linux-zen-desktop/drivers/vfio/pci/vfio_pci_core.c

2616 lines
69 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2012 Red Hat, Inc. All rights reserved.
* Author: Alex Williamson <alex.williamson@redhat.com>
*
* Derived from original vfio:
* Copyright 2010 Cisco Systems, Inc. All rights reserved.
* Author: Tom Lyon, pugs@cisco.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/aperture.h>
#include <linux/device.h>
#include <linux/eventfd.h>
#include <linux/file.h>
#include <linux/interrupt.h>
#include <linux/iommu.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/notifier.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/vgaarb.h>
#include <linux/nospec.h>
#include <linux/sched/mm.h>
#if IS_ENABLED(CONFIG_EEH)
#include <asm/eeh.h>
#endif
#include "vfio_pci_priv.h"
#define DRIVER_AUTHOR "Alex Williamson <alex.williamson@redhat.com>"
#define DRIVER_DESC "core driver for VFIO based PCI devices"
static bool nointxmask;
static bool disable_vga;
static bool disable_idle_d3;
/* List of PF's that vfio_pci_core_sriov_configure() has been called on */
static DEFINE_MUTEX(vfio_pci_sriov_pfs_mutex);
static LIST_HEAD(vfio_pci_sriov_pfs);
struct vfio_pci_dummy_resource {
struct resource resource;
int index;
struct list_head res_next;
};
struct vfio_pci_vf_token {
struct mutex lock;
uuid_t uuid;
int users;
};
struct vfio_pci_mmap_vma {
struct vm_area_struct *vma;
struct list_head vma_next;
};
static inline bool vfio_vga_disabled(void)
{
#ifdef CONFIG_VFIO_PCI_VGA
return disable_vga;
#else
return true;
#endif
}
/*
* Our VGA arbiter participation is limited since we don't know anything
* about the device itself. However, if the device is the only VGA device
* downstream of a bridge and VFIO VGA support is disabled, then we can
* safely return legacy VGA IO and memory as not decoded since the user
* has no way to get to it and routing can be disabled externally at the
* bridge.
*/
static unsigned int vfio_pci_set_decode(struct pci_dev *pdev, bool single_vga)
{
struct pci_dev *tmp = NULL;
unsigned char max_busnr;
unsigned int decodes;
if (single_vga || !vfio_vga_disabled() || pci_is_root_bus(pdev->bus))
return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
max_busnr = pci_bus_max_busnr(pdev->bus);
decodes = VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
while ((tmp = pci_get_class(PCI_CLASS_DISPLAY_VGA << 8, tmp)) != NULL) {
if (tmp == pdev ||
pci_domain_nr(tmp->bus) != pci_domain_nr(pdev->bus) ||
pci_is_root_bus(tmp->bus))
continue;
if (tmp->bus->number >= pdev->bus->number &&
tmp->bus->number <= max_busnr) {
pci_dev_put(tmp);
decodes |= VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM;
break;
}
}
return decodes;
}
static void vfio_pci_probe_mmaps(struct vfio_pci_core_device *vdev)
{
struct resource *res;
int i;
struct vfio_pci_dummy_resource *dummy_res;
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
int bar = i + PCI_STD_RESOURCES;
res = &vdev->pdev->resource[bar];
if (!IS_ENABLED(CONFIG_VFIO_PCI_MMAP))
goto no_mmap;
if (!(res->flags & IORESOURCE_MEM))
goto no_mmap;
/*
* The PCI core shouldn't set up a resource with a
* type but zero size. But there may be bugs that
* cause us to do that.
*/
if (!resource_size(res))
goto no_mmap;
if (resource_size(res) >= PAGE_SIZE) {
vdev->bar_mmap_supported[bar] = true;
continue;
}
if (!(res->start & ~PAGE_MASK)) {
/*
* Add a dummy resource to reserve the remainder
* of the exclusive page in case that hot-add
* device's bar is assigned into it.
*/
dummy_res =
kzalloc(sizeof(*dummy_res), GFP_KERNEL_ACCOUNT);
if (dummy_res == NULL)
goto no_mmap;
dummy_res->resource.name = "vfio sub-page reserved";
dummy_res->resource.start = res->end + 1;
dummy_res->resource.end = res->start + PAGE_SIZE - 1;
dummy_res->resource.flags = res->flags;
if (request_resource(res->parent,
&dummy_res->resource)) {
kfree(dummy_res);
goto no_mmap;
}
dummy_res->index = bar;
list_add(&dummy_res->res_next,
&vdev->dummy_resources_list);
vdev->bar_mmap_supported[bar] = true;
continue;
}
/*
* Here we don't handle the case when the BAR is not page
* aligned because we can't expect the BAR will be
* assigned into the same location in a page in guest
* when we passthrough the BAR. And it's hard to access
* this BAR in userspace because we have no way to get
* the BAR's location in a page.
*/
no_mmap:
vdev->bar_mmap_supported[bar] = false;
}
}
struct vfio_pci_group_info;
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set);
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
struct vfio_pci_group_info *groups);
/*
* INTx masking requires the ability to disable INTx signaling via PCI_COMMAND
* _and_ the ability detect when the device is asserting INTx via PCI_STATUS.
* If a device implements the former but not the latter we would typically
* expect broken_intx_masking be set and require an exclusive interrupt.
* However since we do have control of the device's ability to assert INTx,
* we can instead pretend that the device does not implement INTx, virtualizing
* the pin register to report zero and maintaining DisINTx set on the host.
*/
static bool vfio_pci_nointx(struct pci_dev *pdev)
{
switch (pdev->vendor) {
case PCI_VENDOR_ID_INTEL:
switch (pdev->device) {
/* All i40e (XL710/X710/XXV710) 10/20/25/40GbE NICs */
case 0x1572:
case 0x1574:
case 0x1580 ... 0x1581:
case 0x1583 ... 0x158b:
case 0x37d0 ... 0x37d2:
/* X550 */
case 0x1563:
return true;
default:
return false;
}
}
return false;
}
static void vfio_pci_probe_power_state(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
u16 pmcsr;
if (!pdev->pm_cap)
return;
pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
vdev->needs_pm_restore = !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
}
/*
* pci_set_power_state() wrapper handling devices which perform a soft reset on
* D3->D0 transition. Save state prior to D0/1/2->D3, stash it on the vdev,
* restore when returned to D0. Saved separately from pci_saved_state for use
* by PM capability emulation and separately from pci_dev internal saved state
* to avoid it being overwritten and consumed around other resets.
*/
int vfio_pci_set_power_state(struct vfio_pci_core_device *vdev, pci_power_t state)
{
struct pci_dev *pdev = vdev->pdev;
bool needs_restore = false, needs_save = false;
int ret;
/* Prevent changing power state for PFs with VFs enabled */
if (pci_num_vf(pdev) && state > PCI_D0)
return -EBUSY;
if (vdev->needs_pm_restore) {
if (pdev->current_state < PCI_D3hot && state >= PCI_D3hot) {
pci_save_state(pdev);
needs_save = true;
}
if (pdev->current_state >= PCI_D3hot && state <= PCI_D0)
needs_restore = true;
}
ret = pci_set_power_state(pdev, state);
if (!ret) {
/* D3 might be unsupported via quirk, skip unless in D3 */
if (needs_save && pdev->current_state >= PCI_D3hot) {
/*
* The current PCI state will be saved locally in
* 'pm_save' during the D3hot transition. When the
* device state is changed to D0 again with the current
* function, then pci_store_saved_state() will restore
* the state and will free the memory pointed by
* 'pm_save'. There are few cases where the PCI power
* state can be changed to D0 without the involvement
* of the driver. For these cases, free the earlier
* allocated memory first before overwriting 'pm_save'
* to prevent the memory leak.
*/
kfree(vdev->pm_save);
vdev->pm_save = pci_store_saved_state(pdev);
} else if (needs_restore) {
pci_load_and_free_saved_state(pdev, &vdev->pm_save);
pci_restore_state(pdev);
}
}
return ret;
}
static int vfio_pci_runtime_pm_entry(struct vfio_pci_core_device *vdev,
struct eventfd_ctx *efdctx)
{
/*
* The vdev power related flags are protected with 'memory_lock'
* semaphore.
*/
vfio_pci_zap_and_down_write_memory_lock(vdev);
if (vdev->pm_runtime_engaged) {
up_write(&vdev->memory_lock);
return -EINVAL;
}
vdev->pm_runtime_engaged = true;
vdev->pm_wake_eventfd_ctx = efdctx;
pm_runtime_put_noidle(&vdev->pdev->dev);
up_write(&vdev->memory_lock);
return 0;
}
static int vfio_pci_core_pm_entry(struct vfio_device *device, u32 flags,
void __user *arg, size_t argsz)
{
struct vfio_pci_core_device *vdev =
container_of(device, struct vfio_pci_core_device, vdev);
int ret;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
if (ret != 1)
return ret;
/*
* Inside vfio_pci_runtime_pm_entry(), only the runtime PM usage count
* will be decremented. The pm_runtime_put() will be invoked again
* while returning from the ioctl and then the device can go into
* runtime suspended state.
*/
return vfio_pci_runtime_pm_entry(vdev, NULL);
}
static int vfio_pci_core_pm_entry_with_wakeup(
struct vfio_device *device, u32 flags,
struct vfio_device_low_power_entry_with_wakeup __user *arg,
size_t argsz)
{
struct vfio_pci_core_device *vdev =
container_of(device, struct vfio_pci_core_device, vdev);
struct vfio_device_low_power_entry_with_wakeup entry;
struct eventfd_ctx *efdctx;
int ret;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
sizeof(entry));
if (ret != 1)
return ret;
if (copy_from_user(&entry, arg, sizeof(entry)))
return -EFAULT;
if (entry.wakeup_eventfd < 0)
return -EINVAL;
efdctx = eventfd_ctx_fdget(entry.wakeup_eventfd);
if (IS_ERR(efdctx))
return PTR_ERR(efdctx);
ret = vfio_pci_runtime_pm_entry(vdev, efdctx);
if (ret)
eventfd_ctx_put(efdctx);
return ret;
}
static void __vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
{
if (vdev->pm_runtime_engaged) {
vdev->pm_runtime_engaged = false;
pm_runtime_get_noresume(&vdev->pdev->dev);
if (vdev->pm_wake_eventfd_ctx) {
eventfd_ctx_put(vdev->pm_wake_eventfd_ctx);
vdev->pm_wake_eventfd_ctx = NULL;
}
}
}
static void vfio_pci_runtime_pm_exit(struct vfio_pci_core_device *vdev)
{
/*
* The vdev power related flags are protected with 'memory_lock'
* semaphore.
*/
down_write(&vdev->memory_lock);
__vfio_pci_runtime_pm_exit(vdev);
up_write(&vdev->memory_lock);
}
static int vfio_pci_core_pm_exit(struct vfio_device *device, u32 flags,
void __user *arg, size_t argsz)
{
struct vfio_pci_core_device *vdev =
container_of(device, struct vfio_pci_core_device, vdev);
int ret;
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET, 0);
if (ret != 1)
return ret;
/*
* The device is always in the active state here due to pm wrappers
* around ioctls. If the device had entered a low power state and
* pm_wake_eventfd_ctx is valid, vfio_pci_core_runtime_resume() has
* already signaled the eventfd and exited low power mode itself.
* pm_runtime_engaged protects the redundant call here.
*/
vfio_pci_runtime_pm_exit(vdev);
return 0;
}
#ifdef CONFIG_PM
static int vfio_pci_core_runtime_suspend(struct device *dev)
{
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
down_write(&vdev->memory_lock);
/*
* The user can move the device into D3hot state before invoking
* power management IOCTL. Move the device into D0 state here and then
* the pci-driver core runtime PM suspend function will move the device
* into the low power state. Also, for the devices which have
* NoSoftRst-, it will help in restoring the original state
* (saved locally in 'vdev->pm_save').
*/
vfio_pci_set_power_state(vdev, PCI_D0);
up_write(&vdev->memory_lock);
/*
* If INTx is enabled, then mask INTx before going into the runtime
* suspended state and unmask the same in the runtime resume.
* If INTx has already been masked by the user, then
* vfio_pci_intx_mask() will return false and in that case, INTx
* should not be unmasked in the runtime resume.
*/
vdev->pm_intx_masked = ((vdev->irq_type == VFIO_PCI_INTX_IRQ_INDEX) &&
vfio_pci_intx_mask(vdev));
return 0;
}
static int vfio_pci_core_runtime_resume(struct device *dev)
{
struct vfio_pci_core_device *vdev = dev_get_drvdata(dev);
/*
* Resume with a pm_wake_eventfd_ctx signals the eventfd and exit
* low power mode.
*/
down_write(&vdev->memory_lock);
if (vdev->pm_wake_eventfd_ctx) {
eventfd_signal(vdev->pm_wake_eventfd_ctx, 1);
__vfio_pci_runtime_pm_exit(vdev);
}
up_write(&vdev->memory_lock);
if (vdev->pm_intx_masked)
vfio_pci_intx_unmask(vdev);
return 0;
}
#endif /* CONFIG_PM */
/*
* The pci-driver core runtime PM routines always save the device state
* before going into suspended state. If the device is going into low power
* state with only with runtime PM ops, then no explicit handling is needed
* for the devices which have NoSoftRst-.
*/
static const struct dev_pm_ops vfio_pci_core_pm_ops = {
SET_RUNTIME_PM_OPS(vfio_pci_core_runtime_suspend,
vfio_pci_core_runtime_resume,
NULL)
};
int vfio_pci_core_enable(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
int ret;
u16 cmd;
u8 msix_pos;
if (!disable_idle_d3) {
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret < 0)
return ret;
}
/* Don't allow our initial saved state to include busmaster */
pci_clear_master(pdev);
ret = pci_enable_device(pdev);
if (ret)
goto out_power;
/* If reset fails because of the device lock, fail this path entirely */
ret = pci_try_reset_function(pdev);
if (ret == -EAGAIN)
goto out_disable_device;
vdev->reset_works = !ret;
pci_save_state(pdev);
vdev->pci_saved_state = pci_store_saved_state(pdev);
if (!vdev->pci_saved_state)
pci_dbg(pdev, "%s: Couldn't store saved state\n", __func__);
if (likely(!nointxmask)) {
if (vfio_pci_nointx(pdev)) {
pci_info(pdev, "Masking broken INTx support\n");
vdev->nointx = true;
pci_intx(pdev, 0);
} else
vdev->pci_2_3 = pci_intx_mask_supported(pdev);
}
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
if (vdev->pci_2_3 && (cmd & PCI_COMMAND_INTX_DISABLE)) {
cmd &= ~PCI_COMMAND_INTX_DISABLE;
pci_write_config_word(pdev, PCI_COMMAND, cmd);
}
ret = vfio_pci_zdev_open_device(vdev);
if (ret)
goto out_free_state;
ret = vfio_config_init(vdev);
if (ret)
goto out_free_zdev;
msix_pos = pdev->msix_cap;
if (msix_pos) {
u16 flags;
u32 table;
pci_read_config_word(pdev, msix_pos + PCI_MSIX_FLAGS, &flags);
pci_read_config_dword(pdev, msix_pos + PCI_MSIX_TABLE, &table);
vdev->msix_bar = table & PCI_MSIX_TABLE_BIR;
vdev->msix_offset = table & PCI_MSIX_TABLE_OFFSET;
vdev->msix_size = ((flags & PCI_MSIX_FLAGS_QSIZE) + 1) * 16;
2023-10-24 12:59:35 +02:00
vdev->has_dyn_msix = pci_msix_can_alloc_dyn(pdev);
} else {
2023-08-30 17:31:07 +02:00
vdev->msix_bar = 0xFF;
2023-10-24 12:59:35 +02:00
vdev->has_dyn_msix = false;
}
2023-08-30 17:31:07 +02:00
if (!vfio_vga_disabled() && vfio_pci_is_vga(pdev))
vdev->has_vga = true;
return 0;
out_free_zdev:
vfio_pci_zdev_close_device(vdev);
out_free_state:
kfree(vdev->pci_saved_state);
vdev->pci_saved_state = NULL;
out_disable_device:
pci_disable_device(pdev);
out_power:
if (!disable_idle_d3)
pm_runtime_put(&pdev->dev);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_enable);
void vfio_pci_core_disable(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_dummy_resource *dummy_res, *tmp;
struct vfio_pci_ioeventfd *ioeventfd, *ioeventfd_tmp;
int i, bar;
/* For needs_reset */
lockdep_assert_held(&vdev->vdev.dev_set->lock);
/*
* This function can be invoked while the power state is non-D0.
* This non-D0 power state can be with or without runtime PM.
* vfio_pci_runtime_pm_exit() will internally increment the usage
* count corresponding to pm_runtime_put() called during low power
* feature entry and then pm_runtime_resume() will wake up the device,
* if the device has already gone into the suspended state. Otherwise,
* the vfio_pci_set_power_state() will change the device power state
* to D0.
*/
vfio_pci_runtime_pm_exit(vdev);
pm_runtime_resume(&pdev->dev);
/*
* This function calls __pci_reset_function_locked() which internally
* can use pci_pm_reset() for the function reset. pci_pm_reset() will
* fail if the power state is non-D0. Also, for the devices which
* have NoSoftRst-, the reset function can cause the PCI config space
* reset without restoring the original state (saved locally in
* 'vdev->pm_save').
*/
vfio_pci_set_power_state(vdev, PCI_D0);
/* Stop the device from further DMA */
pci_clear_master(pdev);
vfio_pci_set_irqs_ioctl(vdev, VFIO_IRQ_SET_DATA_NONE |
VFIO_IRQ_SET_ACTION_TRIGGER,
vdev->irq_type, 0, 0, NULL);
/* Device closed, don't need mutex here */
list_for_each_entry_safe(ioeventfd, ioeventfd_tmp,
&vdev->ioeventfds_list, next) {
vfio_virqfd_disable(&ioeventfd->virqfd);
list_del(&ioeventfd->next);
kfree(ioeventfd);
}
vdev->ioeventfds_nr = 0;
vdev->virq_disabled = false;
for (i = 0; i < vdev->num_regions; i++)
vdev->region[i].ops->release(vdev, &vdev->region[i]);
vdev->num_regions = 0;
kfree(vdev->region);
vdev->region = NULL; /* don't krealloc a freed pointer */
vfio_config_free(vdev);
for (i = 0; i < PCI_STD_NUM_BARS; i++) {
bar = i + PCI_STD_RESOURCES;
if (!vdev->barmap[bar])
continue;
pci_iounmap(pdev, vdev->barmap[bar]);
pci_release_selected_regions(pdev, 1 << bar);
vdev->barmap[bar] = NULL;
}
list_for_each_entry_safe(dummy_res, tmp,
&vdev->dummy_resources_list, res_next) {
list_del(&dummy_res->res_next);
release_resource(&dummy_res->resource);
kfree(dummy_res);
}
vdev->needs_reset = true;
vfio_pci_zdev_close_device(vdev);
/*
* If we have saved state, restore it. If we can reset the device,
* even better. Resetting with current state seems better than
* nothing, but saving and restoring current state without reset
* is just busy work.
*/
if (pci_load_and_free_saved_state(pdev, &vdev->pci_saved_state)) {
pci_info(pdev, "%s: Couldn't reload saved state\n", __func__);
if (!vdev->reset_works)
goto out;
pci_save_state(pdev);
}
/*
* Disable INTx and MSI, presumably to avoid spurious interrupts
* during reset. Stolen from pci_reset_function()
*/
pci_write_config_word(pdev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
/*
* Try to get the locks ourselves to prevent a deadlock. The
* success of this is dependent on being able to lock the device,
* which is not always possible.
* We can not use the "try" reset interface here, which will
* overwrite the previously restored configuration information.
*/
if (vdev->reset_works && pci_dev_trylock(pdev)) {
if (!__pci_reset_function_locked(pdev))
vdev->needs_reset = false;
pci_dev_unlock(pdev);
}
pci_restore_state(pdev);
out:
pci_disable_device(pdev);
vfio_pci_dev_set_try_reset(vdev->vdev.dev_set);
/* Put the pm-runtime usage counter acquired during enable */
if (!disable_idle_d3)
pm_runtime_put(&pdev->dev);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_disable);
void vfio_pci_core_close_device(struct vfio_device *core_vdev)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
if (vdev->sriov_pf_core_dev) {
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
WARN_ON(!vdev->sriov_pf_core_dev->vf_token->users);
vdev->sriov_pf_core_dev->vf_token->users--;
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
}
#if IS_ENABLED(CONFIG_EEH)
eeh_dev_release(vdev->pdev);
#endif
vfio_pci_core_disable(vdev);
mutex_lock(&vdev->igate);
if (vdev->err_trigger) {
eventfd_ctx_put(vdev->err_trigger);
vdev->err_trigger = NULL;
}
if (vdev->req_trigger) {
eventfd_ctx_put(vdev->req_trigger);
vdev->req_trigger = NULL;
}
mutex_unlock(&vdev->igate);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_close_device);
void vfio_pci_core_finish_enable(struct vfio_pci_core_device *vdev)
{
vfio_pci_probe_mmaps(vdev);
#if IS_ENABLED(CONFIG_EEH)
eeh_dev_open(vdev->pdev);
#endif
if (vdev->sriov_pf_core_dev) {
mutex_lock(&vdev->sriov_pf_core_dev->vf_token->lock);
vdev->sriov_pf_core_dev->vf_token->users++;
mutex_unlock(&vdev->sriov_pf_core_dev->vf_token->lock);
}
}
EXPORT_SYMBOL_GPL(vfio_pci_core_finish_enable);
static int vfio_pci_get_irq_count(struct vfio_pci_core_device *vdev, int irq_type)
{
if (irq_type == VFIO_PCI_INTX_IRQ_INDEX) {
u8 pin;
if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX) ||
vdev->nointx || vdev->pdev->is_virtfn)
return 0;
pci_read_config_byte(vdev->pdev, PCI_INTERRUPT_PIN, &pin);
return pin ? 1 : 0;
} else if (irq_type == VFIO_PCI_MSI_IRQ_INDEX) {
u8 pos;
u16 flags;
pos = vdev->pdev->msi_cap;
if (pos) {
pci_read_config_word(vdev->pdev,
pos + PCI_MSI_FLAGS, &flags);
return 1 << ((flags & PCI_MSI_FLAGS_QMASK) >> 1);
}
} else if (irq_type == VFIO_PCI_MSIX_IRQ_INDEX) {
u8 pos;
u16 flags;
pos = vdev->pdev->msix_cap;
if (pos) {
pci_read_config_word(vdev->pdev,
pos + PCI_MSIX_FLAGS, &flags);
return (flags & PCI_MSIX_FLAGS_QSIZE) + 1;
}
} else if (irq_type == VFIO_PCI_ERR_IRQ_INDEX) {
if (pci_is_pcie(vdev->pdev))
return 1;
} else if (irq_type == VFIO_PCI_REQ_IRQ_INDEX) {
return 1;
}
return 0;
}
static int vfio_pci_count_devs(struct pci_dev *pdev, void *data)
{
(*(int *)data)++;
return 0;
}
struct vfio_pci_fill_info {
int max;
int cur;
struct vfio_pci_dependent_device *devices;
};
static int vfio_pci_fill_devs(struct pci_dev *pdev, void *data)
{
struct vfio_pci_fill_info *fill = data;
struct iommu_group *iommu_group;
if (fill->cur == fill->max)
return -EAGAIN; /* Something changed, try again */
iommu_group = iommu_group_get(&pdev->dev);
if (!iommu_group)
return -EPERM; /* Cannot reset non-isolated devices */
fill->devices[fill->cur].group_id = iommu_group_id(iommu_group);
fill->devices[fill->cur].segment = pci_domain_nr(pdev->bus);
fill->devices[fill->cur].bus = pdev->bus->number;
fill->devices[fill->cur].devfn = pdev->devfn;
fill->cur++;
iommu_group_put(iommu_group);
return 0;
}
struct vfio_pci_group_info {
int count;
struct file **files;
};
static bool vfio_pci_dev_below_slot(struct pci_dev *pdev, struct pci_slot *slot)
{
for (; pdev; pdev = pdev->bus->self)
if (pdev->bus == slot->bus)
return (pdev->slot == slot);
return false;
}
struct vfio_pci_walk_info {
int (*fn)(struct pci_dev *pdev, void *data);
void *data;
struct pci_dev *pdev;
bool slot;
int ret;
};
static int vfio_pci_walk_wrapper(struct pci_dev *pdev, void *data)
{
struct vfio_pci_walk_info *walk = data;
if (!walk->slot || vfio_pci_dev_below_slot(pdev, walk->pdev->slot))
walk->ret = walk->fn(pdev, walk->data);
return walk->ret;
}
static int vfio_pci_for_each_slot_or_bus(struct pci_dev *pdev,
int (*fn)(struct pci_dev *,
void *data), void *data,
bool slot)
{
struct vfio_pci_walk_info walk = {
.fn = fn, .data = data, .pdev = pdev, .slot = slot, .ret = 0,
};
pci_walk_bus(pdev->bus, vfio_pci_walk_wrapper, &walk);
return walk.ret;
}
static int msix_mmappable_cap(struct vfio_pci_core_device *vdev,
struct vfio_info_cap *caps)
{
struct vfio_info_cap_header header = {
.id = VFIO_REGION_INFO_CAP_MSIX_MAPPABLE,
.version = 1
};
return vfio_info_add_capability(caps, &header, sizeof(header));
}
int vfio_pci_core_register_dev_region(struct vfio_pci_core_device *vdev,
unsigned int type, unsigned int subtype,
const struct vfio_pci_regops *ops,
size_t size, u32 flags, void *data)
{
struct vfio_pci_region *region;
region = krealloc(vdev->region,
(vdev->num_regions + 1) * sizeof(*region),
GFP_KERNEL_ACCOUNT);
if (!region)
return -ENOMEM;
vdev->region = region;
vdev->region[vdev->num_regions].type = type;
vdev->region[vdev->num_regions].subtype = subtype;
vdev->region[vdev->num_regions].ops = ops;
vdev->region[vdev->num_regions].size = size;
vdev->region[vdev->num_regions].flags = flags;
vdev->region[vdev->num_regions].data = data;
vdev->num_regions++;
return 0;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_register_dev_region);
2023-10-24 12:59:35 +02:00
static int vfio_pci_info_atomic_cap(struct vfio_pci_core_device *vdev,
struct vfio_info_cap *caps)
{
struct vfio_device_info_cap_pci_atomic_comp cap = {
.header.id = VFIO_DEVICE_INFO_CAP_PCI_ATOMIC_COMP,
.header.version = 1
};
struct pci_dev *pdev = pci_physfn(vdev->pdev);
u32 devcap2;
pcie_capability_read_dword(pdev, PCI_EXP_DEVCAP2, &devcap2);
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP32) &&
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP32))
cap.flags |= VFIO_PCI_ATOMIC_COMP32;
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP64) &&
!pci_enable_atomic_ops_to_root(pdev, PCI_EXP_DEVCAP2_ATOMIC_COMP64))
cap.flags |= VFIO_PCI_ATOMIC_COMP64;
if ((devcap2 & PCI_EXP_DEVCAP2_ATOMIC_COMP128) &&
!pci_enable_atomic_ops_to_root(pdev,
PCI_EXP_DEVCAP2_ATOMIC_COMP128))
cap.flags |= VFIO_PCI_ATOMIC_COMP128;
if (!cap.flags)
return -ENODEV;
return vfio_info_add_capability(caps, &cap.header, sizeof(cap));
}
2023-08-30 17:31:07 +02:00
static int vfio_pci_ioctl_get_info(struct vfio_pci_core_device *vdev,
struct vfio_device_info __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_device_info, num_irqs);
struct vfio_device_info info;
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
unsigned long capsz;
int ret;
/* For backward compatibility, cannot require this */
capsz = offsetofend(struct vfio_iommu_type1_info, cap_offset);
if (copy_from_user(&info, arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
if (info.argsz >= capsz) {
minsz = capsz;
info.cap_offset = 0;
}
info.flags = VFIO_DEVICE_FLAGS_PCI;
if (vdev->reset_works)
info.flags |= VFIO_DEVICE_FLAGS_RESET;
info.num_regions = VFIO_PCI_NUM_REGIONS + vdev->num_regions;
info.num_irqs = VFIO_PCI_NUM_IRQS;
ret = vfio_pci_info_zdev_add_caps(vdev, &caps);
if (ret && ret != -ENODEV) {
pci_warn(vdev->pdev,
"Failed to setup zPCI info capabilities\n");
return ret;
}
2023-10-24 12:59:35 +02:00
ret = vfio_pci_info_atomic_cap(vdev, &caps);
if (ret && ret != -ENODEV) {
pci_warn(vdev->pdev,
"Failed to setup AtomicOps info capability\n");
return ret;
}
2023-08-30 17:31:07 +02:00
if (caps.size) {
info.flags |= VFIO_DEVICE_FLAGS_CAPS;
if (info.argsz < sizeof(info) + caps.size) {
info.argsz = sizeof(info) + caps.size;
} else {
vfio_info_cap_shift(&caps, sizeof(info));
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
kfree(caps.buf);
return -EFAULT;
}
info.cap_offset = sizeof(*arg);
}
kfree(caps.buf);
}
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
}
static int vfio_pci_ioctl_get_region_info(struct vfio_pci_core_device *vdev,
struct vfio_region_info __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_region_info, offset);
struct pci_dev *pdev = vdev->pdev;
struct vfio_region_info info;
struct vfio_info_cap caps = { .buf = NULL, .size = 0 };
int i, ret;
if (copy_from_user(&info, arg, minsz))
return -EFAULT;
if (info.argsz < minsz)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = pdev->cfg_size;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = pci_resource_len(pdev, info.index);
if (!info.size) {
info.flags = 0;
break;
}
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
if (vdev->bar_mmap_supported[info.index]) {
info.flags |= VFIO_REGION_INFO_FLAG_MMAP;
if (info.index == vdev->msix_bar) {
ret = msix_mmappable_cap(vdev, &caps);
if (ret)
return ret;
}
}
break;
case VFIO_PCI_ROM_REGION_INDEX: {
void __iomem *io;
size_t size;
u16 cmd;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.flags = 0;
/* Report the BAR size, not the ROM size */
info.size = pci_resource_len(pdev, info.index);
if (!info.size) {
/* Shadow ROMs appear as PCI option ROMs */
if (pdev->resource[PCI_ROM_RESOURCE].flags &
IORESOURCE_ROM_SHADOW)
info.size = 0x20000;
else
break;
}
/*
* Is it really there? Enable memory decode for implicit access
* in pci_map_rom().
*/
cmd = vfio_pci_memory_lock_and_enable(vdev);
io = pci_map_rom(pdev, &size);
if (io) {
info.flags = VFIO_REGION_INFO_FLAG_READ;
pci_unmap_rom(pdev, io);
} else {
info.size = 0;
}
vfio_pci_memory_unlock_and_restore(vdev, cmd);
break;
}
case VFIO_PCI_VGA_REGION_INDEX:
if (!vdev->has_vga)
return -EINVAL;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = 0xc0000;
info.flags = VFIO_REGION_INFO_FLAG_READ |
VFIO_REGION_INFO_FLAG_WRITE;
break;
default: {
struct vfio_region_info_cap_type cap_type = {
.header.id = VFIO_REGION_INFO_CAP_TYPE,
.header.version = 1
};
if (info.index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
return -EINVAL;
info.index = array_index_nospec(
info.index, VFIO_PCI_NUM_REGIONS + vdev->num_regions);
i = info.index - VFIO_PCI_NUM_REGIONS;
info.offset = VFIO_PCI_INDEX_TO_OFFSET(info.index);
info.size = vdev->region[i].size;
info.flags = vdev->region[i].flags;
cap_type.type = vdev->region[i].type;
cap_type.subtype = vdev->region[i].subtype;
ret = vfio_info_add_capability(&caps, &cap_type.header,
sizeof(cap_type));
if (ret)
return ret;
if (vdev->region[i].ops->add_capability) {
ret = vdev->region[i].ops->add_capability(
vdev, &vdev->region[i], &caps);
if (ret)
return ret;
}
}
}
if (caps.size) {
info.flags |= VFIO_REGION_INFO_FLAG_CAPS;
if (info.argsz < sizeof(info) + caps.size) {
info.argsz = sizeof(info) + caps.size;
info.cap_offset = 0;
} else {
vfio_info_cap_shift(&caps, sizeof(info));
if (copy_to_user(arg + 1, caps.buf, caps.size)) {
kfree(caps.buf);
return -EFAULT;
}
info.cap_offset = sizeof(*arg);
}
kfree(caps.buf);
}
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
}
static int vfio_pci_ioctl_get_irq_info(struct vfio_pci_core_device *vdev,
struct vfio_irq_info __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_irq_info, count);
struct vfio_irq_info info;
if (copy_from_user(&info, arg, minsz))
return -EFAULT;
if (info.argsz < minsz || info.index >= VFIO_PCI_NUM_IRQS)
return -EINVAL;
switch (info.index) {
case VFIO_PCI_INTX_IRQ_INDEX ... VFIO_PCI_MSIX_IRQ_INDEX:
case VFIO_PCI_REQ_IRQ_INDEX:
break;
case VFIO_PCI_ERR_IRQ_INDEX:
if (pci_is_pcie(vdev->pdev))
break;
fallthrough;
default:
return -EINVAL;
}
info.flags = VFIO_IRQ_INFO_EVENTFD;
info.count = vfio_pci_get_irq_count(vdev, info.index);
if (info.index == VFIO_PCI_INTX_IRQ_INDEX)
info.flags |=
(VFIO_IRQ_INFO_MASKABLE | VFIO_IRQ_INFO_AUTOMASKED);
2023-10-24 12:59:35 +02:00
else if (info.index != VFIO_PCI_MSIX_IRQ_INDEX || !vdev->has_dyn_msix)
2023-08-30 17:31:07 +02:00
info.flags |= VFIO_IRQ_INFO_NORESIZE;
return copy_to_user(arg, &info, minsz) ? -EFAULT : 0;
}
static int vfio_pci_ioctl_set_irqs(struct vfio_pci_core_device *vdev,
struct vfio_irq_set __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_irq_set, count);
struct vfio_irq_set hdr;
u8 *data = NULL;
int max, ret = 0;
size_t data_size = 0;
if (copy_from_user(&hdr, arg, minsz))
return -EFAULT;
max = vfio_pci_get_irq_count(vdev, hdr.index);
ret = vfio_set_irqs_validate_and_prepare(&hdr, max, VFIO_PCI_NUM_IRQS,
&data_size);
if (ret)
return ret;
if (data_size) {
data = memdup_user(&arg->data, data_size);
if (IS_ERR(data))
return PTR_ERR(data);
}
mutex_lock(&vdev->igate);
ret = vfio_pci_set_irqs_ioctl(vdev, hdr.flags, hdr.index, hdr.start,
hdr.count, data);
mutex_unlock(&vdev->igate);
kfree(data);
return ret;
}
static int vfio_pci_ioctl_reset(struct vfio_pci_core_device *vdev,
void __user *arg)
{
int ret;
if (!vdev->reset_works)
return -EINVAL;
vfio_pci_zap_and_down_write_memory_lock(vdev);
/*
* This function can be invoked while the power state is non-D0. If
* pci_try_reset_function() has been called while the power state is
* non-D0, then pci_try_reset_function() will internally set the power
* state to D0 without vfio driver involvement. For the devices which
* have NoSoftRst-, the reset function can cause the PCI config space
* reset without restoring the original state (saved locally in
* 'vdev->pm_save').
*/
vfio_pci_set_power_state(vdev, PCI_D0);
ret = pci_try_reset_function(vdev->pdev);
up_write(&vdev->memory_lock);
return ret;
}
static int vfio_pci_ioctl_get_pci_hot_reset_info(
struct vfio_pci_core_device *vdev,
struct vfio_pci_hot_reset_info __user *arg)
{
unsigned long minsz =
offsetofend(struct vfio_pci_hot_reset_info, count);
struct vfio_pci_hot_reset_info hdr;
struct vfio_pci_fill_info fill = { 0 };
struct vfio_pci_dependent_device *devices = NULL;
bool slot = false;
int ret = 0;
if (copy_from_user(&hdr, arg, minsz))
return -EFAULT;
if (hdr.argsz < minsz)
return -EINVAL;
hdr.flags = 0;
/* Can we do a slot or bus reset or neither? */
if (!pci_probe_reset_slot(vdev->pdev->slot))
slot = true;
else if (pci_probe_reset_bus(vdev->pdev->bus))
return -ENODEV;
/* How many devices are affected? */
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
&fill.max, slot);
if (ret)
return ret;
WARN_ON(!fill.max); /* Should always be at least one */
/*
* If there's enough space, fill it now, otherwise return -ENOSPC and
* the number of devices affected.
*/
if (hdr.argsz < sizeof(hdr) + (fill.max * sizeof(*devices))) {
ret = -ENOSPC;
hdr.count = fill.max;
goto reset_info_exit;
}
devices = kcalloc(fill.max, sizeof(*devices), GFP_KERNEL);
if (!devices)
return -ENOMEM;
fill.devices = devices;
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_fill_devs,
&fill, slot);
/*
* If a device was removed between counting and filling, we may come up
* short of fill.max. If a device was added, we'll have a return of
* -EAGAIN above.
*/
if (!ret)
hdr.count = fill.cur;
reset_info_exit:
if (copy_to_user(arg, &hdr, minsz))
ret = -EFAULT;
if (!ret) {
if (copy_to_user(&arg->devices, devices,
hdr.count * sizeof(*devices)))
ret = -EFAULT;
}
kfree(devices);
return ret;
}
static int vfio_pci_ioctl_pci_hot_reset(struct vfio_pci_core_device *vdev,
struct vfio_pci_hot_reset __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_pci_hot_reset, count);
struct vfio_pci_hot_reset hdr;
int32_t *group_fds;
struct file **files;
struct vfio_pci_group_info info;
bool slot = false;
int file_idx, count = 0, ret = 0;
if (copy_from_user(&hdr, arg, minsz))
return -EFAULT;
if (hdr.argsz < minsz || hdr.flags)
return -EINVAL;
/* Can we do a slot or bus reset or neither? */
if (!pci_probe_reset_slot(vdev->pdev->slot))
slot = true;
else if (pci_probe_reset_bus(vdev->pdev->bus))
return -ENODEV;
/*
* We can't let userspace give us an arbitrarily large buffer to copy,
* so verify how many we think there could be. Note groups can have
* multiple devices so one group per device is the max.
*/
ret = vfio_pci_for_each_slot_or_bus(vdev->pdev, vfio_pci_count_devs,
&count, slot);
if (ret)
return ret;
/* Somewhere between 1 and count is OK */
if (!hdr.count || hdr.count > count)
return -EINVAL;
group_fds = kcalloc(hdr.count, sizeof(*group_fds), GFP_KERNEL);
files = kcalloc(hdr.count, sizeof(*files), GFP_KERNEL);
if (!group_fds || !files) {
kfree(group_fds);
kfree(files);
return -ENOMEM;
}
if (copy_from_user(group_fds, arg->group_fds,
hdr.count * sizeof(*group_fds))) {
kfree(group_fds);
kfree(files);
return -EFAULT;
}
/*
* For each group_fd, get the group through the vfio external user
* interface and store the group and iommu ID. This ensures the group
* is held across the reset.
*/
for (file_idx = 0; file_idx < hdr.count; file_idx++) {
struct file *file = fget(group_fds[file_idx]);
if (!file) {
ret = -EBADF;
break;
}
/* Ensure the FD is a vfio group FD.*/
if (!vfio_file_is_group(file)) {
fput(file);
ret = -EINVAL;
break;
}
files[file_idx] = file;
}
kfree(group_fds);
/* release reference to groups on error */
if (ret)
goto hot_reset_release;
info.count = hdr.count;
info.files = files;
ret = vfio_pci_dev_set_hot_reset(vdev->vdev.dev_set, &info);
hot_reset_release:
for (file_idx--; file_idx >= 0; file_idx--)
fput(files[file_idx]);
kfree(files);
return ret;
}
static int vfio_pci_ioctl_ioeventfd(struct vfio_pci_core_device *vdev,
struct vfio_device_ioeventfd __user *arg)
{
unsigned long minsz = offsetofend(struct vfio_device_ioeventfd, fd);
struct vfio_device_ioeventfd ioeventfd;
int count;
if (copy_from_user(&ioeventfd, arg, minsz))
return -EFAULT;
if (ioeventfd.argsz < minsz)
return -EINVAL;
if (ioeventfd.flags & ~VFIO_DEVICE_IOEVENTFD_SIZE_MASK)
return -EINVAL;
count = ioeventfd.flags & VFIO_DEVICE_IOEVENTFD_SIZE_MASK;
if (hweight8(count) != 1 || ioeventfd.fd < -1)
return -EINVAL;
return vfio_pci_ioeventfd(vdev, ioeventfd.offset, ioeventfd.data, count,
ioeventfd.fd);
}
long vfio_pci_core_ioctl(struct vfio_device *core_vdev, unsigned int cmd,
unsigned long arg)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
void __user *uarg = (void __user *)arg;
switch (cmd) {
case VFIO_DEVICE_GET_INFO:
return vfio_pci_ioctl_get_info(vdev, uarg);
case VFIO_DEVICE_GET_IRQ_INFO:
return vfio_pci_ioctl_get_irq_info(vdev, uarg);
case VFIO_DEVICE_GET_PCI_HOT_RESET_INFO:
return vfio_pci_ioctl_get_pci_hot_reset_info(vdev, uarg);
case VFIO_DEVICE_GET_REGION_INFO:
return vfio_pci_ioctl_get_region_info(vdev, uarg);
case VFIO_DEVICE_IOEVENTFD:
return vfio_pci_ioctl_ioeventfd(vdev, uarg);
case VFIO_DEVICE_PCI_HOT_RESET:
return vfio_pci_ioctl_pci_hot_reset(vdev, uarg);
case VFIO_DEVICE_RESET:
return vfio_pci_ioctl_reset(vdev, uarg);
case VFIO_DEVICE_SET_IRQS:
return vfio_pci_ioctl_set_irqs(vdev, uarg);
default:
return -ENOTTY;
}
}
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl);
static int vfio_pci_core_feature_token(struct vfio_device *device, u32 flags,
uuid_t __user *arg, size_t argsz)
{
struct vfio_pci_core_device *vdev =
container_of(device, struct vfio_pci_core_device, vdev);
uuid_t uuid;
int ret;
if (!vdev->vf_token)
return -ENOTTY;
/*
* We do not support GET of the VF Token UUID as this could
* expose the token of the previous device user.
*/
ret = vfio_check_feature(flags, argsz, VFIO_DEVICE_FEATURE_SET,
sizeof(uuid));
if (ret != 1)
return ret;
if (copy_from_user(&uuid, arg, sizeof(uuid)))
return -EFAULT;
mutex_lock(&vdev->vf_token->lock);
uuid_copy(&vdev->vf_token->uuid, &uuid);
mutex_unlock(&vdev->vf_token->lock);
return 0;
}
int vfio_pci_core_ioctl_feature(struct vfio_device *device, u32 flags,
void __user *arg, size_t argsz)
{
switch (flags & VFIO_DEVICE_FEATURE_MASK) {
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY:
return vfio_pci_core_pm_entry(device, flags, arg, argsz);
case VFIO_DEVICE_FEATURE_LOW_POWER_ENTRY_WITH_WAKEUP:
return vfio_pci_core_pm_entry_with_wakeup(device, flags,
arg, argsz);
case VFIO_DEVICE_FEATURE_LOW_POWER_EXIT:
return vfio_pci_core_pm_exit(device, flags, arg, argsz);
case VFIO_DEVICE_FEATURE_PCI_VF_TOKEN:
return vfio_pci_core_feature_token(device, flags, arg, argsz);
default:
return -ENOTTY;
}
}
EXPORT_SYMBOL_GPL(vfio_pci_core_ioctl_feature);
static ssize_t vfio_pci_rw(struct vfio_pci_core_device *vdev, char __user *buf,
size_t count, loff_t *ppos, bool iswrite)
{
unsigned int index = VFIO_PCI_OFFSET_TO_INDEX(*ppos);
int ret;
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
return -EINVAL;
ret = pm_runtime_resume_and_get(&vdev->pdev->dev);
if (ret) {
pci_info_ratelimited(vdev->pdev, "runtime resume failed %d\n",
ret);
return -EIO;
}
switch (index) {
case VFIO_PCI_CONFIG_REGION_INDEX:
ret = vfio_pci_config_rw(vdev, buf, count, ppos, iswrite);
break;
case VFIO_PCI_ROM_REGION_INDEX:
if (iswrite)
ret = -EINVAL;
else
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, false);
break;
case VFIO_PCI_BAR0_REGION_INDEX ... VFIO_PCI_BAR5_REGION_INDEX:
ret = vfio_pci_bar_rw(vdev, buf, count, ppos, iswrite);
break;
case VFIO_PCI_VGA_REGION_INDEX:
ret = vfio_pci_vga_rw(vdev, buf, count, ppos, iswrite);
break;
default:
index -= VFIO_PCI_NUM_REGIONS;
ret = vdev->region[index].ops->rw(vdev, buf,
count, ppos, iswrite);
break;
}
pm_runtime_put(&vdev->pdev->dev);
return ret;
}
ssize_t vfio_pci_core_read(struct vfio_device *core_vdev, char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
if (!count)
return 0;
return vfio_pci_rw(vdev, buf, count, ppos, false);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_read);
ssize_t vfio_pci_core_write(struct vfio_device *core_vdev, const char __user *buf,
size_t count, loff_t *ppos)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
if (!count)
return 0;
return vfio_pci_rw(vdev, (char __user *)buf, count, ppos, true);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_write);
/* Return 1 on zap and vma_lock acquired, 0 on contention (only with @try) */
static int vfio_pci_zap_and_vma_lock(struct vfio_pci_core_device *vdev, bool try)
{
struct vfio_pci_mmap_vma *mmap_vma, *tmp;
/*
* Lock ordering:
* vma_lock is nested under mmap_lock for vm_ops callback paths.
* The memory_lock semaphore is used by both code paths calling
* into this function to zap vmas and the vm_ops.fault callback
* to protect the memory enable state of the device.
*
* When zapping vmas we need to maintain the mmap_lock => vma_lock
* ordering, which requires using vma_lock to walk vma_list to
* acquire an mm, then dropping vma_lock to get the mmap_lock and
* reacquiring vma_lock. This logic is derived from similar
* requirements in uverbs_user_mmap_disassociate().
*
* mmap_lock must always be the top-level lock when it is taken.
* Therefore we can only hold the memory_lock write lock when
* vma_list is empty, as we'd need to take mmap_lock to clear
* entries. vma_list can only be guaranteed empty when holding
* vma_lock, thus memory_lock is nested under vma_lock.
*
* This enables the vm_ops.fault callback to acquire vma_lock,
* followed by memory_lock read lock, while already holding
* mmap_lock without risk of deadlock.
*/
while (1) {
struct mm_struct *mm = NULL;
if (try) {
if (!mutex_trylock(&vdev->vma_lock))
return 0;
} else {
mutex_lock(&vdev->vma_lock);
}
while (!list_empty(&vdev->vma_list)) {
mmap_vma = list_first_entry(&vdev->vma_list,
struct vfio_pci_mmap_vma,
vma_next);
mm = mmap_vma->vma->vm_mm;
if (mmget_not_zero(mm))
break;
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
mm = NULL;
}
if (!mm)
return 1;
mutex_unlock(&vdev->vma_lock);
if (try) {
if (!mmap_read_trylock(mm)) {
mmput(mm);
return 0;
}
} else {
mmap_read_lock(mm);
}
if (try) {
if (!mutex_trylock(&vdev->vma_lock)) {
mmap_read_unlock(mm);
mmput(mm);
return 0;
}
} else {
mutex_lock(&vdev->vma_lock);
}
list_for_each_entry_safe(mmap_vma, tmp,
&vdev->vma_list, vma_next) {
struct vm_area_struct *vma = mmap_vma->vma;
if (vma->vm_mm != mm)
continue;
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
zap_vma_ptes(vma, vma->vm_start,
vma->vm_end - vma->vm_start);
}
mutex_unlock(&vdev->vma_lock);
mmap_read_unlock(mm);
mmput(mm);
}
}
void vfio_pci_zap_and_down_write_memory_lock(struct vfio_pci_core_device *vdev)
{
vfio_pci_zap_and_vma_lock(vdev, false);
down_write(&vdev->memory_lock);
mutex_unlock(&vdev->vma_lock);
}
u16 vfio_pci_memory_lock_and_enable(struct vfio_pci_core_device *vdev)
{
u16 cmd;
down_write(&vdev->memory_lock);
pci_read_config_word(vdev->pdev, PCI_COMMAND, &cmd);
if (!(cmd & PCI_COMMAND_MEMORY))
pci_write_config_word(vdev->pdev, PCI_COMMAND,
cmd | PCI_COMMAND_MEMORY);
return cmd;
}
void vfio_pci_memory_unlock_and_restore(struct vfio_pci_core_device *vdev, u16 cmd)
{
pci_write_config_word(vdev->pdev, PCI_COMMAND, cmd);
up_write(&vdev->memory_lock);
}
/* Caller holds vma_lock */
static int __vfio_pci_add_vma(struct vfio_pci_core_device *vdev,
struct vm_area_struct *vma)
{
struct vfio_pci_mmap_vma *mmap_vma;
mmap_vma = kmalloc(sizeof(*mmap_vma), GFP_KERNEL_ACCOUNT);
if (!mmap_vma)
return -ENOMEM;
mmap_vma->vma = vma;
list_add(&mmap_vma->vma_next, &vdev->vma_list);
return 0;
}
/*
* Zap mmaps on open so that we can fault them in on access and therefore
* our vma_list only tracks mappings accessed since last zap.
*/
static void vfio_pci_mmap_open(struct vm_area_struct *vma)
{
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
}
static void vfio_pci_mmap_close(struct vm_area_struct *vma)
{
struct vfio_pci_core_device *vdev = vma->vm_private_data;
struct vfio_pci_mmap_vma *mmap_vma;
mutex_lock(&vdev->vma_lock);
list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
if (mmap_vma->vma == vma) {
list_del(&mmap_vma->vma_next);
kfree(mmap_vma);
break;
}
}
mutex_unlock(&vdev->vma_lock);
}
static vm_fault_t vfio_pci_mmap_fault(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct vfio_pci_core_device *vdev = vma->vm_private_data;
struct vfio_pci_mmap_vma *mmap_vma;
vm_fault_t ret = VM_FAULT_NOPAGE;
mutex_lock(&vdev->vma_lock);
down_read(&vdev->memory_lock);
/*
* Memory region cannot be accessed if the low power feature is engaged
* or memory access is disabled.
*/
if (vdev->pm_runtime_engaged || !__vfio_pci_memory_enabled(vdev)) {
ret = VM_FAULT_SIGBUS;
goto up_out;
}
/*
* We populate the whole vma on fault, so we need to test whether
* the vma has already been mapped, such as for concurrent faults
* to the same vma. io_remap_pfn_range() will trigger a BUG_ON if
* we ask it to fill the same range again.
*/
list_for_each_entry(mmap_vma, &vdev->vma_list, vma_next) {
if (mmap_vma->vma == vma)
goto up_out;
}
if (io_remap_pfn_range(vma, vma->vm_start, vma->vm_pgoff,
vma->vm_end - vma->vm_start,
vma->vm_page_prot)) {
ret = VM_FAULT_SIGBUS;
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
goto up_out;
}
if (__vfio_pci_add_vma(vdev, vma)) {
ret = VM_FAULT_OOM;
zap_vma_ptes(vma, vma->vm_start, vma->vm_end - vma->vm_start);
}
up_out:
up_read(&vdev->memory_lock);
mutex_unlock(&vdev->vma_lock);
return ret;
}
static const struct vm_operations_struct vfio_pci_mmap_ops = {
.open = vfio_pci_mmap_open,
.close = vfio_pci_mmap_close,
.fault = vfio_pci_mmap_fault,
};
int vfio_pci_core_mmap(struct vfio_device *core_vdev, struct vm_area_struct *vma)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
struct pci_dev *pdev = vdev->pdev;
unsigned int index;
u64 phys_len, req_len, pgoff, req_start;
int ret;
index = vma->vm_pgoff >> (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT);
if (index >= VFIO_PCI_NUM_REGIONS + vdev->num_regions)
return -EINVAL;
if (vma->vm_end < vma->vm_start)
return -EINVAL;
if ((vma->vm_flags & VM_SHARED) == 0)
return -EINVAL;
if (index >= VFIO_PCI_NUM_REGIONS) {
int regnum = index - VFIO_PCI_NUM_REGIONS;
struct vfio_pci_region *region = vdev->region + regnum;
if (region->ops && region->ops->mmap &&
(region->flags & VFIO_REGION_INFO_FLAG_MMAP))
return region->ops->mmap(vdev, region, vma);
return -EINVAL;
}
if (index >= VFIO_PCI_ROM_REGION_INDEX)
return -EINVAL;
if (!vdev->bar_mmap_supported[index])
return -EINVAL;
phys_len = PAGE_ALIGN(pci_resource_len(pdev, index));
req_len = vma->vm_end - vma->vm_start;
pgoff = vma->vm_pgoff &
((1U << (VFIO_PCI_OFFSET_SHIFT - PAGE_SHIFT)) - 1);
req_start = pgoff << PAGE_SHIFT;
if (req_start + req_len > phys_len)
return -EINVAL;
/*
* Even though we don't make use of the barmap for the mmap,
* we need to request the region and the barmap tracks that.
*/
if (!vdev->barmap[index]) {
ret = pci_request_selected_regions(pdev,
1 << index, "vfio-pci");
if (ret)
return ret;
vdev->barmap[index] = pci_iomap(pdev, index, 0);
if (!vdev->barmap[index]) {
pci_release_selected_regions(pdev, 1 << index);
return -ENOMEM;
}
}
vma->vm_private_data = vdev;
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
vma->vm_pgoff = (pci_resource_start(pdev, index) >> PAGE_SHIFT) + pgoff;
/*
* See remap_pfn_range(), called from vfio_pci_fault() but we can't
* change vm_flags within the fault handler. Set them now.
*/
vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
vma->vm_ops = &vfio_pci_mmap_ops;
return 0;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_mmap);
void vfio_pci_core_request(struct vfio_device *core_vdev, unsigned int count)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
struct pci_dev *pdev = vdev->pdev;
mutex_lock(&vdev->igate);
if (vdev->req_trigger) {
if (!(count % 10))
pci_notice_ratelimited(pdev,
"Relaying device request to user (#%u)\n",
count);
eventfd_signal(vdev->req_trigger, 1);
} else if (count == 0) {
pci_warn(pdev,
"No device request channel registered, blocked until released by user\n");
}
mutex_unlock(&vdev->igate);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_request);
static int vfio_pci_validate_vf_token(struct vfio_pci_core_device *vdev,
bool vf_token, uuid_t *uuid)
{
/*
* There's always some degree of trust or collaboration between SR-IOV
* PF and VFs, even if just that the PF hosts the SR-IOV capability and
* can disrupt VFs with a reset, but often the PF has more explicit
* access to deny service to the VF or access data passed through the
* VF. We therefore require an opt-in via a shared VF token (UUID) to
* represent this trust. This both prevents that a VF driver might
* assume the PF driver is a trusted, in-kernel driver, and also that
* a PF driver might be replaced with a rogue driver, unknown to in-use
* VF drivers.
*
* Therefore when presented with a VF, if the PF is a vfio device and
* it is bound to the vfio-pci driver, the user needs to provide a VF
* token to access the device, in the form of appending a vf_token to
* the device name, for example:
*
* "0000:04:10.0 vf_token=bd8d9d2b-5a5f-4f5a-a211-f591514ba1f3"
*
* When presented with a PF which has VFs in use, the user must also
* provide the current VF token to prove collaboration with existing
* VF users. If VFs are not in use, the VF token provided for the PF
* device will act to set the VF token.
*
* If the VF token is provided but unused, an error is generated.
*/
if (vdev->pdev->is_virtfn) {
struct vfio_pci_core_device *pf_vdev = vdev->sriov_pf_core_dev;
bool match;
if (!pf_vdev) {
if (!vf_token)
return 0; /* PF is not vfio-pci, no VF token */
pci_info_ratelimited(vdev->pdev,
"VF token incorrectly provided, PF not bound to vfio-pci\n");
return -EINVAL;
}
if (!vf_token) {
pci_info_ratelimited(vdev->pdev,
"VF token required to access device\n");
return -EACCES;
}
mutex_lock(&pf_vdev->vf_token->lock);
match = uuid_equal(uuid, &pf_vdev->vf_token->uuid);
mutex_unlock(&pf_vdev->vf_token->lock);
if (!match) {
pci_info_ratelimited(vdev->pdev,
"Incorrect VF token provided for device\n");
return -EACCES;
}
} else if (vdev->vf_token) {
mutex_lock(&vdev->vf_token->lock);
if (vdev->vf_token->users) {
if (!vf_token) {
mutex_unlock(&vdev->vf_token->lock);
pci_info_ratelimited(vdev->pdev,
"VF token required to access device\n");
return -EACCES;
}
if (!uuid_equal(uuid, &vdev->vf_token->uuid)) {
mutex_unlock(&vdev->vf_token->lock);
pci_info_ratelimited(vdev->pdev,
"Incorrect VF token provided for device\n");
return -EACCES;
}
} else if (vf_token) {
uuid_copy(&vdev->vf_token->uuid, uuid);
}
mutex_unlock(&vdev->vf_token->lock);
} else if (vf_token) {
pci_info_ratelimited(vdev->pdev,
"VF token incorrectly provided, not a PF or VF\n");
return -EINVAL;
}
return 0;
}
#define VF_TOKEN_ARG "vf_token="
int vfio_pci_core_match(struct vfio_device *core_vdev, char *buf)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
bool vf_token = false;
uuid_t uuid;
int ret;
if (strncmp(pci_name(vdev->pdev), buf, strlen(pci_name(vdev->pdev))))
return 0; /* No match */
if (strlen(buf) > strlen(pci_name(vdev->pdev))) {
buf += strlen(pci_name(vdev->pdev));
if (*buf != ' ')
return 0; /* No match: non-whitespace after name */
while (*buf) {
if (*buf == ' ') {
buf++;
continue;
}
if (!vf_token && !strncmp(buf, VF_TOKEN_ARG,
strlen(VF_TOKEN_ARG))) {
buf += strlen(VF_TOKEN_ARG);
if (strlen(buf) < UUID_STRING_LEN)
return -EINVAL;
ret = uuid_parse(buf, &uuid);
if (ret)
return ret;
vf_token = true;
buf += UUID_STRING_LEN;
} else {
/* Unknown/duplicate option */
return -EINVAL;
}
}
}
ret = vfio_pci_validate_vf_token(vdev, vf_token, &uuid);
if (ret)
return ret;
return 1; /* Match */
}
EXPORT_SYMBOL_GPL(vfio_pci_core_match);
static int vfio_pci_bus_notifier(struct notifier_block *nb,
unsigned long action, void *data)
{
struct vfio_pci_core_device *vdev = container_of(nb,
struct vfio_pci_core_device, nb);
struct device *dev = data;
struct pci_dev *pdev = to_pci_dev(dev);
struct pci_dev *physfn = pci_physfn(pdev);
if (action == BUS_NOTIFY_ADD_DEVICE &&
pdev->is_virtfn && physfn == vdev->pdev) {
pci_info(vdev->pdev, "Captured SR-IOV VF %s driver_override\n",
pci_name(pdev));
pdev->driver_override = kasprintf(GFP_KERNEL, "%s",
vdev->vdev.ops->name);
} else if (action == BUS_NOTIFY_BOUND_DRIVER &&
pdev->is_virtfn && physfn == vdev->pdev) {
struct pci_driver *drv = pci_dev_driver(pdev);
if (drv && drv != pci_dev_driver(vdev->pdev))
pci_warn(vdev->pdev,
"VF %s bound to driver %s while PF bound to driver %s\n",
pci_name(pdev), drv->name,
pci_dev_driver(vdev->pdev)->name);
}
return 0;
}
static int vfio_pci_vf_init(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct vfio_pci_core_device *cur;
struct pci_dev *physfn;
int ret;
if (pdev->is_virtfn) {
/*
* If this VF was created by our vfio_pci_core_sriov_configure()
* then we can find the PF vfio_pci_core_device now, and due to
* the locking in pci_disable_sriov() it cannot change until
* this VF device driver is removed.
*/
physfn = pci_physfn(vdev->pdev);
mutex_lock(&vfio_pci_sriov_pfs_mutex);
list_for_each_entry(cur, &vfio_pci_sriov_pfs, sriov_pfs_item) {
if (cur->pdev == physfn) {
vdev->sriov_pf_core_dev = cur;
break;
}
}
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
return 0;
}
/* Not a SRIOV PF */
if (!pdev->is_physfn)
return 0;
vdev->vf_token = kzalloc(sizeof(*vdev->vf_token), GFP_KERNEL);
if (!vdev->vf_token)
return -ENOMEM;
mutex_init(&vdev->vf_token->lock);
uuid_gen(&vdev->vf_token->uuid);
vdev->nb.notifier_call = vfio_pci_bus_notifier;
ret = bus_register_notifier(&pci_bus_type, &vdev->nb);
if (ret) {
kfree(vdev->vf_token);
return ret;
}
return 0;
}
static void vfio_pci_vf_uninit(struct vfio_pci_core_device *vdev)
{
if (!vdev->vf_token)
return;
bus_unregister_notifier(&pci_bus_type, &vdev->nb);
WARN_ON(vdev->vf_token->users);
mutex_destroy(&vdev->vf_token->lock);
kfree(vdev->vf_token);
}
static int vfio_pci_vga_init(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
int ret;
if (!vfio_pci_is_vga(pdev))
return 0;
ret = aperture_remove_conflicting_pci_devices(pdev, vdev->vdev.ops->name);
if (ret)
return ret;
ret = vga_client_register(pdev, vfio_pci_set_decode);
if (ret)
return ret;
vga_set_legacy_decoding(pdev, vfio_pci_set_decode(pdev, false));
return 0;
}
static void vfio_pci_vga_uninit(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
if (!vfio_pci_is_vga(pdev))
return;
vga_client_unregister(pdev);
vga_set_legacy_decoding(pdev, VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM |
VGA_RSRC_LEGACY_IO |
VGA_RSRC_LEGACY_MEM);
}
int vfio_pci_core_init_dev(struct vfio_device *core_vdev)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
vdev->pdev = to_pci_dev(core_vdev->dev);
vdev->irq_type = VFIO_PCI_NUM_IRQS;
mutex_init(&vdev->igate);
spin_lock_init(&vdev->irqlock);
mutex_init(&vdev->ioeventfds_lock);
INIT_LIST_HEAD(&vdev->dummy_resources_list);
INIT_LIST_HEAD(&vdev->ioeventfds_list);
mutex_init(&vdev->vma_lock);
INIT_LIST_HEAD(&vdev->vma_list);
INIT_LIST_HEAD(&vdev->sriov_pfs_item);
init_rwsem(&vdev->memory_lock);
2023-10-24 12:59:35 +02:00
xa_init(&vdev->ctx);
2023-08-30 17:31:07 +02:00
return 0;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_init_dev);
void vfio_pci_core_release_dev(struct vfio_device *core_vdev)
{
struct vfio_pci_core_device *vdev =
container_of(core_vdev, struct vfio_pci_core_device, vdev);
mutex_destroy(&vdev->igate);
mutex_destroy(&vdev->ioeventfds_lock);
mutex_destroy(&vdev->vma_lock);
kfree(vdev->region);
kfree(vdev->pm_save);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_release_dev);
int vfio_pci_core_register_device(struct vfio_pci_core_device *vdev)
{
struct pci_dev *pdev = vdev->pdev;
struct device *dev = &pdev->dev;
int ret;
/* Drivers must set the vfio_pci_core_device to their drvdata */
if (WARN_ON(vdev != dev_get_drvdata(dev)))
return -EINVAL;
if (pdev->hdr_type != PCI_HEADER_TYPE_NORMAL)
return -EINVAL;
if (vdev->vdev.mig_ops) {
if (!(vdev->vdev.mig_ops->migration_get_state &&
vdev->vdev.mig_ops->migration_set_state &&
vdev->vdev.mig_ops->migration_get_data_size) ||
!(vdev->vdev.migration_flags & VFIO_MIGRATION_STOP_COPY))
return -EINVAL;
}
if (vdev->vdev.log_ops && !(vdev->vdev.log_ops->log_start &&
vdev->vdev.log_ops->log_stop &&
vdev->vdev.log_ops->log_read_and_clear))
return -EINVAL;
/*
* Prevent binding to PFs with VFs enabled, the VFs might be in use
* by the host or other users. We cannot capture the VFs if they
* already exist, nor can we track VF users. Disabling SR-IOV here
* would initiate removing the VFs, which would unbind the driver,
* which is prone to blocking if that VF is also in use by vfio-pci.
* Just reject these PFs and let the user sort it out.
*/
if (pci_num_vf(pdev)) {
pci_warn(pdev, "Cannot bind to PF with SR-IOV enabled\n");
return -EBUSY;
}
if (pci_is_root_bus(pdev->bus)) {
ret = vfio_assign_device_set(&vdev->vdev, vdev);
} else if (!pci_probe_reset_slot(pdev->slot)) {
ret = vfio_assign_device_set(&vdev->vdev, pdev->slot);
} else {
/*
* If there is no slot reset support for this device, the whole
* bus needs to be grouped together to support bus-wide resets.
*/
ret = vfio_assign_device_set(&vdev->vdev, pdev->bus);
}
if (ret)
return ret;
ret = vfio_pci_vf_init(vdev);
if (ret)
return ret;
ret = vfio_pci_vga_init(vdev);
if (ret)
goto out_vf;
vfio_pci_probe_power_state(vdev);
/*
* pci-core sets the device power state to an unknown value at
* bootup and after being removed from a driver. The only
* transition it allows from this unknown state is to D0, which
* typically happens when a driver calls pci_enable_device().
* We're not ready to enable the device yet, but we do want to
* be able to get to D3. Therefore first do a D0 transition
* before enabling runtime PM.
*/
vfio_pci_set_power_state(vdev, PCI_D0);
dev->driver->pm = &vfio_pci_core_pm_ops;
pm_runtime_allow(dev);
if (!disable_idle_d3)
pm_runtime_put(dev);
ret = vfio_register_group_dev(&vdev->vdev);
if (ret)
goto out_power;
return 0;
out_power:
if (!disable_idle_d3)
pm_runtime_get_noresume(dev);
pm_runtime_forbid(dev);
out_vf:
vfio_pci_vf_uninit(vdev);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_register_device);
void vfio_pci_core_unregister_device(struct vfio_pci_core_device *vdev)
{
vfio_pci_core_sriov_configure(vdev, 0);
vfio_unregister_group_dev(&vdev->vdev);
vfio_pci_vf_uninit(vdev);
vfio_pci_vga_uninit(vdev);
if (!disable_idle_d3)
pm_runtime_get_noresume(&vdev->pdev->dev);
pm_runtime_forbid(&vdev->pdev->dev);
}
EXPORT_SYMBOL_GPL(vfio_pci_core_unregister_device);
pci_ers_result_t vfio_pci_core_aer_err_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct vfio_pci_core_device *vdev = dev_get_drvdata(&pdev->dev);
mutex_lock(&vdev->igate);
if (vdev->err_trigger)
eventfd_signal(vdev->err_trigger, 1);
mutex_unlock(&vdev->igate);
return PCI_ERS_RESULT_CAN_RECOVER;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_aer_err_detected);
int vfio_pci_core_sriov_configure(struct vfio_pci_core_device *vdev,
int nr_virtfn)
{
struct pci_dev *pdev = vdev->pdev;
int ret = 0;
device_lock_assert(&pdev->dev);
if (nr_virtfn) {
mutex_lock(&vfio_pci_sriov_pfs_mutex);
/*
* The thread that adds the vdev to the list is the only thread
* that gets to call pci_enable_sriov() and we will only allow
* it to be called once without going through
* pci_disable_sriov()
*/
if (!list_empty(&vdev->sriov_pfs_item)) {
ret = -EINVAL;
goto out_unlock;
}
list_add_tail(&vdev->sriov_pfs_item, &vfio_pci_sriov_pfs);
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
/*
* The PF power state should always be higher than the VF power
* state. The PF can be in low power state either with runtime
* power management (when there is no user) or PCI_PM_CTRL
* register write by the user. If PF is in the low power state,
* then change the power state to D0 first before enabling
* SR-IOV. Also, this function can be called at any time, and
* userspace PCI_PM_CTRL write can race against this code path,
* so protect the same with 'memory_lock'.
*/
ret = pm_runtime_resume_and_get(&pdev->dev);
if (ret)
goto out_del;
down_write(&vdev->memory_lock);
vfio_pci_set_power_state(vdev, PCI_D0);
ret = pci_enable_sriov(pdev, nr_virtfn);
up_write(&vdev->memory_lock);
if (ret) {
pm_runtime_put(&pdev->dev);
goto out_del;
}
return nr_virtfn;
}
if (pci_num_vf(pdev)) {
pci_disable_sriov(pdev);
pm_runtime_put(&pdev->dev);
}
out_del:
mutex_lock(&vfio_pci_sriov_pfs_mutex);
list_del_init(&vdev->sriov_pfs_item);
out_unlock:
mutex_unlock(&vfio_pci_sriov_pfs_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_sriov_configure);
const struct pci_error_handlers vfio_pci_core_err_handlers = {
.error_detected = vfio_pci_core_aer_err_detected,
};
EXPORT_SYMBOL_GPL(vfio_pci_core_err_handlers);
static bool vfio_dev_in_groups(struct vfio_pci_core_device *vdev,
struct vfio_pci_group_info *groups)
{
unsigned int i;
for (i = 0; i < groups->count; i++)
if (vfio_file_has_dev(groups->files[i], &vdev->vdev))
return true;
return false;
}
static int vfio_pci_is_device_in_set(struct pci_dev *pdev, void *data)
{
struct vfio_device_set *dev_set = data;
struct vfio_device *cur;
list_for_each_entry(cur, &dev_set->device_list, dev_set_list)
if (cur->dev == &pdev->dev)
return 0;
return -EBUSY;
}
/*
* vfio-core considers a group to be viable and will create a vfio_device even
* if some devices are bound to drivers like pci-stub or pcieport. Here we
* require all PCI devices to be inside our dev_set since that ensures they stay
* put and that every driver controlling the device can co-ordinate with the
* device reset.
*
* Returns the pci_dev to pass to pci_reset_bus() if every PCI device to be
* reset is inside the dev_set, and pci_reset_bus() can succeed. NULL otherwise.
*/
static struct pci_dev *
vfio_pci_dev_set_resettable(struct vfio_device_set *dev_set)
{
struct pci_dev *pdev;
lockdep_assert_held(&dev_set->lock);
/*
* By definition all PCI devices in the dev_set share the same PCI
* reset, so any pci_dev will have the same outcomes for
* pci_probe_reset_*() and pci_reset_bus().
*/
pdev = list_first_entry(&dev_set->device_list,
struct vfio_pci_core_device,
vdev.dev_set_list)->pdev;
/* pci_reset_bus() is supported */
if (pci_probe_reset_slot(pdev->slot) && pci_probe_reset_bus(pdev->bus))
return NULL;
if (vfio_pci_for_each_slot_or_bus(pdev, vfio_pci_is_device_in_set,
dev_set,
!pci_probe_reset_slot(pdev->slot)))
return NULL;
return pdev;
}
static int vfio_pci_dev_set_pm_runtime_get(struct vfio_device_set *dev_set)
{
struct vfio_pci_core_device *cur;
int ret;
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
ret = pm_runtime_resume_and_get(&cur->pdev->dev);
if (ret)
goto unwind;
}
return 0;
unwind:
list_for_each_entry_continue_reverse(cur, &dev_set->device_list,
vdev.dev_set_list)
pm_runtime_put(&cur->pdev->dev);
return ret;
}
/*
* We need to get memory_lock for each device, but devices can share mmap_lock,
* therefore we need to zap and hold the vma_lock for each device, and only then
* get each memory_lock.
*/
static int vfio_pci_dev_set_hot_reset(struct vfio_device_set *dev_set,
struct vfio_pci_group_info *groups)
{
struct vfio_pci_core_device *cur_mem;
struct vfio_pci_core_device *cur_vma;
struct vfio_pci_core_device *cur;
struct pci_dev *pdev;
bool is_mem = true;
int ret;
mutex_lock(&dev_set->lock);
cur_mem = list_first_entry(&dev_set->device_list,
struct vfio_pci_core_device,
vdev.dev_set_list);
pdev = vfio_pci_dev_set_resettable(dev_set);
if (!pdev) {
ret = -EINVAL;
goto err_unlock;
}
/*
* Some of the devices in the dev_set can be in the runtime suspended
* state. Increment the usage count for all the devices in the dev_set
* before reset and decrement the same after reset.
*/
ret = vfio_pci_dev_set_pm_runtime_get(dev_set);
if (ret)
goto err_unlock;
list_for_each_entry(cur_vma, &dev_set->device_list, vdev.dev_set_list) {
/*
* Test whether all the affected devices are contained by the
* set of groups provided by the user.
*/
if (!vfio_dev_in_groups(cur_vma, groups)) {
ret = -EINVAL;
goto err_undo;
}
/*
* Locking multiple devices is prone to deadlock, runaway and
* unwind if we hit contention.
*/
if (!vfio_pci_zap_and_vma_lock(cur_vma, true)) {
ret = -EBUSY;
goto err_undo;
}
}
cur_vma = NULL;
list_for_each_entry(cur_mem, &dev_set->device_list, vdev.dev_set_list) {
if (!down_write_trylock(&cur_mem->memory_lock)) {
ret = -EBUSY;
goto err_undo;
}
mutex_unlock(&cur_mem->vma_lock);
}
cur_mem = NULL;
/*
* The pci_reset_bus() will reset all the devices in the bus.
* The power state can be non-D0 for some of the devices in the bus.
* For these devices, the pci_reset_bus() will internally set
* the power state to D0 without vfio driver involvement.
* For the devices which have NoSoftRst-, the reset function can
* cause the PCI config space reset without restoring the original
* state (saved locally in 'vdev->pm_save').
*/
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
vfio_pci_set_power_state(cur, PCI_D0);
ret = pci_reset_bus(pdev);
err_undo:
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
if (cur == cur_mem)
is_mem = false;
if (cur == cur_vma)
break;
if (is_mem)
up_write(&cur->memory_lock);
else
mutex_unlock(&cur->vma_lock);
}
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
pm_runtime_put(&cur->pdev->dev);
err_unlock:
mutex_unlock(&dev_set->lock);
return ret;
}
static bool vfio_pci_dev_set_needs_reset(struct vfio_device_set *dev_set)
{
struct vfio_pci_core_device *cur;
bool needs_reset = false;
/* No other VFIO device in the set can be open. */
if (vfio_device_set_open_count(dev_set) > 1)
return false;
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list)
needs_reset |= cur->needs_reset;
return needs_reset;
}
/*
* If a bus or slot reset is available for the provided dev_set and:
* - All of the devices affected by that bus or slot reset are unused
* - At least one of the affected devices is marked dirty via
* needs_reset (such as by lack of FLR support)
* Then attempt to perform that bus or slot reset.
*/
static void vfio_pci_dev_set_try_reset(struct vfio_device_set *dev_set)
{
struct vfio_pci_core_device *cur;
struct pci_dev *pdev;
bool reset_done = false;
if (!vfio_pci_dev_set_needs_reset(dev_set))
return;
pdev = vfio_pci_dev_set_resettable(dev_set);
if (!pdev)
return;
/*
* Some of the devices in the bus can be in the runtime suspended
* state. Increment the usage count for all the devices in the dev_set
* before reset and decrement the same after reset.
*/
if (!disable_idle_d3 && vfio_pci_dev_set_pm_runtime_get(dev_set))
return;
if (!pci_reset_bus(pdev))
reset_done = true;
list_for_each_entry(cur, &dev_set->device_list, vdev.dev_set_list) {
if (reset_done)
cur->needs_reset = false;
if (!disable_idle_d3)
pm_runtime_put(&cur->pdev->dev);
}
}
void vfio_pci_core_set_params(bool is_nointxmask, bool is_disable_vga,
bool is_disable_idle_d3)
{
nointxmask = is_nointxmask;
disable_vga = is_disable_vga;
disable_idle_d3 = is_disable_idle_d3;
}
EXPORT_SYMBOL_GPL(vfio_pci_core_set_params);
static void vfio_pci_core_cleanup(void)
{
vfio_pci_uninit_perm_bits();
}
static int __init vfio_pci_core_init(void)
{
/* Allocate shared config space permission data used by all devices */
return vfio_pci_init_perm_bits();
}
module_init(vfio_pci_core_init);
module_exit(vfio_pci_core_cleanup);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);