_BIST_STATUS 0x0070
#define QCOM_ICE_REG_ADVANCED_CONTROL 0x1000
/* BIST ("built-in self-test") status flags */
#define QCOM_ICE_BIST_STATUS_MASK GENMASK(31, 28)
#define QCOM_ICE_FUSE_SETTING_MASK 0x1
#define QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK 0x2
#define QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK 0x4
#define qcom_ice_writel(engine, val, reg) \
writel((val), (engine)->base + (reg))
#define qcom_ice_readl(engine, reg) \
readl((engine)->base + (reg))
struct qcom_ice {
struct device *dev;
void __iomem *base;
struct device_link *link;
struct clk *core_clk;
};
static bool qcom_ice_check_supported(struct qcom_ice *ice)
{
u32 regval = qcom_ice_readl(ice, QCOM_ICE_REG_VERSION);
struct device *dev = ice->dev;
int major = FIELD_GET(GENMASK(31, 24), regval);
int minor = FIELD_GET(GENMASK(23, 16), regval);
int step = FIELD_GET(GENMASK(15, 0), regval);
/* For now this driver only supports ICE version 3 and 4. */
if (major != 3 && major != 4) {
dev_warn(dev, "Unsupported ICE version: v%d.%d.%d\n",
major, minor, step);
return false;
}
dev_info(dev, "Found QC Inline Crypto Engine (ICE) v%d.%d.%d\n",
major, minor, step);
/* If fuses are blown, ICE might not work in the standard way. */
regval = qcom_ice_readl(ice, QCOM_ICE_REG_FUSE_SETTING);
if (regval & (QCOM_ICE_FUSE_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY0_SETTING_MASK |
QCOM_ICE_FORCE_HW_KEY1_SETTING_MASK)) {
dev_warn(dev, "Fuses are blown; ICE is unusable!\n");
return false;
}
return true;
}
static void qcom_ice_low_power_mode_enable(struct qcom_ice *ice)
{
u32 regval;
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
/* Enable low power mode sequence */
regval |= 0x7000;
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
}
static void qcom_ice_optimization_enable(struct qcom_ice *ice)
{
u32 regval;
/* ICE Optimizations Enable Sequence */
regval = qcom_ice_readl(ice, QCOM_ICE_REG_ADVANCED_CONTROL);
regval |= 0xd807100;
/* ICE HPG requires delay before writing */
udelay(5);
qcom_ice_writel(ice, regval, QCOM_ICE_REG_ADVANCED_CONTROL);
udelay(5);
}
/*
* Wait until the ICE BIST (built-in self-test) has completed.
*
* This may be necessary before ICE can be used.
* Note that we don't really care whether the BIST passed or failed;
* we really just want to make sure that it isn't still running. This is
* because (a) the BIST is a FIPS compliance thing that never fails in
* practice, (b) ICE is documented to reject crypto requests if the BIST
* fails, so we needn't do it in software too, and (c) properly testing
* storage encryption requires testing the full storage stack anyway,
* and not relying on hardware-level self-tests.
*/
static int qcom_ice_wait_bist_status(struct qcom_ice *ice)
{
u32 regval;
int err;
err = readl_poll_timeout(ice->base + QCOM_ICE_REG_BIST_STATUS,
regval, !(regval & QCOM_ICE_BIST_STATUS_MASK),
50, 5000);
if (err)
dev_err(ice->dev, "Timed out waiting for ICE self-test to complete\n");
return err;
}
int qcom_ice_enable(struct qcom_ice *ice)
{
qcom_ice_low_power_mode_enable(ice);
qcom_ice_optimization_enable(ice);
return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_enable);
int qcom_ice_resume(struct qcom_ice *ice)
{
struct device *dev = ice->dev;
int err;
err = clk_prepare_enable(ice->core_clk);
if (err) {
dev_err(dev, "failed to enable core clock (%d)\n",
err);
return err;
}
return qcom_ice_wait_bist_status(ice);
}
EXPORT_SYMBOL_GPL(qcom_ice_resume);
int qcom_ice_suspend(struct qcom_ice *ice)
{
clk_disable_unprepare(ice->core_clk);
return 0;
}
EXPORT_SYMBOL_GPL(qcom_ice_suspend);
int qcom_ice_program_key(struct qcom_ice *ice,
u8 algorithm_id, u8 key_size,
const u8 crypto_key[], u8 data_unit_size,
int slot)
{
struct device *dev = ice->dev;
union {
u8 bytes[AES_256_XTS_KEY_SIZE];
u32 words[AES_256_XTS_KEY_SIZE / sizeof(u32)];
} key;
int i;
int err;
/* Only AES-256-XTS has been tested so far. */
if (algorithm_id != QCOM_ICE_CRYPTO_ALG_AES_XTS ||
key_size != QCOM_ICE_CRYPTO_KEY_SIZE_256) {
dev_err_ratelimited(dev,
"Unhandled crypto capability; algorithm_id=%d, key_size=%d\n",
algorithm_id, key_size);
return -EINVAL;
}
memcpy(key.bytes, crypto_key, AES_256_XTS_KEY_SIZE);
/* The SCM call requires that the key words are encoded in big endian */
for (i = 0; i < ARRAY_SIZE(key.words); i++)
__cpu_to_be32s(&key.words[i]);
err = qcom_scm_ice_set_key(slot, key.bytes, AES_256_XTS_KEY_SIZE,
QCOM_SCM_ICE_CIPHER_AES_256_XTS,
data_unit_size);
memzero_explicit(&key, sizeof(key));
return err;
}
EXPORT_SYMBOL_GPL(qcom_ice_program_key);
int qcom_ice_evict_key(struct qcom_ice *ice, int slot)
{
return qcom_scm_ice_invalidate_key(slot);
}
EXPORT_SYMBOL_GPL(qcom_ice_evict_key);
static struct qcom_ice *qcom_ice_create(struct device *dev,
void __iomem *base)
{
struct qcom_ice *engine;
if (!qcom_scm_is_available())
return ERR_PTR(-EPROBE_DEFER);
if (!qcom_scm_ice_available()) {
dev_warn(dev, "ICE SCM interface not found\n");
return NULL;
}
engine = devm_kzalloc(dev, sizeof(*engine), GFP_KERNEL);
if (!engine)
return ERR_PTR(-ENOMEM);
engine->dev = dev;
engine->base = base;
/*
* Legacy DT binding uses different clk names for each consumer,
* so lets try those first. If none of those are a match, it means
* the we only have one clock and it is part of the dedicated DT node.
* Also, enable the clock before we check what HW version the driver
* supports.
*/
engine->core_clk = devm_clk_get_optional_enabled(dev, "ice_core_clk");
if (!engine->core_clk)
engine->core_clk = devm_clk_get_optional_enabled(dev, "ice");
if (!engine->core_clk)
engine->core_clk = devm_clk_get_enabled(dev, NULL);
if (IS_ERR(engine->core_clk))
return ERR_CAST(engine->core_clk);
if (!qcom_ice_check_supported(engine))
return ERR_PTR(-EOPNOTSUPP);
dev_dbg(dev, "Registered Qualcomm Inline Crypto Engine\n");
return engine;
}
/**
* of_qcom_ice_get() - get an ICE instance from a DT node
* @dev: device pointer for the consumer device
*
* This function will provide an ICE instance either by creating one for the
* consumer device if its DT node provides the 'ice' reg range and the 'ice'
* clock (for legacy DT style). On the other hand, if consumer provides a
* phandle via 'qcom,ice' property to an ICE DT, the ICE instance will already
* be created and so this function will return that instead.
*
* Return: ICE pointer on success, NULL if there is no ICE data provided by the
* consumer or ERR_PTR() on error.
*/
struct qcom_ice *of_qcom_ice_get(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct qcom_ice *ice;
struct device_node *node;
struct resource *res;
void __iomem *base;
if (!dev || !dev->of_node)
return ERR_PTR(-ENODEV);
/*
* In order to support legacy style devicetree bindings, we need
* to create the ICE instance using the consumer device and the reg
* range called 'ice' it provides.
*/
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ice");
if (res) {
base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(base))
return ERR_CAST(base);
/* create ICE instance using consumer dev */
return qcom_ice_create(&pdev->dev, base);
}
/*
* If the consumer node does not provider an 'ice' reg range
* (legacy DT binding), then it must at least provide a phandle
* to the ICE devicetree node, otherwise ICE is not supported.
*/
node = of_parse_phandle(dev->of_node, "qcom,ice", 0);
if (!node)
return NULL;
pdev = of_find_device_by_node(node);
if (!pdev) {
dev_err(dev, "Cannot find device node %s\n", node->name);
ice = ERR_PTR(-EPROBE_DEFER);
goto out;
}
ice = platform_get_drvdata(pdev);
if (!ice) {
dev_err(dev, "Cannot get ice instance from %s\n",
dev_name(&pdev->dev));
platform_device_put(pdev);
ice = ERR_PTR(-EPROBE_DEFER);
goto out;
}
ice->link = device_link_add(dev, &pdev->dev, DL_FLAG_AUTOREMOVE_SUPPLIER);
if (!ice->link) {
dev_err(&pdev->dev,
"Failed to create device link to consumer %s\n",
dev_name(dev));
platform_device_put(pdev);
ice = ERR_PTR(-EINVAL);
}
out:
of_node_put(node);
return ice;
}
EXPORT_SYMBOL_GPL(of_qcom_ice_get);
static int qcom_ice_probe(struct platform_device *pdev)
{
struct qcom_ice *engine;
void __iomem *base;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base)) {
dev_warn(&pdev->dev, "ICE registers not found\n");
return PTR_ERR(base);
}
engine = qcom_ice_create(&pdev->dev, base);
if (IS_ERR(engine))
return PTR_ERR(engine);
platform_set_drvdata(pdev, engine);
return 0;
}
static const struct of_device_id qcom_ice_of_match_table[] = {
{ .compatible = "qcom,inline-crypto-engine" },
{ },
};
MODULE_DEVICE_TABLE(of, qcom_ice_of_match_table);
static struct platform_driver qcom_ice_driver = {
.probe = qcom_ice_probe,
.driver = {
.name = "qcom-ice",
.of_match_table = qcom_ice_of_match_table,
},
};
module_platform_driver(qcom_ice_driver);
MODULE_DESCRIPTION("Qualcomm Inline Crypto Engine driver");
MODULE_LICENSE("GPL");