linux-zen-desktop/fs/ocfs2/cluster/heartbeat.c

2543 lines
67 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2004, 2005 Oracle. All rights reserved.
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/file.h>
#include <linux/kthread.h>
#include <linux/configfs.h>
#include <linux/random.h>
#include <linux/crc32.h>
#include <linux/time.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/bitmap.h>
#include <linux/ktime.h>
#include "heartbeat.h"
#include "tcp.h"
#include "nodemanager.h"
#include "quorum.h"
#include "masklog.h"
/*
* The first heartbeat pass had one global thread that would serialize all hb
* callback calls. This global serializing sem should only be removed once
* we've made sure that all callees can deal with being called concurrently
* from multiple hb region threads.
*/
static DECLARE_RWSEM(o2hb_callback_sem);
/*
* multiple hb threads are watching multiple regions. A node is live
* whenever any of the threads sees activity from the node in its region.
*/
static DEFINE_SPINLOCK(o2hb_live_lock);
static struct list_head o2hb_live_slots[O2NM_MAX_NODES];
static unsigned long o2hb_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
static LIST_HEAD(o2hb_node_events);
static DECLARE_WAIT_QUEUE_HEAD(o2hb_steady_queue);
/*
* In global heartbeat, we maintain a series of region bitmaps.
* - o2hb_region_bitmap allows us to limit the region number to max region.
* - o2hb_live_region_bitmap tracks live regions (seen steady iterations).
* - o2hb_quorum_region_bitmap tracks live regions that have seen all nodes
* heartbeat on it.
* - o2hb_failed_region_bitmap tracks the regions that have seen io timeouts.
*/
static unsigned long o2hb_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_live_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_quorum_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
static unsigned long o2hb_failed_region_bitmap[BITS_TO_LONGS(O2NM_MAX_REGIONS)];
#define O2HB_DB_TYPE_LIVENODES 0
#define O2HB_DB_TYPE_LIVEREGIONS 1
#define O2HB_DB_TYPE_QUORUMREGIONS 2
#define O2HB_DB_TYPE_FAILEDREGIONS 3
#define O2HB_DB_TYPE_REGION_LIVENODES 4
#define O2HB_DB_TYPE_REGION_NUMBER 5
#define O2HB_DB_TYPE_REGION_ELAPSED_TIME 6
#define O2HB_DB_TYPE_REGION_PINNED 7
struct o2hb_debug_buf {
int db_type;
int db_size;
int db_len;
void *db_data;
};
static struct o2hb_debug_buf *o2hb_db_livenodes;
static struct o2hb_debug_buf *o2hb_db_liveregions;
static struct o2hb_debug_buf *o2hb_db_quorumregions;
static struct o2hb_debug_buf *o2hb_db_failedregions;
#define O2HB_DEBUG_DIR "o2hb"
#define O2HB_DEBUG_LIVENODES "livenodes"
#define O2HB_DEBUG_LIVEREGIONS "live_regions"
#define O2HB_DEBUG_QUORUMREGIONS "quorum_regions"
#define O2HB_DEBUG_FAILEDREGIONS "failed_regions"
#define O2HB_DEBUG_REGION_NUMBER "num"
#define O2HB_DEBUG_REGION_ELAPSED_TIME "elapsed_time_in_ms"
#define O2HB_DEBUG_REGION_PINNED "pinned"
static struct dentry *o2hb_debug_dir;
static LIST_HEAD(o2hb_all_regions);
static struct o2hb_callback {
struct list_head list;
} o2hb_callbacks[O2HB_NUM_CB];
static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type);
enum o2hb_heartbeat_modes {
O2HB_HEARTBEAT_LOCAL = 0,
O2HB_HEARTBEAT_GLOBAL,
O2HB_HEARTBEAT_NUM_MODES,
};
static const char *o2hb_heartbeat_mode_desc[O2HB_HEARTBEAT_NUM_MODES] = {
"local", /* O2HB_HEARTBEAT_LOCAL */
"global", /* O2HB_HEARTBEAT_GLOBAL */
};
unsigned int o2hb_dead_threshold = O2HB_DEFAULT_DEAD_THRESHOLD;
static unsigned int o2hb_heartbeat_mode = O2HB_HEARTBEAT_LOCAL;
/*
* o2hb_dependent_users tracks the number of registered callbacks that depend
* on heartbeat. o2net and o2dlm are two entities that register this callback.
* However only o2dlm depends on the heartbeat. It does not want the heartbeat
* to stop while a dlm domain is still active.
*/
static unsigned int o2hb_dependent_users;
/*
* In global heartbeat mode, all regions are pinned if there are one or more
* dependent users and the quorum region count is <= O2HB_PIN_CUT_OFF. All
* regions are unpinned if the region count exceeds the cut off or the number
* of dependent users falls to zero.
*/
#define O2HB_PIN_CUT_OFF 3
/*
* In local heartbeat mode, we assume the dlm domain name to be the same as
* region uuid. This is true for domains created for the file system but not
* necessarily true for userdlm domains. This is a known limitation.
*
* In global heartbeat mode, we pin/unpin all o2hb regions. This solution
* works for both file system and userdlm domains.
*/
static int o2hb_region_pin(const char *region_uuid);
static void o2hb_region_unpin(const char *region_uuid);
/* Only sets a new threshold if there are no active regions.
*
* No locking or otherwise interesting code is required for reading
* o2hb_dead_threshold as it can't change once regions are active and
* it's not interesting to anyone until then anyway. */
static void o2hb_dead_threshold_set(unsigned int threshold)
{
if (threshold > O2HB_MIN_DEAD_THRESHOLD) {
spin_lock(&o2hb_live_lock);
if (list_empty(&o2hb_all_regions))
o2hb_dead_threshold = threshold;
spin_unlock(&o2hb_live_lock);
}
}
static int o2hb_global_heartbeat_mode_set(unsigned int hb_mode)
{
int ret = -1;
if (hb_mode < O2HB_HEARTBEAT_NUM_MODES) {
spin_lock(&o2hb_live_lock);
if (list_empty(&o2hb_all_regions)) {
o2hb_heartbeat_mode = hb_mode;
ret = 0;
}
spin_unlock(&o2hb_live_lock);
}
return ret;
}
struct o2hb_node_event {
struct list_head hn_item;
enum o2hb_callback_type hn_event_type;
struct o2nm_node *hn_node;
int hn_node_num;
};
struct o2hb_disk_slot {
struct o2hb_disk_heartbeat_block *ds_raw_block;
u8 ds_node_num;
u64 ds_last_time;
u64 ds_last_generation;
u16 ds_equal_samples;
u16 ds_changed_samples;
struct list_head ds_live_item;
};
/* each thread owns a region.. when we're asked to tear down the region
* we ask the thread to stop, who cleans up the region */
struct o2hb_region {
struct config_item hr_item;
struct list_head hr_all_item;
unsigned hr_unclean_stop:1,
hr_aborted_start:1,
hr_item_pinned:1,
hr_item_dropped:1,
hr_node_deleted:1;
/* protected by the hr_callback_sem */
struct task_struct *hr_task;
unsigned int hr_blocks;
unsigned long long hr_start_block;
unsigned int hr_block_bits;
unsigned int hr_block_bytes;
unsigned int hr_slots_per_page;
unsigned int hr_num_pages;
struct page **hr_slot_data;
struct block_device *hr_bdev;
struct o2hb_disk_slot *hr_slots;
/* live node map of this region */
unsigned long hr_live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
unsigned int hr_region_num;
struct dentry *hr_debug_dir;
struct o2hb_debug_buf *hr_db_livenodes;
struct o2hb_debug_buf *hr_db_regnum;
struct o2hb_debug_buf *hr_db_elapsed_time;
struct o2hb_debug_buf *hr_db_pinned;
/* let the person setting up hb wait for it to return until it
* has reached a 'steady' state. This will be fixed when we have
* a more complete api that doesn't lead to this sort of fragility. */
atomic_t hr_steady_iterations;
/* terminate o2hb thread if it does not reach steady state
* (hr_steady_iterations == 0) within hr_unsteady_iterations */
atomic_t hr_unsteady_iterations;
unsigned int hr_timeout_ms;
/* randomized as the region goes up and down so that a node
* recognizes a node going up and down in one iteration */
u64 hr_generation;
struct delayed_work hr_write_timeout_work;
unsigned long hr_last_timeout_start;
/* negotiate timer, used to negotiate extending hb timeout. */
struct delayed_work hr_nego_timeout_work;
unsigned long hr_nego_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
/* Used during o2hb_check_slot to hold a copy of the block
* being checked because we temporarily have to zero out the
* crc field. */
struct o2hb_disk_heartbeat_block *hr_tmp_block;
/* Message key for negotiate timeout message. */
unsigned int hr_key;
struct list_head hr_handler_list;
/* last hb status, 0 for success, other value for error. */
int hr_last_hb_status;
};
struct o2hb_bio_wait_ctxt {
atomic_t wc_num_reqs;
struct completion wc_io_complete;
int wc_error;
};
#define O2HB_NEGO_TIMEOUT_MS (O2HB_MAX_WRITE_TIMEOUT_MS/2)
enum {
O2HB_NEGO_TIMEOUT_MSG = 1,
O2HB_NEGO_APPROVE_MSG = 2,
};
struct o2hb_nego_msg {
u8 node_num;
};
static void o2hb_write_timeout(struct work_struct *work)
{
int failed, quorum;
struct o2hb_region *reg =
container_of(work, struct o2hb_region,
hr_write_timeout_work.work);
mlog(ML_ERROR, "Heartbeat write timeout to device %pg after %u "
"milliseconds\n", reg->hr_bdev,
jiffies_to_msecs(jiffies - reg->hr_last_timeout_start));
if (o2hb_global_heartbeat_active()) {
spin_lock(&o2hb_live_lock);
if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
set_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
failed = bitmap_weight(o2hb_failed_region_bitmap,
O2NM_MAX_REGIONS);
quorum = bitmap_weight(o2hb_quorum_region_bitmap,
O2NM_MAX_REGIONS);
spin_unlock(&o2hb_live_lock);
mlog(ML_HEARTBEAT, "Number of regions %d, failed regions %d\n",
quorum, failed);
/*
* Fence if the number of failed regions >= half the number
* of quorum regions
*/
if ((failed << 1) < quorum)
return;
}
o2quo_disk_timeout();
}
static void o2hb_arm_timeout(struct o2hb_region *reg)
{
/* Arm writeout only after thread reaches steady state */
if (atomic_read(&reg->hr_steady_iterations) != 0)
return;
mlog(ML_HEARTBEAT, "Queue write timeout for %u ms\n",
O2HB_MAX_WRITE_TIMEOUT_MS);
if (o2hb_global_heartbeat_active()) {
spin_lock(&o2hb_live_lock);
clear_bit(reg->hr_region_num, o2hb_failed_region_bitmap);
spin_unlock(&o2hb_live_lock);
}
cancel_delayed_work(&reg->hr_write_timeout_work);
schedule_delayed_work(&reg->hr_write_timeout_work,
msecs_to_jiffies(O2HB_MAX_WRITE_TIMEOUT_MS));
cancel_delayed_work(&reg->hr_nego_timeout_work);
/* negotiate timeout must be less than write timeout. */
schedule_delayed_work(&reg->hr_nego_timeout_work,
msecs_to_jiffies(O2HB_NEGO_TIMEOUT_MS));
bitmap_zero(reg->hr_nego_node_bitmap, O2NM_MAX_NODES);
}
static void o2hb_disarm_timeout(struct o2hb_region *reg)
{
cancel_delayed_work_sync(&reg->hr_write_timeout_work);
cancel_delayed_work_sync(&reg->hr_nego_timeout_work);
}
static int o2hb_send_nego_msg(int key, int type, u8 target)
{
struct o2hb_nego_msg msg;
int status, ret;
msg.node_num = o2nm_this_node();
again:
ret = o2net_send_message(type, key, &msg, sizeof(msg),
target, &status);
if (ret == -EAGAIN || ret == -ENOMEM) {
msleep(100);
goto again;
}
return ret;
}
static void o2hb_nego_timeout(struct work_struct *work)
{
unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
int master_node, i, ret;
struct o2hb_region *reg;
reg = container_of(work, struct o2hb_region, hr_nego_timeout_work.work);
/* don't negotiate timeout if last hb failed since it is very
* possible io failed. Should let write timeout fence self.
*/
if (reg->hr_last_hb_status)
return;
o2hb_fill_node_map(live_node_bitmap, O2NM_MAX_NODES);
/* lowest node as master node to make negotiate decision. */
master_node = find_first_bit(live_node_bitmap, O2NM_MAX_NODES);
if (master_node == o2nm_this_node()) {
if (!test_bit(master_node, reg->hr_nego_node_bitmap)) {
printk(KERN_NOTICE "o2hb: node %d hb write hung for %ds on region %s (%pg).\n",
o2nm_this_node(), O2HB_NEGO_TIMEOUT_MS/1000,
config_item_name(&reg->hr_item), reg->hr_bdev);
set_bit(master_node, reg->hr_nego_node_bitmap);
}
if (!bitmap_equal(reg->hr_nego_node_bitmap, live_node_bitmap,
O2NM_MAX_NODES)) {
/* check negotiate bitmap every second to do timeout
* approve decision.
*/
schedule_delayed_work(&reg->hr_nego_timeout_work,
msecs_to_jiffies(1000));
return;
}
printk(KERN_NOTICE "o2hb: all nodes hb write hung, maybe region %s (%pg) is down.\n",
config_item_name(&reg->hr_item), reg->hr_bdev);
/* approve negotiate timeout request. */
o2hb_arm_timeout(reg);
i = -1;
while ((i = find_next_bit(live_node_bitmap,
O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
if (i == master_node)
continue;
mlog(ML_HEARTBEAT, "send NEGO_APPROVE msg to node %d\n", i);
ret = o2hb_send_nego_msg(reg->hr_key,
O2HB_NEGO_APPROVE_MSG, i);
if (ret)
mlog(ML_ERROR, "send NEGO_APPROVE msg to node %d fail %d\n",
i, ret);
}
} else {
/* negotiate timeout with master node. */
printk(KERN_NOTICE "o2hb: node %d hb write hung for %ds on region %s (%pg), negotiate timeout with node %d.\n",
o2nm_this_node(), O2HB_NEGO_TIMEOUT_MS/1000, config_item_name(&reg->hr_item),
reg->hr_bdev, master_node);
ret = o2hb_send_nego_msg(reg->hr_key, O2HB_NEGO_TIMEOUT_MSG,
master_node);
if (ret)
mlog(ML_ERROR, "send NEGO_TIMEOUT msg to node %d fail %d\n",
master_node, ret);
}
}
static int o2hb_nego_timeout_handler(struct o2net_msg *msg, u32 len, void *data,
void **ret_data)
{
struct o2hb_region *reg = data;
struct o2hb_nego_msg *nego_msg;
nego_msg = (struct o2hb_nego_msg *)msg->buf;
printk(KERN_NOTICE "o2hb: receive negotiate timeout message from node %d on region %s (%pg).\n",
nego_msg->node_num, config_item_name(&reg->hr_item), reg->hr_bdev);
if (nego_msg->node_num < O2NM_MAX_NODES)
set_bit(nego_msg->node_num, reg->hr_nego_node_bitmap);
else
mlog(ML_ERROR, "got nego timeout message from bad node.\n");
return 0;
}
static int o2hb_nego_approve_handler(struct o2net_msg *msg, u32 len, void *data,
void **ret_data)
{
struct o2hb_region *reg = data;
printk(KERN_NOTICE "o2hb: negotiate timeout approved by master node on region %s (%pg).\n",
config_item_name(&reg->hr_item), reg->hr_bdev);
o2hb_arm_timeout(reg);
return 0;
}
static inline void o2hb_bio_wait_init(struct o2hb_bio_wait_ctxt *wc)
{
atomic_set(&wc->wc_num_reqs, 1);
init_completion(&wc->wc_io_complete);
wc->wc_error = 0;
}
/* Used in error paths too */
static inline void o2hb_bio_wait_dec(struct o2hb_bio_wait_ctxt *wc,
unsigned int num)
{
/* sadly atomic_sub_and_test() isn't available on all platforms. The
* good news is that the fast path only completes one at a time */
while(num--) {
if (atomic_dec_and_test(&wc->wc_num_reqs)) {
BUG_ON(num > 0);
complete(&wc->wc_io_complete);
}
}
}
static void o2hb_wait_on_io(struct o2hb_bio_wait_ctxt *wc)
{
o2hb_bio_wait_dec(wc, 1);
wait_for_completion(&wc->wc_io_complete);
}
static void o2hb_bio_end_io(struct bio *bio)
{
struct o2hb_bio_wait_ctxt *wc = bio->bi_private;
if (bio->bi_status) {
mlog(ML_ERROR, "IO Error %d\n", bio->bi_status);
wc->wc_error = blk_status_to_errno(bio->bi_status);
}
o2hb_bio_wait_dec(wc, 1);
bio_put(bio);
}
/* Setup a Bio to cover I/O against num_slots slots starting at
* start_slot. */
static struct bio *o2hb_setup_one_bio(struct o2hb_region *reg,
struct o2hb_bio_wait_ctxt *wc,
unsigned int *current_slot,
unsigned int max_slots, blk_opf_t opf)
{
int len, current_page;
unsigned int vec_len, vec_start;
unsigned int bits = reg->hr_block_bits;
unsigned int spp = reg->hr_slots_per_page;
unsigned int cs = *current_slot;
struct bio *bio;
struct page *page;
/* Testing has shown this allocation to take long enough under
* GFP_KERNEL that the local node can get fenced. It would be
* nicest if we could pre-allocate these bios and avoid this
* all together. */
bio = bio_alloc(reg->hr_bdev, 16, opf, GFP_ATOMIC);
if (!bio) {
mlog(ML_ERROR, "Could not alloc slots BIO!\n");
bio = ERR_PTR(-ENOMEM);
goto bail;
}
/* Must put everything in 512 byte sectors for the bio... */
bio->bi_iter.bi_sector = (reg->hr_start_block + cs) << (bits - 9);
bio->bi_private = wc;
bio->bi_end_io = o2hb_bio_end_io;
vec_start = (cs << bits) % PAGE_SIZE;
while(cs < max_slots) {
current_page = cs / spp;
page = reg->hr_slot_data[current_page];
vec_len = min(PAGE_SIZE - vec_start,
(max_slots-cs) * (PAGE_SIZE/spp) );
mlog(ML_HB_BIO, "page %d, vec_len = %u, vec_start = %u\n",
current_page, vec_len, vec_start);
len = bio_add_page(bio, page, vec_len, vec_start);
if (len != vec_len) break;
cs += vec_len / (PAGE_SIZE/spp);
vec_start = 0;
}
bail:
*current_slot = cs;
return bio;
}
static int o2hb_read_slots(struct o2hb_region *reg,
unsigned int begin_slot,
unsigned int max_slots)
{
unsigned int current_slot = begin_slot;
int status;
struct o2hb_bio_wait_ctxt wc;
struct bio *bio;
o2hb_bio_wait_init(&wc);
while(current_slot < max_slots) {
bio = o2hb_setup_one_bio(reg, &wc, &current_slot, max_slots,
REQ_OP_READ);
if (IS_ERR(bio)) {
status = PTR_ERR(bio);
mlog_errno(status);
goto bail_and_wait;
}
atomic_inc(&wc.wc_num_reqs);
submit_bio(bio);
}
status = 0;
bail_and_wait:
o2hb_wait_on_io(&wc);
if (wc.wc_error && !status)
status = wc.wc_error;
return status;
}
static int o2hb_issue_node_write(struct o2hb_region *reg,
struct o2hb_bio_wait_ctxt *write_wc)
{
int status;
unsigned int slot;
struct bio *bio;
o2hb_bio_wait_init(write_wc);
slot = o2nm_this_node();
bio = o2hb_setup_one_bio(reg, write_wc, &slot, slot+1,
REQ_OP_WRITE | REQ_SYNC);
if (IS_ERR(bio)) {
status = PTR_ERR(bio);
mlog_errno(status);
goto bail;
}
atomic_inc(&write_wc->wc_num_reqs);
submit_bio(bio);
status = 0;
bail:
return status;
}
static u32 o2hb_compute_block_crc_le(struct o2hb_region *reg,
struct o2hb_disk_heartbeat_block *hb_block)
{
__le32 old_cksum;
u32 ret;
/* We want to compute the block crc with a 0 value in the
* hb_cksum field. Save it off here and replace after the
* crc. */
old_cksum = hb_block->hb_cksum;
hb_block->hb_cksum = 0;
ret = crc32_le(0, (unsigned char *) hb_block, reg->hr_block_bytes);
hb_block->hb_cksum = old_cksum;
return ret;
}
static void o2hb_dump_slot(struct o2hb_disk_heartbeat_block *hb_block)
{
mlog(ML_ERROR, "Dump slot information: seq = 0x%llx, node = %u, "
"cksum = 0x%x, generation 0x%llx\n",
(long long)le64_to_cpu(hb_block->hb_seq),
hb_block->hb_node, le32_to_cpu(hb_block->hb_cksum),
(long long)le64_to_cpu(hb_block->hb_generation));
}
static int o2hb_verify_crc(struct o2hb_region *reg,
struct o2hb_disk_heartbeat_block *hb_block)
{
u32 read, computed;
read = le32_to_cpu(hb_block->hb_cksum);
computed = o2hb_compute_block_crc_le(reg, hb_block);
return read == computed;
}
/*
* Compare the slot data with what we wrote in the last iteration.
* If the match fails, print an appropriate error message. This is to
* detect errors like... another node hearting on the same slot,
* flaky device that is losing writes, etc.
* Returns 1 if check succeeds, 0 otherwise.
*/
static int o2hb_check_own_slot(struct o2hb_region *reg)
{
struct o2hb_disk_slot *slot;
struct o2hb_disk_heartbeat_block *hb_block;
char *errstr;
slot = &reg->hr_slots[o2nm_this_node()];
/* Don't check on our 1st timestamp */
if (!slot->ds_last_time)
return 0;
hb_block = slot->ds_raw_block;
if (le64_to_cpu(hb_block->hb_seq) == slot->ds_last_time &&
le64_to_cpu(hb_block->hb_generation) == slot->ds_last_generation &&
hb_block->hb_node == slot->ds_node_num)
return 1;
#define ERRSTR1 "Another node is heartbeating on device"
#define ERRSTR2 "Heartbeat generation mismatch on device"
#define ERRSTR3 "Heartbeat sequence mismatch on device"
if (hb_block->hb_node != slot->ds_node_num)
errstr = ERRSTR1;
else if (le64_to_cpu(hb_block->hb_generation) !=
slot->ds_last_generation)
errstr = ERRSTR2;
else
errstr = ERRSTR3;
mlog(ML_ERROR, "%s (%pg): expected(%u:0x%llx, 0x%llx), "
"ondisk(%u:0x%llx, 0x%llx)\n", errstr, reg->hr_bdev,
slot->ds_node_num, (unsigned long long)slot->ds_last_generation,
(unsigned long long)slot->ds_last_time, hb_block->hb_node,
(unsigned long long)le64_to_cpu(hb_block->hb_generation),
(unsigned long long)le64_to_cpu(hb_block->hb_seq));
return 0;
}
static inline void o2hb_prepare_block(struct o2hb_region *reg,
u64 generation)
{
int node_num;
u64 cputime;
struct o2hb_disk_slot *slot;
struct o2hb_disk_heartbeat_block *hb_block;
node_num = o2nm_this_node();
slot = &reg->hr_slots[node_num];
hb_block = (struct o2hb_disk_heartbeat_block *)slot->ds_raw_block;
memset(hb_block, 0, reg->hr_block_bytes);
/* TODO: time stuff */
cputime = ktime_get_real_seconds();
if (!cputime)
cputime = 1;
hb_block->hb_seq = cpu_to_le64(cputime);
hb_block->hb_node = node_num;
hb_block->hb_generation = cpu_to_le64(generation);
hb_block->hb_dead_ms = cpu_to_le32(o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS);
/* This step must always happen last! */
hb_block->hb_cksum = cpu_to_le32(o2hb_compute_block_crc_le(reg,
hb_block));
mlog(ML_HB_BIO, "our node generation = 0x%llx, cksum = 0x%x\n",
(long long)generation,
le32_to_cpu(hb_block->hb_cksum));
}
static void o2hb_fire_callbacks(struct o2hb_callback *hbcall,
struct o2nm_node *node,
int idx)
{
struct o2hb_callback_func *f;
list_for_each_entry(f, &hbcall->list, hc_item) {
mlog(ML_HEARTBEAT, "calling funcs %p\n", f);
(f->hc_func)(node, idx, f->hc_data);
}
}
/* Will run the list in order until we process the passed event */
static void o2hb_run_event_list(struct o2hb_node_event *queued_event)
{
struct o2hb_callback *hbcall;
struct o2hb_node_event *event;
/* Holding callback sem assures we don't alter the callback
* lists when doing this, and serializes ourselves with other
* processes wanting callbacks. */
down_write(&o2hb_callback_sem);
spin_lock(&o2hb_live_lock);
while (!list_empty(&o2hb_node_events)
&& !list_empty(&queued_event->hn_item)) {
event = list_entry(o2hb_node_events.next,
struct o2hb_node_event,
hn_item);
list_del_init(&event->hn_item);
spin_unlock(&o2hb_live_lock);
mlog(ML_HEARTBEAT, "Node %s event for %d\n",
event->hn_event_type == O2HB_NODE_UP_CB ? "UP" : "DOWN",
event->hn_node_num);
hbcall = hbcall_from_type(event->hn_event_type);
/* We should *never* have gotten on to the list with a
* bad type... This isn't something that we should try
* to recover from. */
BUG_ON(IS_ERR(hbcall));
o2hb_fire_callbacks(hbcall, event->hn_node, event->hn_node_num);
spin_lock(&o2hb_live_lock);
}
spin_unlock(&o2hb_live_lock);
up_write(&o2hb_callback_sem);
}
static void o2hb_queue_node_event(struct o2hb_node_event *event,
enum o2hb_callback_type type,
struct o2nm_node *node,
int node_num)
{
assert_spin_locked(&o2hb_live_lock);
BUG_ON((!node) && (type != O2HB_NODE_DOWN_CB));
event->hn_event_type = type;
event->hn_node = node;
event->hn_node_num = node_num;
mlog(ML_HEARTBEAT, "Queue node %s event for node %d\n",
type == O2HB_NODE_UP_CB ? "UP" : "DOWN", node_num);
list_add_tail(&event->hn_item, &o2hb_node_events);
}
static void o2hb_shutdown_slot(struct o2hb_disk_slot *slot)
{
struct o2hb_node_event event =
{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
struct o2nm_node *node;
int queued = 0;
node = o2nm_get_node_by_num(slot->ds_node_num);
if (!node)
return;
spin_lock(&o2hb_live_lock);
if (!list_empty(&slot->ds_live_item)) {
mlog(ML_HEARTBEAT, "Shutdown, node %d leaves region\n",
slot->ds_node_num);
list_del_init(&slot->ds_live_item);
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB, node,
slot->ds_node_num);
queued = 1;
}
}
spin_unlock(&o2hb_live_lock);
if (queued)
o2hb_run_event_list(&event);
o2nm_node_put(node);
}
static void o2hb_set_quorum_device(struct o2hb_region *reg)
{
if (!o2hb_global_heartbeat_active())
return;
/* Prevent race with o2hb_heartbeat_group_drop_item() */
if (kthread_should_stop())
return;
/* Tag region as quorum only after thread reaches steady state */
if (atomic_read(&reg->hr_steady_iterations) != 0)
return;
spin_lock(&o2hb_live_lock);
if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
goto unlock;
/*
* A region can be added to the quorum only when it sees all
* live nodes heartbeat on it. In other words, the region has been
* added to all nodes.
*/
if (!bitmap_equal(reg->hr_live_node_bitmap, o2hb_live_node_bitmap,
O2NM_MAX_NODES))
goto unlock;
printk(KERN_NOTICE "o2hb: Region %s (%pg) is now a quorum device\n",
config_item_name(&reg->hr_item), reg->hr_bdev);
set_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
/*
* If global heartbeat active, unpin all regions if the
* region count > CUT_OFF
*/
if (bitmap_weight(o2hb_quorum_region_bitmap,
O2NM_MAX_REGIONS) > O2HB_PIN_CUT_OFF)
o2hb_region_unpin(NULL);
unlock:
spin_unlock(&o2hb_live_lock);
}
static int o2hb_check_slot(struct o2hb_region *reg,
struct o2hb_disk_slot *slot)
{
int changed = 0, gen_changed = 0;
struct o2hb_node_event event =
{ .hn_item = LIST_HEAD_INIT(event.hn_item), };
struct o2nm_node *node;
struct o2hb_disk_heartbeat_block *hb_block = reg->hr_tmp_block;
u64 cputime;
unsigned int dead_ms = o2hb_dead_threshold * O2HB_REGION_TIMEOUT_MS;
unsigned int slot_dead_ms;
int tmp;
int queued = 0;
memcpy(hb_block, slot->ds_raw_block, reg->hr_block_bytes);
/*
* If a node is no longer configured but is still in the livemap, we
* may need to clear that bit from the livemap.
*/
node = o2nm_get_node_by_num(slot->ds_node_num);
if (!node) {
spin_lock(&o2hb_live_lock);
tmp = test_bit(slot->ds_node_num, o2hb_live_node_bitmap);
spin_unlock(&o2hb_live_lock);
if (!tmp)
return 0;
}
if (!o2hb_verify_crc(reg, hb_block)) {
/* all paths from here will drop o2hb_live_lock for
* us. */
spin_lock(&o2hb_live_lock);
/* Don't print an error on the console in this case -
* a freshly formatted heartbeat area will not have a
* crc set on it. */
if (list_empty(&slot->ds_live_item))
goto out;
/* The node is live but pushed out a bad crc. We
* consider it a transient miss but don't populate any
* other values as they may be junk. */
mlog(ML_ERROR, "Node %d has written a bad crc to %pg\n",
slot->ds_node_num, reg->hr_bdev);
o2hb_dump_slot(hb_block);
slot->ds_equal_samples++;
goto fire_callbacks;
}
/* we don't care if these wrap.. the state transitions below
* clear at the right places */
cputime = le64_to_cpu(hb_block->hb_seq);
if (slot->ds_last_time != cputime)
slot->ds_changed_samples++;
else
slot->ds_equal_samples++;
slot->ds_last_time = cputime;
/* The node changed heartbeat generations. We assume this to
* mean it dropped off but came back before we timed out. We
* want to consider it down for the time being but don't want
* to lose any changed_samples state we might build up to
* considering it live again. */
if (slot->ds_last_generation != le64_to_cpu(hb_block->hb_generation)) {
gen_changed = 1;
slot->ds_equal_samples = 0;
mlog(ML_HEARTBEAT, "Node %d changed generation (0x%llx "
"to 0x%llx)\n", slot->ds_node_num,
(long long)slot->ds_last_generation,
(long long)le64_to_cpu(hb_block->hb_generation));
}
slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
mlog(ML_HEARTBEAT, "Slot %d gen 0x%llx cksum 0x%x "
"seq %llu last %llu changed %u equal %u\n",
slot->ds_node_num, (long long)slot->ds_last_generation,
le32_to_cpu(hb_block->hb_cksum),
(unsigned long long)le64_to_cpu(hb_block->hb_seq),
(unsigned long long)slot->ds_last_time, slot->ds_changed_samples,
slot->ds_equal_samples);
spin_lock(&o2hb_live_lock);
fire_callbacks:
/* dead nodes only come to life after some number of
* changes at any time during their dead time */
if (list_empty(&slot->ds_live_item) &&
slot->ds_changed_samples >= O2HB_LIVE_THRESHOLD) {
mlog(ML_HEARTBEAT, "Node %d (id 0x%llx) joined my region\n",
slot->ds_node_num, (long long)slot->ds_last_generation);
set_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
/* first on the list generates a callback */
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
mlog(ML_HEARTBEAT, "o2hb: Add node %d to live nodes "
"bitmap\n", slot->ds_node_num);
set_bit(slot->ds_node_num, o2hb_live_node_bitmap);
o2hb_queue_node_event(&event, O2HB_NODE_UP_CB, node,
slot->ds_node_num);
changed = 1;
queued = 1;
}
list_add_tail(&slot->ds_live_item,
&o2hb_live_slots[slot->ds_node_num]);
slot->ds_equal_samples = 0;
/* We want to be sure that all nodes agree on the
* number of milliseconds before a node will be
* considered dead. The self-fencing timeout is
* computed from this value, and a discrepancy might
* result in heartbeat calling a node dead when it
* hasn't self-fenced yet. */
slot_dead_ms = le32_to_cpu(hb_block->hb_dead_ms);
if (slot_dead_ms && slot_dead_ms != dead_ms) {
/* TODO: Perhaps we can fail the region here. */
mlog(ML_ERROR, "Node %d on device %pg has a dead count "
"of %u ms, but our count is %u ms.\n"
"Please double check your configuration values "
"for 'O2CB_HEARTBEAT_THRESHOLD'\n",
slot->ds_node_num, reg->hr_bdev, slot_dead_ms,
dead_ms);
}
goto out;
}
/* if the list is dead, we're done.. */
if (list_empty(&slot->ds_live_item))
goto out;
/* live nodes only go dead after enough consequtive missed
* samples.. reset the missed counter whenever we see
* activity */
if (slot->ds_equal_samples >= o2hb_dead_threshold || gen_changed) {
mlog(ML_HEARTBEAT, "Node %d left my region\n",
slot->ds_node_num);
clear_bit(slot->ds_node_num, reg->hr_live_node_bitmap);
/* last off the live_slot generates a callback */
list_del_init(&slot->ds_live_item);
if (list_empty(&o2hb_live_slots[slot->ds_node_num])) {
mlog(ML_HEARTBEAT, "o2hb: Remove node %d from live "
"nodes bitmap\n", slot->ds_node_num);
clear_bit(slot->ds_node_num, o2hb_live_node_bitmap);
/* node can be null */
o2hb_queue_node_event(&event, O2HB_NODE_DOWN_CB,
node, slot->ds_node_num);
changed = 1;
queued = 1;
}
/* We don't clear this because the node is still
* actually writing new blocks. */
if (!gen_changed)
slot->ds_changed_samples = 0;
goto out;
}
if (slot->ds_changed_samples) {
slot->ds_changed_samples = 0;
slot->ds_equal_samples = 0;
}
out:
spin_unlock(&o2hb_live_lock);
if (queued)
o2hb_run_event_list(&event);
if (node)
o2nm_node_put(node);
return changed;
}
static int o2hb_highest_node(unsigned long *nodes, int numbits)
{
return find_last_bit(nodes, numbits);
}
static int o2hb_lowest_node(unsigned long *nodes, int numbits)
{
return find_first_bit(nodes, numbits);
}
static int o2hb_do_disk_heartbeat(struct o2hb_region *reg)
{
int i, ret, highest_node, lowest_node;
int membership_change = 0, own_slot_ok = 0;
unsigned long configured_nodes[BITS_TO_LONGS(O2NM_MAX_NODES)];
unsigned long live_node_bitmap[BITS_TO_LONGS(O2NM_MAX_NODES)];
struct o2hb_bio_wait_ctxt write_wc;
ret = o2nm_configured_node_map(configured_nodes,
sizeof(configured_nodes));
if (ret) {
mlog_errno(ret);
goto bail;
}
/*
* If a node is not configured but is in the livemap, we still need
* to read the slot so as to be able to remove it from the livemap.
*/
o2hb_fill_node_map(live_node_bitmap, O2NM_MAX_NODES);
i = -1;
while ((i = find_next_bit(live_node_bitmap,
O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
set_bit(i, configured_nodes);
}
highest_node = o2hb_highest_node(configured_nodes, O2NM_MAX_NODES);
lowest_node = o2hb_lowest_node(configured_nodes, O2NM_MAX_NODES);
if (highest_node >= O2NM_MAX_NODES || lowest_node >= O2NM_MAX_NODES) {
mlog(ML_NOTICE, "o2hb: No configured nodes found!\n");
ret = -EINVAL;
goto bail;
}
/* No sense in reading the slots of nodes that don't exist
* yet. Of course, if the node definitions have holes in them
* then we're reading an empty slot anyway... Consider this
* best-effort. */
ret = o2hb_read_slots(reg, lowest_node, highest_node + 1);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
/* With an up to date view of the slots, we can check that no
* other node has been improperly configured to heartbeat in
* our slot. */
own_slot_ok = o2hb_check_own_slot(reg);
/* fill in the proper info for our next heartbeat */
o2hb_prepare_block(reg, reg->hr_generation);
ret = o2hb_issue_node_write(reg, &write_wc);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
i = -1;
while((i = find_next_bit(configured_nodes,
O2NM_MAX_NODES, i + 1)) < O2NM_MAX_NODES) {
membership_change |= o2hb_check_slot(reg, &reg->hr_slots[i]);
}
/*
* We have to be sure we've advertised ourselves on disk
* before we can go to steady state. This ensures that
* people we find in our steady state have seen us.
*/
o2hb_wait_on_io(&write_wc);
if (write_wc.wc_error) {
/* Do not re-arm the write timeout on I/O error - we
* can't be sure that the new block ever made it to
* disk */
mlog(ML_ERROR, "Write error %d on device \"%pg\"\n",
write_wc.wc_error, reg->hr_bdev);
ret = write_wc.wc_error;
goto bail;
}
/* Skip disarming the timeout if own slot has stale/bad data */
if (own_slot_ok) {
o2hb_set_quorum_device(reg);
o2hb_arm_timeout(reg);
reg->hr_last_timeout_start = jiffies;
}
bail:
/* let the person who launched us know when things are steady */
if (atomic_read(&reg->hr_steady_iterations) != 0) {
if (!ret && own_slot_ok && !membership_change) {
if (atomic_dec_and_test(&reg->hr_steady_iterations))
wake_up(&o2hb_steady_queue);
}
}
if (atomic_read(&reg->hr_steady_iterations) != 0) {
if (atomic_dec_and_test(&reg->hr_unsteady_iterations)) {
printk(KERN_NOTICE "o2hb: Unable to stabilize "
"heartbeat on region %s (%pg)\n",
config_item_name(&reg->hr_item),
reg->hr_bdev);
atomic_set(&reg->hr_steady_iterations, 0);
reg->hr_aborted_start = 1;
wake_up(&o2hb_steady_queue);
ret = -EIO;
}
}
return ret;
}
/*
* we ride the region ref that the region dir holds. before the region
* dir is removed and drops it ref it will wait to tear down this
* thread.
*/
static int o2hb_thread(void *data)
{
int i, ret;
struct o2hb_region *reg = data;
struct o2hb_bio_wait_ctxt write_wc;
ktime_t before_hb, after_hb;
unsigned int elapsed_msec;
mlog(ML_HEARTBEAT|ML_KTHREAD, "hb thread running\n");
set_user_nice(current, MIN_NICE);
/* Pin node */
ret = o2nm_depend_this_node();
if (ret) {
mlog(ML_ERROR, "Node has been deleted, ret = %d\n", ret);
reg->hr_node_deleted = 1;
wake_up(&o2hb_steady_queue);
return 0;
}
while (!kthread_should_stop() &&
!reg->hr_unclean_stop && !reg->hr_aborted_start) {
/* We track the time spent inside
* o2hb_do_disk_heartbeat so that we avoid more than
* hr_timeout_ms between disk writes. On busy systems
* this should result in a heartbeat which is less
* likely to time itself out. */
before_hb = ktime_get_real();
ret = o2hb_do_disk_heartbeat(reg);
reg->hr_last_hb_status = ret;
after_hb = ktime_get_real();
elapsed_msec = (unsigned int)
ktime_ms_delta(after_hb, before_hb);
mlog(ML_HEARTBEAT,
"start = %lld, end = %lld, msec = %u, ret = %d\n",
before_hb, after_hb, elapsed_msec, ret);
if (!kthread_should_stop() &&
elapsed_msec < reg->hr_timeout_ms) {
/* the kthread api has blocked signals for us so no
* need to record the return value. */
msleep_interruptible(reg->hr_timeout_ms - elapsed_msec);
}
}
o2hb_disarm_timeout(reg);
/* unclean stop is only used in very bad situation */
for(i = 0; !reg->hr_unclean_stop && i < reg->hr_blocks; i++)
o2hb_shutdown_slot(&reg->hr_slots[i]);
/* Explicit down notification - avoid forcing the other nodes
* to timeout on this region when we could just as easily
* write a clear generation - thus indicating to them that
* this node has left this region.
*/
if (!reg->hr_unclean_stop && !reg->hr_aborted_start) {
o2hb_prepare_block(reg, 0);
ret = o2hb_issue_node_write(reg, &write_wc);
if (ret == 0)
o2hb_wait_on_io(&write_wc);
else
mlog_errno(ret);
}
/* Unpin node */
o2nm_undepend_this_node();
mlog(ML_HEARTBEAT|ML_KTHREAD, "o2hb thread exiting\n");
return 0;
}
#ifdef CONFIG_DEBUG_FS
static int o2hb_debug_open(struct inode *inode, struct file *file)
{
struct o2hb_debug_buf *db = inode->i_private;
struct o2hb_region *reg;
unsigned long map[BITS_TO_LONGS(O2NM_MAX_NODES)];
unsigned long lts;
char *buf = NULL;
int i = -1;
int out = 0;
/* max_nodes should be the largest bitmap we pass here */
BUG_ON(sizeof(map) < db->db_size);
buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
if (!buf)
goto bail;
switch (db->db_type) {
case O2HB_DB_TYPE_LIVENODES:
case O2HB_DB_TYPE_LIVEREGIONS:
case O2HB_DB_TYPE_QUORUMREGIONS:
case O2HB_DB_TYPE_FAILEDREGIONS:
spin_lock(&o2hb_live_lock);
memcpy(map, db->db_data, db->db_size);
spin_unlock(&o2hb_live_lock);
break;
case O2HB_DB_TYPE_REGION_LIVENODES:
spin_lock(&o2hb_live_lock);
reg = (struct o2hb_region *)db->db_data;
memcpy(map, reg->hr_live_node_bitmap, db->db_size);
spin_unlock(&o2hb_live_lock);
break;
case O2HB_DB_TYPE_REGION_NUMBER:
reg = (struct o2hb_region *)db->db_data;
out += scnprintf(buf + out, PAGE_SIZE - out, "%d\n",
reg->hr_region_num);
goto done;
case O2HB_DB_TYPE_REGION_ELAPSED_TIME:
reg = (struct o2hb_region *)db->db_data;
lts = reg->hr_last_timeout_start;
/* If 0, it has never been set before */
if (lts)
lts = jiffies_to_msecs(jiffies - lts);
out += scnprintf(buf + out, PAGE_SIZE - out, "%lu\n", lts);
goto done;
case O2HB_DB_TYPE_REGION_PINNED:
reg = (struct o2hb_region *)db->db_data;
out += scnprintf(buf + out, PAGE_SIZE - out, "%u\n",
!!reg->hr_item_pinned);
goto done;
default:
goto done;
}
while ((i = find_next_bit(map, db->db_len, i + 1)) < db->db_len)
out += scnprintf(buf + out, PAGE_SIZE - out, "%d ", i);
out += scnprintf(buf + out, PAGE_SIZE - out, "\n");
done:
i_size_write(inode, out);
file->private_data = buf;
return 0;
bail:
return -ENOMEM;
}
static int o2hb_debug_release(struct inode *inode, struct file *file)
{
kfree(file->private_data);
return 0;
}
static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
return simple_read_from_buffer(buf, nbytes, ppos, file->private_data,
i_size_read(file->f_mapping->host));
}
#else
static int o2hb_debug_open(struct inode *inode, struct file *file)
{
return 0;
}
static int o2hb_debug_release(struct inode *inode, struct file *file)
{
return 0;
}
static ssize_t o2hb_debug_read(struct file *file, char __user *buf,
size_t nbytes, loff_t *ppos)
{
return 0;
}
#endif /* CONFIG_DEBUG_FS */
static const struct file_operations o2hb_debug_fops = {
.open = o2hb_debug_open,
.release = o2hb_debug_release,
.read = o2hb_debug_read,
.llseek = generic_file_llseek,
};
void o2hb_exit(void)
{
debugfs_remove_recursive(o2hb_debug_dir);
kfree(o2hb_db_livenodes);
kfree(o2hb_db_liveregions);
kfree(o2hb_db_quorumregions);
kfree(o2hb_db_failedregions);
}
static void o2hb_debug_create(const char *name, struct dentry *dir,
struct o2hb_debug_buf **db, int db_len, int type,
int size, int len, void *data)
{
*db = kmalloc(db_len, GFP_KERNEL);
if (!*db)
return;
(*db)->db_type = type;
(*db)->db_size = size;
(*db)->db_len = len;
(*db)->db_data = data;
debugfs_create_file(name, S_IFREG|S_IRUSR, dir, *db, &o2hb_debug_fops);
}
static void o2hb_debug_init(void)
{
o2hb_debug_dir = debugfs_create_dir(O2HB_DEBUG_DIR, NULL);
o2hb_debug_create(O2HB_DEBUG_LIVENODES, o2hb_debug_dir,
&o2hb_db_livenodes, sizeof(*o2hb_db_livenodes),
O2HB_DB_TYPE_LIVENODES, sizeof(o2hb_live_node_bitmap),
O2NM_MAX_NODES, o2hb_live_node_bitmap);
o2hb_debug_create(O2HB_DEBUG_LIVEREGIONS, o2hb_debug_dir,
&o2hb_db_liveregions, sizeof(*o2hb_db_liveregions),
O2HB_DB_TYPE_LIVEREGIONS,
sizeof(o2hb_live_region_bitmap), O2NM_MAX_REGIONS,
o2hb_live_region_bitmap);
o2hb_debug_create(O2HB_DEBUG_QUORUMREGIONS, o2hb_debug_dir,
&o2hb_db_quorumregions,
sizeof(*o2hb_db_quorumregions),
O2HB_DB_TYPE_QUORUMREGIONS,
sizeof(o2hb_quorum_region_bitmap), O2NM_MAX_REGIONS,
o2hb_quorum_region_bitmap);
o2hb_debug_create(O2HB_DEBUG_FAILEDREGIONS, o2hb_debug_dir,
&o2hb_db_failedregions,
sizeof(*o2hb_db_failedregions),
O2HB_DB_TYPE_FAILEDREGIONS,
sizeof(o2hb_failed_region_bitmap), O2NM_MAX_REGIONS,
o2hb_failed_region_bitmap);
}
void o2hb_init(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(o2hb_callbacks); i++)
INIT_LIST_HEAD(&o2hb_callbacks[i].list);
for (i = 0; i < ARRAY_SIZE(o2hb_live_slots); i++)
INIT_LIST_HEAD(&o2hb_live_slots[i]);
bitmap_zero(o2hb_live_node_bitmap, O2NM_MAX_NODES);
bitmap_zero(o2hb_region_bitmap, O2NM_MAX_REGIONS);
bitmap_zero(o2hb_live_region_bitmap, O2NM_MAX_REGIONS);
bitmap_zero(o2hb_quorum_region_bitmap, O2NM_MAX_REGIONS);
bitmap_zero(o2hb_failed_region_bitmap, O2NM_MAX_REGIONS);
o2hb_dependent_users = 0;
o2hb_debug_init();
}
/* if we're already in a callback then we're already serialized by the sem */
static void o2hb_fill_node_map_from_callback(unsigned long *map,
unsigned int bits)
{
bitmap_copy(map, o2hb_live_node_bitmap, bits);
}
/*
* get a map of all nodes that are heartbeating in any regions
*/
void o2hb_fill_node_map(unsigned long *map, unsigned int bits)
{
/* callers want to serialize this map and callbacks so that they
* can trust that they don't miss nodes coming to the party */
down_read(&o2hb_callback_sem);
spin_lock(&o2hb_live_lock);
o2hb_fill_node_map_from_callback(map, bits);
spin_unlock(&o2hb_live_lock);
up_read(&o2hb_callback_sem);
}
EXPORT_SYMBOL_GPL(o2hb_fill_node_map);
/*
* heartbeat configfs bits. The heartbeat set is a default set under
* the cluster set in nodemanager.c.
*/
static struct o2hb_region *to_o2hb_region(struct config_item *item)
{
return item ? container_of(item, struct o2hb_region, hr_item) : NULL;
}
/* drop_item only drops its ref after killing the thread, nothing should
* be using the region anymore. this has to clean up any state that
* attributes might have built up. */
static void o2hb_region_release(struct config_item *item)
{
int i;
struct page *page;
struct o2hb_region *reg = to_o2hb_region(item);
mlog(ML_HEARTBEAT, "hb region release (%pg)\n", reg->hr_bdev);
kfree(reg->hr_tmp_block);
if (reg->hr_slot_data) {
for (i = 0; i < reg->hr_num_pages; i++) {
page = reg->hr_slot_data[i];
if (page)
__free_page(page);
}
kfree(reg->hr_slot_data);
}
if (reg->hr_bdev)
2023-10-24 12:59:35 +02:00
blkdev_put(reg->hr_bdev, NULL);
2023-08-30 17:31:07 +02:00
kfree(reg->hr_slots);
debugfs_remove_recursive(reg->hr_debug_dir);
kfree(reg->hr_db_livenodes);
kfree(reg->hr_db_regnum);
kfree(reg->hr_db_elapsed_time);
kfree(reg->hr_db_pinned);
spin_lock(&o2hb_live_lock);
list_del(&reg->hr_all_item);
spin_unlock(&o2hb_live_lock);
o2net_unregister_handler_list(&reg->hr_handler_list);
kfree(reg);
}
static int o2hb_read_block_input(struct o2hb_region *reg,
const char *page,
unsigned long *ret_bytes,
unsigned int *ret_bits)
{
unsigned long bytes;
char *p = (char *)page;
bytes = simple_strtoul(p, &p, 0);
if (!p || (*p && (*p != '\n')))
return -EINVAL;
/* Heartbeat and fs min / max block sizes are the same. */
if (bytes > 4096 || bytes < 512)
return -ERANGE;
if (hweight16(bytes) != 1)
return -EINVAL;
if (ret_bytes)
*ret_bytes = bytes;
if (ret_bits)
*ret_bits = ffs(bytes) - 1;
return 0;
}
static ssize_t o2hb_region_block_bytes_show(struct config_item *item,
char *page)
{
return sprintf(page, "%u\n", to_o2hb_region(item)->hr_block_bytes);
}
static ssize_t o2hb_region_block_bytes_store(struct config_item *item,
const char *page,
size_t count)
{
struct o2hb_region *reg = to_o2hb_region(item);
int status;
unsigned long block_bytes;
unsigned int block_bits;
if (reg->hr_bdev)
return -EINVAL;
status = o2hb_read_block_input(reg, page, &block_bytes,
&block_bits);
if (status)
return status;
reg->hr_block_bytes = (unsigned int)block_bytes;
reg->hr_block_bits = block_bits;
return count;
}
static ssize_t o2hb_region_start_block_show(struct config_item *item,
char *page)
{
return sprintf(page, "%llu\n", to_o2hb_region(item)->hr_start_block);
}
static ssize_t o2hb_region_start_block_store(struct config_item *item,
const char *page,
size_t count)
{
struct o2hb_region *reg = to_o2hb_region(item);
unsigned long long tmp;
char *p = (char *)page;
ssize_t ret;
if (reg->hr_bdev)
return -EINVAL;
ret = kstrtoull(p, 0, &tmp);
if (ret)
return -EINVAL;
reg->hr_start_block = tmp;
return count;
}
static ssize_t o2hb_region_blocks_show(struct config_item *item, char *page)
{
return sprintf(page, "%d\n", to_o2hb_region(item)->hr_blocks);
}
static ssize_t o2hb_region_blocks_store(struct config_item *item,
const char *page,
size_t count)
{
struct o2hb_region *reg = to_o2hb_region(item);
unsigned long tmp;
char *p = (char *)page;
if (reg->hr_bdev)
return -EINVAL;
tmp = simple_strtoul(p, &p, 0);
if (!p || (*p && (*p != '\n')))
return -EINVAL;
if (tmp > O2NM_MAX_NODES || tmp == 0)
return -ERANGE;
reg->hr_blocks = (unsigned int)tmp;
return count;
}
static ssize_t o2hb_region_dev_show(struct config_item *item, char *page)
{
unsigned int ret = 0;
if (to_o2hb_region(item)->hr_bdev)
ret = sprintf(page, "%pg\n", to_o2hb_region(item)->hr_bdev);
return ret;
}
static void o2hb_init_region_params(struct o2hb_region *reg)
{
reg->hr_slots_per_page = PAGE_SIZE >> reg->hr_block_bits;
reg->hr_timeout_ms = O2HB_REGION_TIMEOUT_MS;
mlog(ML_HEARTBEAT, "hr_start_block = %llu, hr_blocks = %u\n",
reg->hr_start_block, reg->hr_blocks);
mlog(ML_HEARTBEAT, "hr_block_bytes = %u, hr_block_bits = %u\n",
reg->hr_block_bytes, reg->hr_block_bits);
mlog(ML_HEARTBEAT, "hr_timeout_ms = %u\n", reg->hr_timeout_ms);
mlog(ML_HEARTBEAT, "dead threshold = %u\n", o2hb_dead_threshold);
}
static int o2hb_map_slot_data(struct o2hb_region *reg)
{
int i, j;
unsigned int last_slot;
unsigned int spp = reg->hr_slots_per_page;
struct page *page;
char *raw;
struct o2hb_disk_slot *slot;
reg->hr_tmp_block = kmalloc(reg->hr_block_bytes, GFP_KERNEL);
if (reg->hr_tmp_block == NULL)
return -ENOMEM;
reg->hr_slots = kcalloc(reg->hr_blocks,
sizeof(struct o2hb_disk_slot), GFP_KERNEL);
if (reg->hr_slots == NULL)
return -ENOMEM;
for(i = 0; i < reg->hr_blocks; i++) {
slot = &reg->hr_slots[i];
slot->ds_node_num = i;
INIT_LIST_HEAD(&slot->ds_live_item);
slot->ds_raw_block = NULL;
}
reg->hr_num_pages = (reg->hr_blocks + spp - 1) / spp;
mlog(ML_HEARTBEAT, "Going to require %u pages to cover %u blocks "
"at %u blocks per page\n",
reg->hr_num_pages, reg->hr_blocks, spp);
reg->hr_slot_data = kcalloc(reg->hr_num_pages, sizeof(struct page *),
GFP_KERNEL);
if (!reg->hr_slot_data)
return -ENOMEM;
for(i = 0; i < reg->hr_num_pages; i++) {
page = alloc_page(GFP_KERNEL);
if (!page)
return -ENOMEM;
reg->hr_slot_data[i] = page;
last_slot = i * spp;
raw = page_address(page);
for (j = 0;
(j < spp) && ((j + last_slot) < reg->hr_blocks);
j++) {
BUG_ON((j + last_slot) >= reg->hr_blocks);
slot = &reg->hr_slots[j + last_slot];
slot->ds_raw_block =
(struct o2hb_disk_heartbeat_block *) raw;
raw += reg->hr_block_bytes;
}
}
return 0;
}
/* Read in all the slots available and populate the tracking
* structures so that we can start with a baseline idea of what's
* there. */
static int o2hb_populate_slot_data(struct o2hb_region *reg)
{
int ret, i;
struct o2hb_disk_slot *slot;
struct o2hb_disk_heartbeat_block *hb_block;
ret = o2hb_read_slots(reg, 0, reg->hr_blocks);
if (ret)
goto out;
/* We only want to get an idea of the values initially in each
* slot, so we do no verification - o2hb_check_slot will
* actually determine if each configured slot is valid and
* whether any values have changed. */
for(i = 0; i < reg->hr_blocks; i++) {
slot = &reg->hr_slots[i];
hb_block = (struct o2hb_disk_heartbeat_block *) slot->ds_raw_block;
/* Only fill the values that o2hb_check_slot uses to
* determine changing slots */
slot->ds_last_time = le64_to_cpu(hb_block->hb_seq);
slot->ds_last_generation = le64_to_cpu(hb_block->hb_generation);
}
out:
return ret;
}
/* this is acting as commit; we set up all of hr_bdev and hr_task or nothing */
static ssize_t o2hb_region_dev_store(struct config_item *item,
const char *page,
size_t count)
{
struct o2hb_region *reg = to_o2hb_region(item);
struct task_struct *hb_task;
long fd;
int sectsize;
char *p = (char *)page;
struct fd f;
ssize_t ret = -EINVAL;
int live_threshold;
if (reg->hr_bdev)
goto out;
/* We can't heartbeat without having had our node number
* configured yet. */
if (o2nm_this_node() == O2NM_MAX_NODES)
goto out;
fd = simple_strtol(p, &p, 0);
if (!p || (*p && (*p != '\n')))
goto out;
if (fd < 0 || fd >= INT_MAX)
goto out;
f = fdget(fd);
if (f.file == NULL)
goto out;
if (reg->hr_blocks == 0 || reg->hr_start_block == 0 ||
reg->hr_block_bytes == 0)
goto out2;
if (!S_ISBLK(f.file->f_mapping->host->i_mode))
goto out2;
reg->hr_bdev = blkdev_get_by_dev(f.file->f_mapping->host->i_rdev,
2023-10-24 12:59:35 +02:00
BLK_OPEN_WRITE | BLK_OPEN_READ, NULL,
NULL);
2023-08-30 17:31:07 +02:00
if (IS_ERR(reg->hr_bdev)) {
ret = PTR_ERR(reg->hr_bdev);
reg->hr_bdev = NULL;
goto out2;
}
sectsize = bdev_logical_block_size(reg->hr_bdev);
if (sectsize != reg->hr_block_bytes) {
mlog(ML_ERROR,
"blocksize %u incorrect for device, expected %d",
reg->hr_block_bytes, sectsize);
ret = -EINVAL;
goto out3;
}
o2hb_init_region_params(reg);
/* Generation of zero is invalid */
do {
get_random_bytes(&reg->hr_generation,
sizeof(reg->hr_generation));
} while (reg->hr_generation == 0);
ret = o2hb_map_slot_data(reg);
if (ret) {
mlog_errno(ret);
goto out3;
}
ret = o2hb_populate_slot_data(reg);
if (ret) {
mlog_errno(ret);
goto out3;
}
INIT_DELAYED_WORK(&reg->hr_write_timeout_work, o2hb_write_timeout);
INIT_DELAYED_WORK(&reg->hr_nego_timeout_work, o2hb_nego_timeout);
/*
* A node is considered live after it has beat LIVE_THRESHOLD
* times. We're not steady until we've given them a chance
* _after_ our first read.
* The default threshold is bare minimum so as to limit the delay
* during mounts. For global heartbeat, the threshold doubled for the
* first region.
*/
live_threshold = O2HB_LIVE_THRESHOLD;
if (o2hb_global_heartbeat_active()) {
spin_lock(&o2hb_live_lock);
if (bitmap_weight(o2hb_region_bitmap, O2NM_MAX_REGIONS) == 1)
live_threshold <<= 1;
spin_unlock(&o2hb_live_lock);
}
++live_threshold;
atomic_set(&reg->hr_steady_iterations, live_threshold);
/* unsteady_iterations is triple the steady_iterations */
atomic_set(&reg->hr_unsteady_iterations, (live_threshold * 3));
hb_task = kthread_run(o2hb_thread, reg, "o2hb-%s",
reg->hr_item.ci_name);
if (IS_ERR(hb_task)) {
ret = PTR_ERR(hb_task);
mlog_errno(ret);
goto out3;
}
spin_lock(&o2hb_live_lock);
reg->hr_task = hb_task;
spin_unlock(&o2hb_live_lock);
ret = wait_event_interruptible(o2hb_steady_queue,
atomic_read(&reg->hr_steady_iterations) == 0 ||
reg->hr_node_deleted);
if (ret) {
atomic_set(&reg->hr_steady_iterations, 0);
reg->hr_aborted_start = 1;
}
if (reg->hr_aborted_start) {
ret = -EIO;
goto out3;
}
if (reg->hr_node_deleted) {
ret = -EINVAL;
goto out3;
}
/* Ok, we were woken. Make sure it wasn't by drop_item() */
spin_lock(&o2hb_live_lock);
hb_task = reg->hr_task;
if (o2hb_global_heartbeat_active())
set_bit(reg->hr_region_num, o2hb_live_region_bitmap);
spin_unlock(&o2hb_live_lock);
if (hb_task)
ret = count;
else
ret = -EIO;
if (hb_task && o2hb_global_heartbeat_active())
printk(KERN_NOTICE "o2hb: Heartbeat started on region %s (%pg)\n",
config_item_name(&reg->hr_item), reg->hr_bdev);
out3:
if (ret < 0) {
2023-10-24 12:59:35 +02:00
blkdev_put(reg->hr_bdev, NULL);
2023-08-30 17:31:07 +02:00
reg->hr_bdev = NULL;
}
out2:
fdput(f);
out:
return ret;
}
static ssize_t o2hb_region_pid_show(struct config_item *item, char *page)
{
struct o2hb_region *reg = to_o2hb_region(item);
pid_t pid = 0;
spin_lock(&o2hb_live_lock);
if (reg->hr_task)
pid = task_pid_nr(reg->hr_task);
spin_unlock(&o2hb_live_lock);
if (!pid)
return 0;
return sprintf(page, "%u\n", pid);
}
CONFIGFS_ATTR(o2hb_region_, block_bytes);
CONFIGFS_ATTR(o2hb_region_, start_block);
CONFIGFS_ATTR(o2hb_region_, blocks);
CONFIGFS_ATTR(o2hb_region_, dev);
CONFIGFS_ATTR_RO(o2hb_region_, pid);
static struct configfs_attribute *o2hb_region_attrs[] = {
&o2hb_region_attr_block_bytes,
&o2hb_region_attr_start_block,
&o2hb_region_attr_blocks,
&o2hb_region_attr_dev,
&o2hb_region_attr_pid,
NULL,
};
static struct configfs_item_operations o2hb_region_item_ops = {
.release = o2hb_region_release,
};
static const struct config_item_type o2hb_region_type = {
.ct_item_ops = &o2hb_region_item_ops,
.ct_attrs = o2hb_region_attrs,
.ct_owner = THIS_MODULE,
};
/* heartbeat set */
struct o2hb_heartbeat_group {
struct config_group hs_group;
/* some stuff? */
};
static struct o2hb_heartbeat_group *to_o2hb_heartbeat_group(struct config_group *group)
{
return group ?
container_of(group, struct o2hb_heartbeat_group, hs_group)
: NULL;
}
static void o2hb_debug_region_init(struct o2hb_region *reg,
struct dentry *parent)
{
struct dentry *dir;
dir = debugfs_create_dir(config_item_name(&reg->hr_item), parent);
reg->hr_debug_dir = dir;
o2hb_debug_create(O2HB_DEBUG_LIVENODES, dir, &(reg->hr_db_livenodes),
sizeof(*(reg->hr_db_livenodes)),
O2HB_DB_TYPE_REGION_LIVENODES,
sizeof(reg->hr_live_node_bitmap), O2NM_MAX_NODES,
reg);
o2hb_debug_create(O2HB_DEBUG_REGION_NUMBER, dir, &(reg->hr_db_regnum),
sizeof(*(reg->hr_db_regnum)),
O2HB_DB_TYPE_REGION_NUMBER, 0, O2NM_MAX_NODES, reg);
o2hb_debug_create(O2HB_DEBUG_REGION_ELAPSED_TIME, dir,
&(reg->hr_db_elapsed_time),
sizeof(*(reg->hr_db_elapsed_time)),
O2HB_DB_TYPE_REGION_ELAPSED_TIME, 0, 0, reg);
o2hb_debug_create(O2HB_DEBUG_REGION_PINNED, dir, &(reg->hr_db_pinned),
sizeof(*(reg->hr_db_pinned)),
O2HB_DB_TYPE_REGION_PINNED, 0, 0, reg);
}
static struct config_item *o2hb_heartbeat_group_make_item(struct config_group *group,
const char *name)
{
struct o2hb_region *reg = NULL;
int ret;
reg = kzalloc(sizeof(struct o2hb_region), GFP_KERNEL);
if (reg == NULL)
return ERR_PTR(-ENOMEM);
if (strlen(name) > O2HB_MAX_REGION_NAME_LEN) {
ret = -ENAMETOOLONG;
goto free;
}
spin_lock(&o2hb_live_lock);
reg->hr_region_num = 0;
if (o2hb_global_heartbeat_active()) {
reg->hr_region_num = find_first_zero_bit(o2hb_region_bitmap,
O2NM_MAX_REGIONS);
if (reg->hr_region_num >= O2NM_MAX_REGIONS) {
spin_unlock(&o2hb_live_lock);
ret = -EFBIG;
goto free;
}
set_bit(reg->hr_region_num, o2hb_region_bitmap);
}
list_add_tail(&reg->hr_all_item, &o2hb_all_regions);
spin_unlock(&o2hb_live_lock);
config_item_init_type_name(&reg->hr_item, name, &o2hb_region_type);
/* this is the same way to generate msg key as dlm, for local heartbeat,
* name is also the same, so make initial crc value different to avoid
* message key conflict.
*/
reg->hr_key = crc32_le(reg->hr_region_num + O2NM_MAX_REGIONS,
name, strlen(name));
INIT_LIST_HEAD(&reg->hr_handler_list);
ret = o2net_register_handler(O2HB_NEGO_TIMEOUT_MSG, reg->hr_key,
sizeof(struct o2hb_nego_msg),
o2hb_nego_timeout_handler,
reg, NULL, &reg->hr_handler_list);
if (ret)
goto remove_item;
ret = o2net_register_handler(O2HB_NEGO_APPROVE_MSG, reg->hr_key,
sizeof(struct o2hb_nego_msg),
o2hb_nego_approve_handler,
reg, NULL, &reg->hr_handler_list);
if (ret)
goto unregister_handler;
o2hb_debug_region_init(reg, o2hb_debug_dir);
return &reg->hr_item;
unregister_handler:
o2net_unregister_handler_list(&reg->hr_handler_list);
remove_item:
spin_lock(&o2hb_live_lock);
list_del(&reg->hr_all_item);
if (o2hb_global_heartbeat_active())
clear_bit(reg->hr_region_num, o2hb_region_bitmap);
spin_unlock(&o2hb_live_lock);
free:
kfree(reg);
return ERR_PTR(ret);
}
static void o2hb_heartbeat_group_drop_item(struct config_group *group,
struct config_item *item)
{
struct task_struct *hb_task;
struct o2hb_region *reg = to_o2hb_region(item);
int quorum_region = 0;
/* stop the thread when the user removes the region dir */
spin_lock(&o2hb_live_lock);
hb_task = reg->hr_task;
reg->hr_task = NULL;
reg->hr_item_dropped = 1;
spin_unlock(&o2hb_live_lock);
if (hb_task)
kthread_stop(hb_task);
if (o2hb_global_heartbeat_active()) {
spin_lock(&o2hb_live_lock);
clear_bit(reg->hr_region_num, o2hb_region_bitmap);
clear_bit(reg->hr_region_num, o2hb_live_region_bitmap);
if (test_bit(reg->hr_region_num, o2hb_quorum_region_bitmap))
quorum_region = 1;
clear_bit(reg->hr_region_num, o2hb_quorum_region_bitmap);
spin_unlock(&o2hb_live_lock);
printk(KERN_NOTICE "o2hb: Heartbeat %s on region %s (%pg)\n",
((atomic_read(&reg->hr_steady_iterations) == 0) ?
"stopped" : "start aborted"), config_item_name(item),
reg->hr_bdev);
}
/*
* If we're racing a dev_write(), we need to wake them. They will
* check reg->hr_task
*/
if (atomic_read(&reg->hr_steady_iterations) != 0) {
reg->hr_aborted_start = 1;
atomic_set(&reg->hr_steady_iterations, 0);
wake_up(&o2hb_steady_queue);
}
config_item_put(item);
if (!o2hb_global_heartbeat_active() || !quorum_region)
return;
/*
* If global heartbeat active and there are dependent users,
* pin all regions if quorum region count <= CUT_OFF
*/
spin_lock(&o2hb_live_lock);
if (!o2hb_dependent_users)
goto unlock;
if (bitmap_weight(o2hb_quorum_region_bitmap,
O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
o2hb_region_pin(NULL);
unlock:
spin_unlock(&o2hb_live_lock);
}
static ssize_t o2hb_heartbeat_group_dead_threshold_show(struct config_item *item,
char *page)
{
return sprintf(page, "%u\n", o2hb_dead_threshold);
}
static ssize_t o2hb_heartbeat_group_dead_threshold_store(struct config_item *item,
const char *page, size_t count)
{
unsigned long tmp;
char *p = (char *)page;
tmp = simple_strtoul(p, &p, 10);
if (!p || (*p && (*p != '\n')))
return -EINVAL;
/* this will validate ranges for us. */
o2hb_dead_threshold_set((unsigned int) tmp);
return count;
}
static ssize_t o2hb_heartbeat_group_mode_show(struct config_item *item,
char *page)
{
return sprintf(page, "%s\n",
o2hb_heartbeat_mode_desc[o2hb_heartbeat_mode]);
}
static ssize_t o2hb_heartbeat_group_mode_store(struct config_item *item,
const char *page, size_t count)
{
unsigned int i;
int ret;
size_t len;
len = (page[count - 1] == '\n') ? count - 1 : count;
if (!len)
return -EINVAL;
for (i = 0; i < O2HB_HEARTBEAT_NUM_MODES; ++i) {
if (strncasecmp(page, o2hb_heartbeat_mode_desc[i], len))
continue;
ret = o2hb_global_heartbeat_mode_set(i);
if (!ret)
printk(KERN_NOTICE "o2hb: Heartbeat mode set to %s\n",
o2hb_heartbeat_mode_desc[i]);
return count;
}
return -EINVAL;
}
CONFIGFS_ATTR(o2hb_heartbeat_group_, dead_threshold);
CONFIGFS_ATTR(o2hb_heartbeat_group_, mode);
static struct configfs_attribute *o2hb_heartbeat_group_attrs[] = {
&o2hb_heartbeat_group_attr_dead_threshold,
&o2hb_heartbeat_group_attr_mode,
NULL,
};
static struct configfs_group_operations o2hb_heartbeat_group_group_ops = {
.make_item = o2hb_heartbeat_group_make_item,
.drop_item = o2hb_heartbeat_group_drop_item,
};
static const struct config_item_type o2hb_heartbeat_group_type = {
.ct_group_ops = &o2hb_heartbeat_group_group_ops,
.ct_attrs = o2hb_heartbeat_group_attrs,
.ct_owner = THIS_MODULE,
};
/* this is just here to avoid touching group in heartbeat.h which the
* entire damn world #includes */
struct config_group *o2hb_alloc_hb_set(void)
{
struct o2hb_heartbeat_group *hs = NULL;
struct config_group *ret = NULL;
hs = kzalloc(sizeof(struct o2hb_heartbeat_group), GFP_KERNEL);
if (hs == NULL)
goto out;
config_group_init_type_name(&hs->hs_group, "heartbeat",
&o2hb_heartbeat_group_type);
ret = &hs->hs_group;
out:
if (ret == NULL)
kfree(hs);
return ret;
}
void o2hb_free_hb_set(struct config_group *group)
{
struct o2hb_heartbeat_group *hs = to_o2hb_heartbeat_group(group);
kfree(hs);
}
/* hb callback registration and issuing */
static struct o2hb_callback *hbcall_from_type(enum o2hb_callback_type type)
{
if (type == O2HB_NUM_CB)
return ERR_PTR(-EINVAL);
return &o2hb_callbacks[type];
}
void o2hb_setup_callback(struct o2hb_callback_func *hc,
enum o2hb_callback_type type,
o2hb_cb_func *func,
void *data,
int priority)
{
INIT_LIST_HEAD(&hc->hc_item);
hc->hc_func = func;
hc->hc_data = data;
hc->hc_priority = priority;
hc->hc_type = type;
hc->hc_magic = O2HB_CB_MAGIC;
}
EXPORT_SYMBOL_GPL(o2hb_setup_callback);
/*
* In local heartbeat mode, region_uuid passed matches the dlm domain name.
* In global heartbeat mode, region_uuid passed is NULL.
*
* In local, we only pin the matching region. In global we pin all the active
* regions.
*/
static int o2hb_region_pin(const char *region_uuid)
{
int ret = 0, found = 0;
struct o2hb_region *reg;
char *uuid;
assert_spin_locked(&o2hb_live_lock);
list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
if (reg->hr_item_dropped)
continue;
uuid = config_item_name(&reg->hr_item);
/* local heartbeat */
if (region_uuid) {
if (strcmp(region_uuid, uuid))
continue;
found = 1;
}
if (reg->hr_item_pinned || reg->hr_item_dropped)
goto skip_pin;
/* Ignore ENOENT only for local hb (userdlm domain) */
ret = o2nm_depend_item(&reg->hr_item);
if (!ret) {
mlog(ML_CLUSTER, "Pin region %s\n", uuid);
reg->hr_item_pinned = 1;
} else {
if (ret == -ENOENT && found)
ret = 0;
else {
mlog(ML_ERROR, "Pin region %s fails with %d\n",
uuid, ret);
break;
}
}
skip_pin:
if (found)
break;
}
return ret;
}
/*
* In local heartbeat mode, region_uuid passed matches the dlm domain name.
* In global heartbeat mode, region_uuid passed is NULL.
*
* In local, we only unpin the matching region. In global we unpin all the
* active regions.
*/
static void o2hb_region_unpin(const char *region_uuid)
{
struct o2hb_region *reg;
char *uuid;
int found = 0;
assert_spin_locked(&o2hb_live_lock);
list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
if (reg->hr_item_dropped)
continue;
uuid = config_item_name(&reg->hr_item);
if (region_uuid) {
if (strcmp(region_uuid, uuid))
continue;
found = 1;
}
if (reg->hr_item_pinned) {
mlog(ML_CLUSTER, "Unpin region %s\n", uuid);
o2nm_undepend_item(&reg->hr_item);
reg->hr_item_pinned = 0;
}
if (found)
break;
}
}
static int o2hb_region_inc_user(const char *region_uuid)
{
int ret = 0;
spin_lock(&o2hb_live_lock);
/* local heartbeat */
if (!o2hb_global_heartbeat_active()) {
ret = o2hb_region_pin(region_uuid);
goto unlock;
}
/*
* if global heartbeat active and this is the first dependent user,
* pin all regions if quorum region count <= CUT_OFF
*/
o2hb_dependent_users++;
if (o2hb_dependent_users > 1)
goto unlock;
if (bitmap_weight(o2hb_quorum_region_bitmap,
O2NM_MAX_REGIONS) <= O2HB_PIN_CUT_OFF)
ret = o2hb_region_pin(NULL);
unlock:
spin_unlock(&o2hb_live_lock);
return ret;
}
static void o2hb_region_dec_user(const char *region_uuid)
{
spin_lock(&o2hb_live_lock);
/* local heartbeat */
if (!o2hb_global_heartbeat_active()) {
o2hb_region_unpin(region_uuid);
goto unlock;
}
/*
* if global heartbeat active and there are no dependent users,
* unpin all quorum regions
*/
o2hb_dependent_users--;
if (!o2hb_dependent_users)
o2hb_region_unpin(NULL);
unlock:
spin_unlock(&o2hb_live_lock);
}
int o2hb_register_callback(const char *region_uuid,
struct o2hb_callback_func *hc)
{
struct o2hb_callback_func *f;
struct o2hb_callback *hbcall;
int ret;
BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
BUG_ON(!list_empty(&hc->hc_item));
hbcall = hbcall_from_type(hc->hc_type);
if (IS_ERR(hbcall)) {
ret = PTR_ERR(hbcall);
goto out;
}
if (region_uuid) {
ret = o2hb_region_inc_user(region_uuid);
if (ret) {
mlog_errno(ret);
goto out;
}
}
down_write(&o2hb_callback_sem);
list_for_each_entry(f, &hbcall->list, hc_item) {
if (hc->hc_priority < f->hc_priority) {
list_add_tail(&hc->hc_item, &f->hc_item);
break;
}
}
if (list_empty(&hc->hc_item))
list_add_tail(&hc->hc_item, &hbcall->list);
up_write(&o2hb_callback_sem);
ret = 0;
out:
mlog(ML_CLUSTER, "returning %d on behalf of %p for funcs %p\n",
ret, __builtin_return_address(0), hc);
return ret;
}
EXPORT_SYMBOL_GPL(o2hb_register_callback);
void o2hb_unregister_callback(const char *region_uuid,
struct o2hb_callback_func *hc)
{
BUG_ON(hc->hc_magic != O2HB_CB_MAGIC);
mlog(ML_CLUSTER, "on behalf of %p for funcs %p\n",
__builtin_return_address(0), hc);
/* XXX Can this happen _with_ a region reference? */
if (list_empty(&hc->hc_item))
return;
if (region_uuid)
o2hb_region_dec_user(region_uuid);
down_write(&o2hb_callback_sem);
list_del_init(&hc->hc_item);
up_write(&o2hb_callback_sem);
}
EXPORT_SYMBOL_GPL(o2hb_unregister_callback);
int o2hb_check_node_heartbeating_no_sem(u8 node_num)
{
unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
spin_lock(&o2hb_live_lock);
o2hb_fill_node_map_from_callback(testing_map, O2NM_MAX_NODES);
spin_unlock(&o2hb_live_lock);
if (!test_bit(node_num, testing_map)) {
mlog(ML_HEARTBEAT,
"node (%u) does not have heartbeating enabled.\n",
node_num);
return 0;
}
return 1;
}
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_no_sem);
int o2hb_check_node_heartbeating_from_callback(u8 node_num)
{
unsigned long testing_map[BITS_TO_LONGS(O2NM_MAX_NODES)];
o2hb_fill_node_map_from_callback(testing_map, O2NM_MAX_NODES);
if (!test_bit(node_num, testing_map)) {
mlog(ML_HEARTBEAT,
"node (%u) does not have heartbeating enabled.\n",
node_num);
return 0;
}
return 1;
}
EXPORT_SYMBOL_GPL(o2hb_check_node_heartbeating_from_callback);
/*
* this is just a hack until we get the plumbing which flips file systems
* read only and drops the hb ref instead of killing the node dead.
*/
void o2hb_stop_all_regions(void)
{
struct o2hb_region *reg;
mlog(ML_ERROR, "stopping heartbeat on all active regions.\n");
spin_lock(&o2hb_live_lock);
list_for_each_entry(reg, &o2hb_all_regions, hr_all_item)
reg->hr_unclean_stop = 1;
spin_unlock(&o2hb_live_lock);
}
EXPORT_SYMBOL_GPL(o2hb_stop_all_regions);
int o2hb_get_all_regions(char *region_uuids, u8 max_regions)
{
struct o2hb_region *reg;
int numregs = 0;
char *p;
spin_lock(&o2hb_live_lock);
p = region_uuids;
list_for_each_entry(reg, &o2hb_all_regions, hr_all_item) {
if (reg->hr_item_dropped)
continue;
mlog(0, "Region: %s\n", config_item_name(&reg->hr_item));
if (numregs < max_regions) {
memcpy(p, config_item_name(&reg->hr_item),
O2HB_MAX_REGION_NAME_LEN);
p += O2HB_MAX_REGION_NAME_LEN;
}
numregs++;
}
spin_unlock(&o2hb_live_lock);
return numregs;
}
EXPORT_SYMBOL_GPL(o2hb_get_all_regions);
int o2hb_global_heartbeat_active(void)
{
return (o2hb_heartbeat_mode == O2HB_HEARTBEAT_GLOBAL);
}
EXPORT_SYMBOL(o2hb_global_heartbeat_active);