linux-zen-desktop/fs/xfs/scrub/agheader_repair.c

1019 lines
26 KiB
C
Raw Normal View History

2023-10-24 12:59:35 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
2023-08-30 17:31:07 +02:00
/*
2023-10-24 12:59:35 +02:00
* Copyright (C) 2018-2023 Oracle. All Rights Reserved.
* Author: Darrick J. Wong <djwong@kernel.org>
2023-08-30 17:31:07 +02:00
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_trans_resv.h"
#include "xfs_mount.h"
#include "xfs_btree.h"
#include "xfs_log_format.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_alloc.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc.h"
#include "xfs_ialloc_btree.h"
#include "xfs_rmap.h"
#include "xfs_rmap_btree.h"
#include "xfs_refcount_btree.h"
#include "xfs_ag.h"
#include "scrub/scrub.h"
#include "scrub/common.h"
#include "scrub/trace.h"
#include "scrub/repair.h"
#include "scrub/bitmap.h"
/* Superblock */
/* Repair the superblock. */
int
xrep_superblock(
struct xfs_scrub *sc)
{
struct xfs_mount *mp = sc->mp;
struct xfs_buf *bp;
xfs_agnumber_t agno;
int error;
/* Don't try to repair AG 0's sb; let xfs_repair deal with it. */
agno = sc->sm->sm_agno;
if (agno == 0)
return -EOPNOTSUPP;
error = xfs_sb_get_secondary(mp, sc->tp, agno, &bp);
if (error)
return error;
/* Copy AG 0's superblock to this one. */
xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
xfs_sb_to_disk(bp->b_addr, &mp->m_sb);
/*
* Don't write out a secondary super with NEEDSREPAIR or log incompat
* features set, since both are ignored when set on a secondary.
*/
if (xfs_has_crc(mp)) {
struct xfs_dsb *sb = bp->b_addr;
sb->sb_features_incompat &=
~cpu_to_be32(XFS_SB_FEAT_INCOMPAT_NEEDSREPAIR);
sb->sb_features_log_incompat = 0;
}
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, bp, XFS_BLFT_SB_BUF);
xfs_trans_log_buf(sc->tp, bp, 0, BBTOB(bp->b_length) - 1);
return error;
}
/* AGF */
struct xrep_agf_allocbt {
struct xfs_scrub *sc;
xfs_agblock_t freeblks;
xfs_agblock_t longest;
};
/* Record free space shape information. */
STATIC int
xrep_agf_walk_allocbt(
struct xfs_btree_cur *cur,
const struct xfs_alloc_rec_incore *rec,
void *priv)
{
struct xrep_agf_allocbt *raa = priv;
int error = 0;
if (xchk_should_terminate(raa->sc, &error))
return error;
raa->freeblks += rec->ar_blockcount;
if (rec->ar_blockcount > raa->longest)
raa->longest = rec->ar_blockcount;
return error;
}
/* Does this AGFL block look sane? */
STATIC int
xrep_agf_check_agfl_block(
struct xfs_mount *mp,
xfs_agblock_t agbno,
void *priv)
{
struct xfs_scrub *sc = priv;
if (!xfs_verify_agbno(sc->sa.pag, agbno))
return -EFSCORRUPTED;
return 0;
}
/*
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
* XFS_BTNUM_ names here to avoid creating a sparse array.
*/
enum {
XREP_AGF_BNOBT = 0,
XREP_AGF_CNTBT,
XREP_AGF_RMAPBT,
XREP_AGF_REFCOUNTBT,
XREP_AGF_END,
XREP_AGF_MAX
};
/* Check a btree root candidate. */
static inline bool
xrep_check_btree_root(
struct xfs_scrub *sc,
struct xrep_find_ag_btree *fab)
{
return xfs_verify_agbno(sc->sa.pag, fab->root) &&
fab->height <= fab->maxlevels;
}
/*
* Given the btree roots described by *fab, find the roots, check them for
* sanity, and pass the root data back out via *fab.
*
* This is /also/ a chicken and egg problem because we have to use the rmapbt
* (rooted in the AGF) to find the btrees rooted in the AGF. We also have no
* idea if the btrees make any sense. If we hit obvious corruptions in those
* btrees we'll bail out.
*/
STATIC int
xrep_agf_find_btrees(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xrep_find_ag_btree *fab,
struct xfs_buf *agfl_bp)
{
struct xfs_agf *old_agf = agf_bp->b_addr;
int error;
/* Go find the root data. */
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, agfl_bp);
if (error)
return error;
/* We must find the bnobt, cntbt, and rmapbt roots. */
if (!xrep_check_btree_root(sc, &fab[XREP_AGF_BNOBT]) ||
!xrep_check_btree_root(sc, &fab[XREP_AGF_CNTBT]) ||
!xrep_check_btree_root(sc, &fab[XREP_AGF_RMAPBT]))
return -EFSCORRUPTED;
/*
* We relied on the rmapbt to reconstruct the AGF. If we get a
* different root then something's seriously wrong.
*/
if (fab[XREP_AGF_RMAPBT].root !=
be32_to_cpu(old_agf->agf_roots[XFS_BTNUM_RMAPi]))
return -EFSCORRUPTED;
/* We must find the refcountbt root if that feature is enabled. */
if (xfs_has_reflink(sc->mp) &&
!xrep_check_btree_root(sc, &fab[XREP_AGF_REFCOUNTBT]))
return -EFSCORRUPTED;
return 0;
}
/*
* Reinitialize the AGF header, making an in-core copy of the old contents so
* that we know which in-core state needs to be reinitialized.
*/
STATIC void
xrep_agf_init_header(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xfs_agf *old_agf)
{
struct xfs_mount *mp = sc->mp;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_agf *agf = agf_bp->b_addr;
memcpy(old_agf, agf, sizeof(*old_agf));
memset(agf, 0, BBTOB(agf_bp->b_length));
agf->agf_magicnum = cpu_to_be32(XFS_AGF_MAGIC);
agf->agf_versionnum = cpu_to_be32(XFS_AGF_VERSION);
agf->agf_seqno = cpu_to_be32(pag->pag_agno);
agf->agf_length = cpu_to_be32(pag->block_count);
agf->agf_flfirst = old_agf->agf_flfirst;
agf->agf_fllast = old_agf->agf_fllast;
agf->agf_flcount = old_agf->agf_flcount;
if (xfs_has_crc(mp))
uuid_copy(&agf->agf_uuid, &mp->m_sb.sb_meta_uuid);
/* Mark the incore AGF data stale until we're done fixing things. */
ASSERT(xfs_perag_initialised_agf(pag));
clear_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
}
/* Set btree root information in an AGF. */
STATIC void
xrep_agf_set_roots(
struct xfs_scrub *sc,
struct xfs_agf *agf,
struct xrep_find_ag_btree *fab)
{
agf->agf_roots[XFS_BTNUM_BNOi] =
cpu_to_be32(fab[XREP_AGF_BNOBT].root);
agf->agf_levels[XFS_BTNUM_BNOi] =
cpu_to_be32(fab[XREP_AGF_BNOBT].height);
agf->agf_roots[XFS_BTNUM_CNTi] =
cpu_to_be32(fab[XREP_AGF_CNTBT].root);
agf->agf_levels[XFS_BTNUM_CNTi] =
cpu_to_be32(fab[XREP_AGF_CNTBT].height);
agf->agf_roots[XFS_BTNUM_RMAPi] =
cpu_to_be32(fab[XREP_AGF_RMAPBT].root);
agf->agf_levels[XFS_BTNUM_RMAPi] =
cpu_to_be32(fab[XREP_AGF_RMAPBT].height);
if (xfs_has_reflink(sc->mp)) {
agf->agf_refcount_root =
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].root);
agf->agf_refcount_level =
cpu_to_be32(fab[XREP_AGF_REFCOUNTBT].height);
}
}
/* Update all AGF fields which derive from btree contents. */
STATIC int
xrep_agf_calc_from_btrees(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp)
{
struct xrep_agf_allocbt raa = { .sc = sc };
struct xfs_btree_cur *cur = NULL;
struct xfs_agf *agf = agf_bp->b_addr;
struct xfs_mount *mp = sc->mp;
xfs_agblock_t btreeblks;
xfs_agblock_t blocks;
int error;
/* Update the AGF counters from the bnobt. */
cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag, XFS_BTNUM_BNO);
error = xfs_alloc_query_all(cur, xrep_agf_walk_allocbt, &raa);
if (error)
goto err;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
btreeblks = blocks - 1;
agf->agf_freeblks = cpu_to_be32(raa.freeblks);
agf->agf_longest = cpu_to_be32(raa.longest);
/* Update the AGF counters from the cntbt. */
cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag, XFS_BTNUM_CNT);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
btreeblks += blocks - 1;
/* Update the AGF counters from the rmapbt. */
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agf->agf_rmap_blocks = cpu_to_be32(blocks);
btreeblks += blocks - 1;
agf->agf_btreeblks = cpu_to_be32(btreeblks);
/* Update the AGF counters from the refcountbt. */
if (xfs_has_reflink(mp)) {
cur = xfs_refcountbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agf->agf_refcount_blocks = cpu_to_be32(blocks);
}
return 0;
err:
xfs_btree_del_cursor(cur, error);
return error;
}
/* Commit the new AGF and reinitialize the incore state. */
STATIC int
xrep_agf_commit_new(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp)
{
struct xfs_perag *pag;
struct xfs_agf *agf = agf_bp->b_addr;
/* Trigger fdblocks recalculation */
xfs_force_summary_recalc(sc->mp);
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, agf_bp, XFS_BLFT_AGF_BUF);
xfs_trans_log_buf(sc->tp, agf_bp, 0, BBTOB(agf_bp->b_length) - 1);
/* Now reinitialize the in-core counters we changed. */
pag = sc->sa.pag;
pag->pagf_btreeblks = be32_to_cpu(agf->agf_btreeblks);
pag->pagf_freeblks = be32_to_cpu(agf->agf_freeblks);
pag->pagf_longest = be32_to_cpu(agf->agf_longest);
pag->pagf_levels[XFS_BTNUM_BNOi] =
be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNOi]);
pag->pagf_levels[XFS_BTNUM_CNTi] =
be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNTi]);
pag->pagf_levels[XFS_BTNUM_RMAPi] =
be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAPi]);
pag->pagf_refcount_level = be32_to_cpu(agf->agf_refcount_level);
set_bit(XFS_AGSTATE_AGF_INIT, &pag->pag_opstate);
return 0;
}
/* Repair the AGF. v5 filesystems only. */
int
xrep_agf(
struct xfs_scrub *sc)
{
struct xrep_find_ag_btree fab[XREP_AGF_MAX] = {
[XREP_AGF_BNOBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_bnobt_buf_ops,
.maxlevels = sc->mp->m_alloc_maxlevels,
},
[XREP_AGF_CNTBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_cntbt_buf_ops,
.maxlevels = sc->mp->m_alloc_maxlevels,
},
[XREP_AGF_RMAPBT] = {
.rmap_owner = XFS_RMAP_OWN_AG,
.buf_ops = &xfs_rmapbt_buf_ops,
.maxlevels = sc->mp->m_rmap_maxlevels,
},
[XREP_AGF_REFCOUNTBT] = {
.rmap_owner = XFS_RMAP_OWN_REFC,
.buf_ops = &xfs_refcountbt_buf_ops,
.maxlevels = sc->mp->m_refc_maxlevels,
},
[XREP_AGF_END] = {
.buf_ops = NULL,
},
};
struct xfs_agf old_agf;
struct xfs_mount *mp = sc->mp;
struct xfs_buf *agf_bp;
struct xfs_buf *agfl_bp;
struct xfs_agf *agf;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
/*
* Make sure we have the AGF buffer, as scrub might have decided it
* was corrupt after xfs_alloc_read_agf failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGF_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agf_bp, NULL);
if (error)
return error;
agf_bp->b_ops = &xfs_agf_buf_ops;
agf = agf_bp->b_addr;
/*
* Load the AGFL so that we can screen out OWN_AG blocks that are on
* the AGFL now; these blocks might have once been part of the
* bno/cnt/rmap btrees but are not now. This is a chicken and egg
* problem: the AGF is corrupt, so we have to trust the AGFL contents
* because we can't do any serious cross-referencing with any of the
* btrees rooted in the AGF. If the AGFL contents are obviously bad
* then we'll bail out.
*/
error = xfs_alloc_read_agfl(sc->sa.pag, sc->tp, &agfl_bp);
if (error)
return error;
/*
* Spot-check the AGFL blocks; if they're obviously corrupt then
* there's nothing we can do but bail out.
*/
error = xfs_agfl_walk(sc->mp, agf_bp->b_addr, agfl_bp,
xrep_agf_check_agfl_block, sc);
if (error)
return error;
/*
* Find the AGF btree roots. This is also a chicken-and-egg situation;
* see the function for more details.
*/
error = xrep_agf_find_btrees(sc, agf_bp, fab, agfl_bp);
if (error)
return error;
/* Start rewriting the header and implant the btrees we found. */
xrep_agf_init_header(sc, agf_bp, &old_agf);
xrep_agf_set_roots(sc, agf, fab);
error = xrep_agf_calc_from_btrees(sc, agf_bp);
if (error)
goto out_revert;
/* Commit the changes and reinitialize incore state. */
return xrep_agf_commit_new(sc, agf_bp);
out_revert:
/* Mark the incore AGF state stale and revert the AGF. */
clear_bit(XFS_AGSTATE_AGF_INIT, &sc->sa.pag->pag_opstate);
memcpy(agf, &old_agf, sizeof(old_agf));
return error;
}
/* AGFL */
struct xrep_agfl {
/* Bitmap of alleged AGFL blocks that we're not going to add. */
struct xbitmap crossed;
/* Bitmap of other OWN_AG metadata blocks. */
struct xbitmap agmetablocks;
/* Bitmap of free space. */
struct xbitmap *freesp;
/* rmapbt cursor for finding crosslinked blocks */
struct xfs_btree_cur *rmap_cur;
struct xfs_scrub *sc;
};
/* Record all OWN_AG (free space btree) information from the rmap data. */
STATIC int
xrep_agfl_walk_rmap(
struct xfs_btree_cur *cur,
const struct xfs_rmap_irec *rec,
void *priv)
{
struct xrep_agfl *ra = priv;
xfs_fsblock_t fsb;
int error = 0;
if (xchk_should_terminate(ra->sc, &error))
return error;
/* Record all the OWN_AG blocks. */
if (rec->rm_owner == XFS_RMAP_OWN_AG) {
fsb = XFS_AGB_TO_FSB(cur->bc_mp, cur->bc_ag.pag->pag_agno,
rec->rm_startblock);
error = xbitmap_set(ra->freesp, fsb, rec->rm_blockcount);
if (error)
return error;
}
return xbitmap_set_btcur_path(&ra->agmetablocks, cur);
}
/* Strike out the blocks that are cross-linked according to the rmapbt. */
STATIC int
xrep_agfl_check_extent(
uint64_t start,
2023-10-24 12:59:35 +02:00
uint64_t len,
void *priv)
2023-08-30 17:31:07 +02:00
{
2023-10-24 12:59:35 +02:00
struct xrep_agfl *ra = priv;
2023-08-30 17:31:07 +02:00
xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(ra->sc->mp, start);
xfs_agblock_t last_agbno = agbno + len - 1;
int error;
ASSERT(XFS_FSB_TO_AGNO(ra->sc->mp, start) == ra->sc->sa.pag->pag_agno);
while (agbno <= last_agbno) {
bool other_owners;
error = xfs_rmap_has_other_keys(ra->rmap_cur, agbno, 1,
&XFS_RMAP_OINFO_AG, &other_owners);
if (error)
return error;
if (other_owners) {
error = xbitmap_set(&ra->crossed, agbno, 1);
if (error)
return error;
}
if (xchk_should_terminate(ra->sc, &error))
return error;
agbno++;
}
return 0;
}
/*
* Map out all the non-AGFL OWN_AG space in this AG so that we can deduce
* which blocks belong to the AGFL.
*
* Compute the set of old AGFL blocks by subtracting from the list of OWN_AG
* blocks the list of blocks owned by all other OWN_AG metadata (bnobt, cntbt,
* rmapbt). These are the old AGFL blocks, so return that list and the number
* of blocks we're actually going to put back on the AGFL.
*/
STATIC int
xrep_agfl_collect_blocks(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
struct xbitmap *agfl_extents,
xfs_agblock_t *flcount)
{
struct xrep_agfl ra;
struct xfs_mount *mp = sc->mp;
struct xfs_btree_cur *cur;
int error;
ra.sc = sc;
ra.freesp = agfl_extents;
xbitmap_init(&ra.agmetablocks);
xbitmap_init(&ra.crossed);
/* Find all space used by the free space btrees & rmapbt. */
cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
error = xfs_rmap_query_all(cur, xrep_agfl_walk_rmap, &ra);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/* Find all blocks currently being used by the bnobt. */
cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag, XFS_BTNUM_BNO);
error = xbitmap_set_btblocks(&ra.agmetablocks, cur);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/* Find all blocks currently being used by the cntbt. */
cur = xfs_allocbt_init_cursor(mp, sc->tp, agf_bp,
sc->sa.pag, XFS_BTNUM_CNT);
error = xbitmap_set_btblocks(&ra.agmetablocks, cur);
xfs_btree_del_cursor(cur, error);
if (error)
goto out_bmp;
/*
* Drop the freesp meta blocks that are in use by btrees.
* The remaining blocks /should/ be AGFL blocks.
*/
error = xbitmap_disunion(agfl_extents, &ra.agmetablocks);
if (error)
goto out_bmp;
/* Strike out the blocks that are cross-linked. */
ra.rmap_cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.pag);
2023-10-24 12:59:35 +02:00
error = xbitmap_walk(agfl_extents, xrep_agfl_check_extent, &ra);
2023-08-30 17:31:07 +02:00
xfs_btree_del_cursor(ra.rmap_cur, error);
if (error)
goto out_bmp;
error = xbitmap_disunion(agfl_extents, &ra.crossed);
if (error)
goto out_bmp;
/*
* Calculate the new AGFL size. If we found more blocks than fit in
* the AGFL we'll free them later.
*/
*flcount = min_t(uint64_t, xbitmap_hweight(agfl_extents),
xfs_agfl_size(mp));
out_bmp:
xbitmap_destroy(&ra.crossed);
xbitmap_destroy(&ra.agmetablocks);
return error;
}
/* Update the AGF and reset the in-core state. */
STATIC void
xrep_agfl_update_agf(
struct xfs_scrub *sc,
struct xfs_buf *agf_bp,
xfs_agblock_t flcount)
{
struct xfs_agf *agf = agf_bp->b_addr;
ASSERT(flcount <= xfs_agfl_size(sc->mp));
/* Trigger fdblocks recalculation */
xfs_force_summary_recalc(sc->mp);
/* Update the AGF counters. */
if (xfs_perag_initialised_agf(sc->sa.pag))
sc->sa.pag->pagf_flcount = flcount;
agf->agf_flfirst = cpu_to_be32(0);
agf->agf_flcount = cpu_to_be32(flcount);
agf->agf_fllast = cpu_to_be32(flcount - 1);
xfs_alloc_log_agf(sc->tp, agf_bp,
XFS_AGF_FLFIRST | XFS_AGF_FLLAST | XFS_AGF_FLCOUNT);
}
2023-10-24 12:59:35 +02:00
struct xrep_agfl_fill {
struct xbitmap used_extents;
struct xfs_scrub *sc;
__be32 *agfl_bno;
xfs_agblock_t flcount;
unsigned int fl_off;
};
/* Fill the AGFL with whatever blocks are in this extent. */
static int
xrep_agfl_fill(
uint64_t start,
uint64_t len,
void *priv)
{
struct xrep_agfl_fill *af = priv;
struct xfs_scrub *sc = af->sc;
xfs_fsblock_t fsbno = start;
int error;
while (fsbno < start + len && af->fl_off < af->flcount)
af->agfl_bno[af->fl_off++] =
cpu_to_be32(XFS_FSB_TO_AGBNO(sc->mp, fsbno++));
trace_xrep_agfl_insert(sc->mp, sc->sa.pag->pag_agno,
XFS_FSB_TO_AGBNO(sc->mp, start), len);
error = xbitmap_set(&af->used_extents, start, fsbno - 1);
if (error)
return error;
if (af->fl_off == af->flcount)
return -ECANCELED;
return 0;
}
2023-08-30 17:31:07 +02:00
/* Write out a totally new AGFL. */
2023-10-24 12:59:35 +02:00
STATIC int
2023-08-30 17:31:07 +02:00
xrep_agfl_init_header(
struct xfs_scrub *sc,
struct xfs_buf *agfl_bp,
struct xbitmap *agfl_extents,
xfs_agblock_t flcount)
{
2023-10-24 12:59:35 +02:00
struct xrep_agfl_fill af = {
.sc = sc,
.flcount = flcount,
};
2023-08-30 17:31:07 +02:00
struct xfs_mount *mp = sc->mp;
struct xfs_agfl *agfl;
2023-10-24 12:59:35 +02:00
int error;
2023-08-30 17:31:07 +02:00
ASSERT(flcount <= xfs_agfl_size(mp));
/*
* Start rewriting the header by setting the bno[] array to
* NULLAGBLOCK, then setting AGFL header fields.
*/
agfl = XFS_BUF_TO_AGFL(agfl_bp);
memset(agfl, 0xFF, BBTOB(agfl_bp->b_length));
agfl->agfl_magicnum = cpu_to_be32(XFS_AGFL_MAGIC);
agfl->agfl_seqno = cpu_to_be32(sc->sa.pag->pag_agno);
uuid_copy(&agfl->agfl_uuid, &mp->m_sb.sb_meta_uuid);
/*
* Fill the AGFL with the remaining blocks. If agfl_extents has more
* blocks than fit in the AGFL, they will be freed in a subsequent
* step.
*/
2023-10-24 12:59:35 +02:00
xbitmap_init(&af.used_extents);
af.agfl_bno = xfs_buf_to_agfl_bno(agfl_bp),
xbitmap_walk(agfl_extents, xrep_agfl_fill, &af);
error = xbitmap_disunion(agfl_extents, &af.used_extents);
if (error)
return error;
2023-08-30 17:31:07 +02:00
/* Write new AGFL to disk. */
xfs_trans_buf_set_type(sc->tp, agfl_bp, XFS_BLFT_AGFL_BUF);
xfs_trans_log_buf(sc->tp, agfl_bp, 0, BBTOB(agfl_bp->b_length) - 1);
2023-10-24 12:59:35 +02:00
xbitmap_destroy(&af.used_extents);
return 0;
2023-08-30 17:31:07 +02:00
}
/* Repair the AGFL. */
int
xrep_agfl(
struct xfs_scrub *sc)
{
struct xbitmap agfl_extents;
struct xfs_mount *mp = sc->mp;
struct xfs_buf *agf_bp;
struct xfs_buf *agfl_bp;
xfs_agblock_t flcount;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
xbitmap_init(&agfl_extents);
/*
* Read the AGF so that we can query the rmapbt. We hope that there's
* nothing wrong with the AGF, but all the AG header repair functions
* have this chicken-and-egg problem.
*/
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
if (error)
return error;
/*
* Make sure we have the AGFL buffer, as scrub might have decided it
* was corrupt after xfs_alloc_read_agfl failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGFL_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agfl_bp, NULL);
if (error)
return error;
agfl_bp->b_ops = &xfs_agfl_buf_ops;
/* Gather all the extents we're going to put on the new AGFL. */
error = xrep_agfl_collect_blocks(sc, agf_bp, &agfl_extents, &flcount);
if (error)
goto err;
/*
* Update AGF and AGFL. We reset the global free block counter when
* we adjust the AGF flcount (which can fail) so avoid updating any
* buffers until we know that part works.
*/
xrep_agfl_update_agf(sc, agf_bp, flcount);
2023-10-24 12:59:35 +02:00
error = xrep_agfl_init_header(sc, agfl_bp, &agfl_extents, flcount);
if (error)
goto err;
2023-08-30 17:31:07 +02:00
/*
* Ok, the AGFL should be ready to go now. Roll the transaction to
* make the new AGFL permanent before we start using it to return
* freespace overflow to the freespace btrees.
*/
sc->sa.agf_bp = agf_bp;
error = xrep_roll_ag_trans(sc);
if (error)
goto err;
/* Dump any AGFL overflow. */
error = xrep_reap_extents(sc, &agfl_extents, &XFS_RMAP_OINFO_AG,
XFS_AG_RESV_AGFL);
err:
xbitmap_destroy(&agfl_extents);
return error;
}
/* AGI */
/*
* Offset within the xrep_find_ag_btree array for each btree type. Avoid the
* XFS_BTNUM_ names here to avoid creating a sparse array.
*/
enum {
XREP_AGI_INOBT = 0,
XREP_AGI_FINOBT,
XREP_AGI_END,
XREP_AGI_MAX
};
/*
* Given the inode btree roots described by *fab, find the roots, check them
* for sanity, and pass the root data back out via *fab.
*/
STATIC int
xrep_agi_find_btrees(
struct xfs_scrub *sc,
struct xrep_find_ag_btree *fab)
{
struct xfs_buf *agf_bp;
struct xfs_mount *mp = sc->mp;
int error;
/* Read the AGF. */
error = xfs_alloc_read_agf(sc->sa.pag, sc->tp, 0, &agf_bp);
if (error)
return error;
/* Find the btree roots. */
error = xrep_find_ag_btree_roots(sc, agf_bp, fab, NULL);
if (error)
return error;
/* We must find the inobt root. */
if (!xrep_check_btree_root(sc, &fab[XREP_AGI_INOBT]))
return -EFSCORRUPTED;
/* We must find the finobt root if that feature is enabled. */
if (xfs_has_finobt(mp) &&
!xrep_check_btree_root(sc, &fab[XREP_AGI_FINOBT]))
return -EFSCORRUPTED;
return 0;
}
/*
* Reinitialize the AGI header, making an in-core copy of the old contents so
* that we know which in-core state needs to be reinitialized.
*/
STATIC void
xrep_agi_init_header(
struct xfs_scrub *sc,
struct xfs_buf *agi_bp,
struct xfs_agi *old_agi)
{
struct xfs_agi *agi = agi_bp->b_addr;
struct xfs_perag *pag = sc->sa.pag;
struct xfs_mount *mp = sc->mp;
memcpy(old_agi, agi, sizeof(*old_agi));
memset(agi, 0, BBTOB(agi_bp->b_length));
agi->agi_magicnum = cpu_to_be32(XFS_AGI_MAGIC);
agi->agi_versionnum = cpu_to_be32(XFS_AGI_VERSION);
agi->agi_seqno = cpu_to_be32(pag->pag_agno);
agi->agi_length = cpu_to_be32(pag->block_count);
agi->agi_newino = cpu_to_be32(NULLAGINO);
agi->agi_dirino = cpu_to_be32(NULLAGINO);
if (xfs_has_crc(mp))
uuid_copy(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid);
/* We don't know how to fix the unlinked list yet. */
memcpy(&agi->agi_unlinked, &old_agi->agi_unlinked,
sizeof(agi->agi_unlinked));
/* Mark the incore AGF data stale until we're done fixing things. */
ASSERT(xfs_perag_initialised_agi(pag));
clear_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
}
/* Set btree root information in an AGI. */
STATIC void
xrep_agi_set_roots(
struct xfs_scrub *sc,
struct xfs_agi *agi,
struct xrep_find_ag_btree *fab)
{
agi->agi_root = cpu_to_be32(fab[XREP_AGI_INOBT].root);
agi->agi_level = cpu_to_be32(fab[XREP_AGI_INOBT].height);
if (xfs_has_finobt(sc->mp)) {
agi->agi_free_root = cpu_to_be32(fab[XREP_AGI_FINOBT].root);
agi->agi_free_level = cpu_to_be32(fab[XREP_AGI_FINOBT].height);
}
}
/* Update the AGI counters. */
STATIC int
xrep_agi_calc_from_btrees(
struct xfs_scrub *sc,
struct xfs_buf *agi_bp)
{
struct xfs_btree_cur *cur;
struct xfs_agi *agi = agi_bp->b_addr;
struct xfs_mount *mp = sc->mp;
xfs_agino_t count;
xfs_agino_t freecount;
int error;
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp, XFS_BTNUM_INO);
error = xfs_ialloc_count_inodes(cur, &count, &freecount);
if (error)
goto err;
if (xfs_has_inobtcounts(mp)) {
xfs_agblock_t blocks;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
agi->agi_iblocks = cpu_to_be32(blocks);
}
xfs_btree_del_cursor(cur, error);
agi->agi_count = cpu_to_be32(count);
agi->agi_freecount = cpu_to_be32(freecount);
if (xfs_has_finobt(mp) && xfs_has_inobtcounts(mp)) {
xfs_agblock_t blocks;
cur = xfs_inobt_init_cursor(sc->sa.pag, sc->tp, agi_bp,
XFS_BTNUM_FINO);
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agi->agi_fblocks = cpu_to_be32(blocks);
}
return 0;
err:
xfs_btree_del_cursor(cur, error);
return error;
}
/* Trigger reinitialization of the in-core data. */
STATIC int
xrep_agi_commit_new(
struct xfs_scrub *sc,
struct xfs_buf *agi_bp)
{
struct xfs_perag *pag;
struct xfs_agi *agi = agi_bp->b_addr;
/* Trigger inode count recalculation */
xfs_force_summary_recalc(sc->mp);
/* Write this to disk. */
xfs_trans_buf_set_type(sc->tp, agi_bp, XFS_BLFT_AGI_BUF);
xfs_trans_log_buf(sc->tp, agi_bp, 0, BBTOB(agi_bp->b_length) - 1);
/* Now reinitialize the in-core counters if necessary. */
pag = sc->sa.pag;
pag->pagi_count = be32_to_cpu(agi->agi_count);
pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
set_bit(XFS_AGSTATE_AGI_INIT, &pag->pag_opstate);
return 0;
}
/* Repair the AGI. */
int
xrep_agi(
struct xfs_scrub *sc)
{
struct xrep_find_ag_btree fab[XREP_AGI_MAX] = {
[XREP_AGI_INOBT] = {
.rmap_owner = XFS_RMAP_OWN_INOBT,
.buf_ops = &xfs_inobt_buf_ops,
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
},
[XREP_AGI_FINOBT] = {
.rmap_owner = XFS_RMAP_OWN_INOBT,
.buf_ops = &xfs_finobt_buf_ops,
.maxlevels = M_IGEO(sc->mp)->inobt_maxlevels,
},
[XREP_AGI_END] = {
.buf_ops = NULL
},
};
struct xfs_agi old_agi;
struct xfs_mount *mp = sc->mp;
struct xfs_buf *agi_bp;
struct xfs_agi *agi;
int error;
/* We require the rmapbt to rebuild anything. */
if (!xfs_has_rmapbt(mp))
return -EOPNOTSUPP;
/*
* Make sure we have the AGI buffer, as scrub might have decided it
* was corrupt after xfs_ialloc_read_agi failed with -EFSCORRUPTED.
*/
error = xfs_trans_read_buf(mp, sc->tp, mp->m_ddev_targp,
XFS_AG_DADDR(mp, sc->sa.pag->pag_agno,
XFS_AGI_DADDR(mp)),
XFS_FSS_TO_BB(mp, 1), 0, &agi_bp, NULL);
if (error)
return error;
agi_bp->b_ops = &xfs_agi_buf_ops;
agi = agi_bp->b_addr;
/* Find the AGI btree roots. */
error = xrep_agi_find_btrees(sc, fab);
if (error)
return error;
/* Start rewriting the header and implant the btrees we found. */
xrep_agi_init_header(sc, agi_bp, &old_agi);
xrep_agi_set_roots(sc, agi, fab);
error = xrep_agi_calc_from_btrees(sc, agi_bp);
if (error)
goto out_revert;
/* Reinitialize in-core state. */
return xrep_agi_commit_new(sc, agi_bp);
out_revert:
/* Mark the incore AGI state stale and revert the AGI. */
clear_bit(XFS_AGSTATE_AGI_INIT, &sc->sa.pag->pag_opstate);
memcpy(agi, &old_agi, sizeof(old_agi));
return error;
}