2023-08-30 17:31:07 +02:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#ifndef _LINUX_SCHED_MM_H
|
|
|
|
#define _LINUX_SCHED_MM_H
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/atomic.h>
|
|
|
|
#include <linux/sched.h>
|
|
|
|
#include <linux/mm_types.h>
|
|
|
|
#include <linux/gfp.h>
|
|
|
|
#include <linux/sync_core.h>
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Routines for handling mm_structs
|
|
|
|
*/
|
|
|
|
extern struct mm_struct *mm_alloc(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* mmgrab() - Pin a &struct mm_struct.
|
|
|
|
* @mm: The &struct mm_struct to pin.
|
|
|
|
*
|
|
|
|
* Make sure that @mm will not get freed even after the owning task
|
|
|
|
* exits. This doesn't guarantee that the associated address space
|
|
|
|
* will still exist later on and mmget_not_zero() has to be used before
|
|
|
|
* accessing it.
|
|
|
|
*
|
|
|
|
* This is a preferred way to pin @mm for a longer/unbounded amount
|
|
|
|
* of time.
|
|
|
|
*
|
|
|
|
* Use mmdrop() to release the reference acquired by mmgrab().
|
|
|
|
*
|
|
|
|
* See also <Documentation/mm/active_mm.rst> for an in-depth explanation
|
|
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
|
|
*/
|
|
|
|
static inline void mmgrab(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
atomic_inc(&mm->mm_count);
|
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
static inline void smp_mb__after_mmgrab(void)
|
|
|
|
{
|
|
|
|
smp_mb__after_atomic();
|
|
|
|
}
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
extern void __mmdrop(struct mm_struct *mm);
|
|
|
|
|
|
|
|
static inline void mmdrop(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* The implicit full barrier implied by atomic_dec_and_test() is
|
|
|
|
* required by the membarrier system call before returning to
|
|
|
|
* user-space, after storing to rq->curr.
|
|
|
|
*/
|
|
|
|
if (unlikely(atomic_dec_and_test(&mm->mm_count)))
|
|
|
|
__mmdrop(mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_PREEMPT_RT
|
|
|
|
/*
|
|
|
|
* RCU callback for delayed mm drop. Not strictly RCU, but call_rcu() is
|
|
|
|
* by far the least expensive way to do that.
|
|
|
|
*/
|
|
|
|
static inline void __mmdrop_delayed(struct rcu_head *rhp)
|
|
|
|
{
|
|
|
|
struct mm_struct *mm = container_of(rhp, struct mm_struct, delayed_drop);
|
|
|
|
|
|
|
|
__mmdrop(mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Invoked from finish_task_switch(). Delegates the heavy lifting on RT
|
|
|
|
* kernels via RCU.
|
|
|
|
*/
|
|
|
|
static inline void mmdrop_sched(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
/* Provides a full memory barrier. See mmdrop() */
|
|
|
|
if (atomic_dec_and_test(&mm->mm_count))
|
|
|
|
call_rcu(&mm->delayed_drop, __mmdrop_delayed);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline void mmdrop_sched(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
mmdrop(mm);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
/* Helpers for lazy TLB mm refcounting */
|
|
|
|
static inline void mmgrab_lazy_tlb(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
|
|
|
|
mmgrab(mm);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mmdrop_lazy_tlb(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT)) {
|
|
|
|
mmdrop(mm);
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* mmdrop_lazy_tlb must provide a full memory barrier, see the
|
|
|
|
* membarrier comment finish_task_switch which relies on this.
|
|
|
|
*/
|
|
|
|
smp_mb();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void mmdrop_lazy_tlb_sched(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
if (IS_ENABLED(CONFIG_MMU_LAZY_TLB_REFCOUNT))
|
|
|
|
mmdrop_sched(mm);
|
|
|
|
else
|
|
|
|
smp_mb(); /* see mmdrop_lazy_tlb() above */
|
|
|
|
}
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
/**
|
|
|
|
* mmget() - Pin the address space associated with a &struct mm_struct.
|
|
|
|
* @mm: The address space to pin.
|
|
|
|
*
|
|
|
|
* Make sure that the address space of the given &struct mm_struct doesn't
|
|
|
|
* go away. This does not protect against parts of the address space being
|
|
|
|
* modified or freed, however.
|
|
|
|
*
|
|
|
|
* Never use this function to pin this address space for an
|
|
|
|
* unbounded/indefinite amount of time.
|
|
|
|
*
|
|
|
|
* Use mmput() to release the reference acquired by mmget().
|
|
|
|
*
|
|
|
|
* See also <Documentation/mm/active_mm.rst> for an in-depth explanation
|
|
|
|
* of &mm_struct.mm_count vs &mm_struct.mm_users.
|
|
|
|
*/
|
|
|
|
static inline void mmget(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
atomic_inc(&mm->mm_users);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool mmget_not_zero(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
return atomic_inc_not_zero(&mm->mm_users);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* mmput gets rid of the mappings and all user-space */
|
|
|
|
extern void mmput(struct mm_struct *);
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
/* same as above but performs the slow path from the async context. Can
|
|
|
|
* be called from the atomic context as well
|
|
|
|
*/
|
|
|
|
void mmput_async(struct mm_struct *);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Grab a reference to a task's mm, if it is not already going away */
|
|
|
|
extern struct mm_struct *get_task_mm(struct task_struct *task);
|
|
|
|
/*
|
|
|
|
* Grab a reference to a task's mm, if it is not already going away
|
|
|
|
* and ptrace_may_access with the mode parameter passed to it
|
|
|
|
* succeeds.
|
|
|
|
*/
|
|
|
|
extern struct mm_struct *mm_access(struct task_struct *task, unsigned int mode);
|
|
|
|
/* Remove the current tasks stale references to the old mm_struct on exit() */
|
|
|
|
extern void exit_mm_release(struct task_struct *, struct mm_struct *);
|
|
|
|
/* Remove the current tasks stale references to the old mm_struct on exec() */
|
|
|
|
extern void exec_mm_release(struct task_struct *, struct mm_struct *);
|
|
|
|
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
|
|
extern void mm_update_next_owner(struct mm_struct *mm);
|
|
|
|
#else
|
|
|
|
static inline void mm_update_next_owner(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif /* CONFIG_MEMCG */
|
|
|
|
|
|
|
|
#ifdef CONFIG_MMU
|
|
|
|
#ifndef arch_get_mmap_end
|
|
|
|
#define arch_get_mmap_end(addr, len, flags) (TASK_SIZE)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifndef arch_get_mmap_base
|
|
|
|
#define arch_get_mmap_base(addr, base) (base)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
extern void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
|
|
struct rlimit *rlim_stack);
|
|
|
|
extern unsigned long
|
|
|
|
arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
|
|
|
|
unsigned long, unsigned long);
|
|
|
|
extern unsigned long
|
|
|
|
arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
|
|
|
|
unsigned long len, unsigned long pgoff,
|
|
|
|
unsigned long flags);
|
|
|
|
|
|
|
|
unsigned long
|
|
|
|
generic_get_unmapped_area(struct file *filp, unsigned long addr,
|
|
|
|
unsigned long len, unsigned long pgoff,
|
|
|
|
unsigned long flags);
|
|
|
|
unsigned long
|
|
|
|
generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
|
|
|
|
unsigned long len, unsigned long pgoff,
|
|
|
|
unsigned long flags);
|
|
|
|
#else
|
|
|
|
static inline void arch_pick_mmap_layout(struct mm_struct *mm,
|
|
|
|
struct rlimit *rlim_stack) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static inline bool in_vfork(struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
bool ret;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* need RCU to access ->real_parent if CLONE_VM was used along with
|
|
|
|
* CLONE_PARENT.
|
|
|
|
*
|
|
|
|
* We check real_parent->mm == tsk->mm because CLONE_VFORK does not
|
|
|
|
* imply CLONE_VM
|
|
|
|
*
|
|
|
|
* CLONE_VFORK can be used with CLONE_PARENT/CLONE_THREAD and thus
|
|
|
|
* ->real_parent is not necessarily the task doing vfork(), so in
|
|
|
|
* theory we can't rely on task_lock() if we want to dereference it.
|
|
|
|
*
|
|
|
|
* And in this case we can't trust the real_parent->mm == tsk->mm
|
|
|
|
* check, it can be false negative. But we do not care, if init or
|
|
|
|
* another oom-unkillable task does this it should blame itself.
|
|
|
|
*/
|
|
|
|
rcu_read_lock();
|
|
|
|
ret = tsk->vfork_done &&
|
|
|
|
rcu_dereference(tsk->real_parent)->mm == tsk->mm;
|
|
|
|
rcu_read_unlock();
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Applies per-task gfp context to the given allocation flags.
|
|
|
|
* PF_MEMALLOC_NOIO implies GFP_NOIO
|
|
|
|
* PF_MEMALLOC_NOFS implies GFP_NOFS
|
|
|
|
* PF_MEMALLOC_PIN implies !GFP_MOVABLE
|
|
|
|
*/
|
|
|
|
static inline gfp_t current_gfp_context(gfp_t flags)
|
|
|
|
{
|
|
|
|
unsigned int pflags = READ_ONCE(current->flags);
|
|
|
|
|
|
|
|
if (unlikely(pflags & (PF_MEMALLOC_NOIO | PF_MEMALLOC_NOFS | PF_MEMALLOC_PIN))) {
|
|
|
|
/*
|
|
|
|
* NOIO implies both NOIO and NOFS and it is a weaker context
|
|
|
|
* so always make sure it makes precedence
|
|
|
|
*/
|
|
|
|
if (pflags & PF_MEMALLOC_NOIO)
|
|
|
|
flags &= ~(__GFP_IO | __GFP_FS);
|
|
|
|
else if (pflags & PF_MEMALLOC_NOFS)
|
|
|
|
flags &= ~__GFP_FS;
|
|
|
|
|
|
|
|
if (pflags & PF_MEMALLOC_PIN)
|
|
|
|
flags &= ~__GFP_MOVABLE;
|
|
|
|
}
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
|
|
extern void __fs_reclaim_acquire(unsigned long ip);
|
|
|
|
extern void __fs_reclaim_release(unsigned long ip);
|
|
|
|
extern void fs_reclaim_acquire(gfp_t gfp_mask);
|
|
|
|
extern void fs_reclaim_release(gfp_t gfp_mask);
|
|
|
|
#else
|
|
|
|
static inline void __fs_reclaim_acquire(unsigned long ip) { }
|
|
|
|
static inline void __fs_reclaim_release(unsigned long ip) { }
|
|
|
|
static inline void fs_reclaim_acquire(gfp_t gfp_mask) { }
|
|
|
|
static inline void fs_reclaim_release(gfp_t gfp_mask) { }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Any memory-allocation retry loop should use
|
|
|
|
* memalloc_retry_wait(), and pass the flags for the most
|
|
|
|
* constrained allocation attempt that might have failed.
|
|
|
|
* This provides useful documentation of where loops are,
|
|
|
|
* and a central place to fine tune the waiting as the MM
|
|
|
|
* implementation changes.
|
|
|
|
*/
|
|
|
|
static inline void memalloc_retry_wait(gfp_t gfp_flags)
|
|
|
|
{
|
|
|
|
/* We use io_schedule_timeout because waiting for memory
|
|
|
|
* typically included waiting for dirty pages to be
|
|
|
|
* written out, which requires IO.
|
|
|
|
*/
|
|
|
|
__set_current_state(TASK_UNINTERRUPTIBLE);
|
|
|
|
gfp_flags = current_gfp_context(gfp_flags);
|
|
|
|
if (gfpflags_allow_blocking(gfp_flags) &&
|
|
|
|
!(gfp_flags & __GFP_NORETRY))
|
|
|
|
/* Probably waited already, no need for much more */
|
|
|
|
io_schedule_timeout(1);
|
|
|
|
else
|
|
|
|
/* Probably didn't wait, and has now released a lock,
|
|
|
|
* so now is a good time to wait
|
|
|
|
*/
|
|
|
|
io_schedule_timeout(HZ/50);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* might_alloc - Mark possible allocation sites
|
|
|
|
* @gfp_mask: gfp_t flags that would be used to allocate
|
|
|
|
*
|
|
|
|
* Similar to might_sleep() and other annotations, this can be used in functions
|
|
|
|
* that might allocate, but often don't. Compiles to nothing without
|
|
|
|
* CONFIG_LOCKDEP. Includes a conditional might_sleep() if @gfp allows blocking.
|
|
|
|
*/
|
|
|
|
static inline void might_alloc(gfp_t gfp_mask)
|
|
|
|
{
|
|
|
|
fs_reclaim_acquire(gfp_mask);
|
|
|
|
fs_reclaim_release(gfp_mask);
|
|
|
|
|
|
|
|
might_sleep_if(gfpflags_allow_blocking(gfp_mask));
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* memalloc_noio_save - Marks implicit GFP_NOIO allocation scope.
|
|
|
|
*
|
|
|
|
* This functions marks the beginning of the GFP_NOIO allocation scope.
|
|
|
|
* All further allocations will implicitly drop __GFP_IO flag and so
|
|
|
|
* they are safe for the IO critical section from the allocation recursion
|
|
|
|
* point of view. Use memalloc_noio_restore to end the scope with flags
|
|
|
|
* returned by this function.
|
|
|
|
*
|
|
|
|
* This function is safe to be used from any context.
|
|
|
|
*/
|
|
|
|
static inline unsigned int memalloc_noio_save(void)
|
|
|
|
{
|
|
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOIO;
|
|
|
|
current->flags |= PF_MEMALLOC_NOIO;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* memalloc_noio_restore - Ends the implicit GFP_NOIO scope.
|
|
|
|
* @flags: Flags to restore.
|
|
|
|
*
|
|
|
|
* Ends the implicit GFP_NOIO scope started by memalloc_noio_save function.
|
|
|
|
* Always make sure that the given flags is the return value from the
|
|
|
|
* pairing memalloc_noio_save call.
|
|
|
|
*/
|
|
|
|
static inline void memalloc_noio_restore(unsigned int flags)
|
|
|
|
{
|
|
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* memalloc_nofs_save - Marks implicit GFP_NOFS allocation scope.
|
|
|
|
*
|
|
|
|
* This functions marks the beginning of the GFP_NOFS allocation scope.
|
|
|
|
* All further allocations will implicitly drop __GFP_FS flag and so
|
|
|
|
* they are safe for the FS critical section from the allocation recursion
|
|
|
|
* point of view. Use memalloc_nofs_restore to end the scope with flags
|
|
|
|
* returned by this function.
|
|
|
|
*
|
|
|
|
* This function is safe to be used from any context.
|
|
|
|
*/
|
|
|
|
static inline unsigned int memalloc_nofs_save(void)
|
|
|
|
{
|
|
|
|
unsigned int flags = current->flags & PF_MEMALLOC_NOFS;
|
|
|
|
current->flags |= PF_MEMALLOC_NOFS;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* memalloc_nofs_restore - Ends the implicit GFP_NOFS scope.
|
|
|
|
* @flags: Flags to restore.
|
|
|
|
*
|
|
|
|
* Ends the implicit GFP_NOFS scope started by memalloc_nofs_save function.
|
|
|
|
* Always make sure that the given flags is the return value from the
|
|
|
|
* pairing memalloc_nofs_save call.
|
|
|
|
*/
|
|
|
|
static inline void memalloc_nofs_restore(unsigned int flags)
|
|
|
|
{
|
|
|
|
current->flags = (current->flags & ~PF_MEMALLOC_NOFS) | flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned int memalloc_noreclaim_save(void)
|
|
|
|
{
|
|
|
|
unsigned int flags = current->flags & PF_MEMALLOC;
|
|
|
|
current->flags |= PF_MEMALLOC;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void memalloc_noreclaim_restore(unsigned int flags)
|
|
|
|
{
|
|
|
|
current->flags = (current->flags & ~PF_MEMALLOC) | flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline unsigned int memalloc_pin_save(void)
|
|
|
|
{
|
|
|
|
unsigned int flags = current->flags & PF_MEMALLOC_PIN;
|
|
|
|
|
|
|
|
current->flags |= PF_MEMALLOC_PIN;
|
|
|
|
return flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void memalloc_pin_restore(unsigned int flags)
|
|
|
|
{
|
|
|
|
current->flags = (current->flags & ~PF_MEMALLOC_PIN) | flags;
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
|
|
DECLARE_PER_CPU(struct mem_cgroup *, int_active_memcg);
|
|
|
|
/**
|
|
|
|
* set_active_memcg - Starts the remote memcg charging scope.
|
|
|
|
* @memcg: memcg to charge.
|
|
|
|
*
|
|
|
|
* This function marks the beginning of the remote memcg charging scope. All the
|
|
|
|
* __GFP_ACCOUNT allocations till the end of the scope will be charged to the
|
|
|
|
* given memcg.
|
|
|
|
*
|
|
|
|
* NOTE: This function can nest. Users must save the return value and
|
|
|
|
* reset the previous value after their own charging scope is over.
|
|
|
|
*/
|
|
|
|
static inline struct mem_cgroup *
|
|
|
|
set_active_memcg(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
struct mem_cgroup *old;
|
|
|
|
|
|
|
|
if (!in_task()) {
|
|
|
|
old = this_cpu_read(int_active_memcg);
|
|
|
|
this_cpu_write(int_active_memcg, memcg);
|
|
|
|
} else {
|
|
|
|
old = current->active_memcg;
|
|
|
|
current->active_memcg = memcg;
|
|
|
|
}
|
|
|
|
|
|
|
|
return old;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline struct mem_cgroup *
|
|
|
|
set_active_memcg(struct mem_cgroup *memcg)
|
|
|
|
{
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef CONFIG_MEMBARRIER
|
|
|
|
enum {
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY = (1U << 0),
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED = (1U << 1),
|
|
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY = (1U << 2),
|
|
|
|
MEMBARRIER_STATE_GLOBAL_EXPEDITED = (1U << 3),
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY = (1U << 4),
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE = (1U << 5),
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY = (1U << 6),
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ = (1U << 7),
|
|
|
|
};
|
|
|
|
|
|
|
|
enum {
|
|
|
|
MEMBARRIER_FLAG_SYNC_CORE = (1U << 0),
|
|
|
|
MEMBARRIER_FLAG_RSEQ = (1U << 1),
|
|
|
|
};
|
|
|
|
|
|
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
|
|
#include <asm/membarrier.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
if (current->mm != mm)
|
|
|
|
return;
|
|
|
|
if (likely(!(atomic_read(&mm->membarrier_state) &
|
|
|
|
MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE)))
|
|
|
|
return;
|
|
|
|
sync_core_before_usermode();
|
|
|
|
}
|
|
|
|
|
|
|
|
extern void membarrier_exec_mmap(struct mm_struct *mm);
|
|
|
|
|
|
|
|
extern void membarrier_update_current_mm(struct mm_struct *next_mm);
|
|
|
|
|
|
|
|
#else
|
|
|
|
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_CALLBACKS
|
|
|
|
static inline void membarrier_arch_switch_mm(struct mm_struct *prev,
|
|
|
|
struct mm_struct *next,
|
|
|
|
struct task_struct *tsk)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline void membarrier_exec_mmap(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
static inline void membarrier_mm_sync_core_before_usermode(struct mm_struct *mm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
static inline void membarrier_update_current_mm(struct mm_struct *next_mm)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif /* _LINUX_SCHED_MM_H */
|