2023-08-30 17:31:07 +02:00
|
|
|
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
/*
|
|
|
|
* cec - HDMI Consumer Electronics Control support header
|
|
|
|
*
|
|
|
|
* Copyright 2016 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef _MEDIA_CEC_H
|
|
|
|
#define _MEDIA_CEC_H
|
|
|
|
|
|
|
|
#include <linux/poll.h>
|
|
|
|
#include <linux/fs.h>
|
|
|
|
#include <linux/debugfs.h>
|
|
|
|
#include <linux/device.h>
|
|
|
|
#include <linux/cdev.h>
|
|
|
|
#include <linux/kthread.h>
|
|
|
|
#include <linux/timer.h>
|
|
|
|
#include <linux/cec-funcs.h>
|
|
|
|
#include <media/rc-core.h>
|
|
|
|
|
|
|
|
#define CEC_CAP_DEFAULTS (CEC_CAP_LOG_ADDRS | CEC_CAP_TRANSMIT | \
|
|
|
|
CEC_CAP_PASSTHROUGH | CEC_CAP_RC)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct cec_devnode - cec device node
|
|
|
|
* @dev: cec device
|
|
|
|
* @cdev: cec character device
|
|
|
|
* @minor: device node minor number
|
|
|
|
* @lock: lock to serialize open/release and registration
|
|
|
|
* @registered: the device was correctly registered
|
|
|
|
* @unregistered: the device was unregistered
|
|
|
|
* @lock_fhs: lock to control access to @fhs
|
|
|
|
* @fhs: the list of open filehandles (cec_fh)
|
|
|
|
*
|
|
|
|
* This structure represents a cec-related device node.
|
|
|
|
*
|
|
|
|
* To add or remove filehandles from @fhs the @lock must be taken first,
|
|
|
|
* followed by @lock_fhs. It is safe to access @fhs if either lock is held.
|
|
|
|
*
|
|
|
|
* The @parent is a physical device. It must be set by core or device drivers
|
|
|
|
* before registering the node.
|
|
|
|
*/
|
|
|
|
struct cec_devnode {
|
|
|
|
/* sysfs */
|
|
|
|
struct device dev;
|
|
|
|
struct cdev cdev;
|
|
|
|
|
|
|
|
/* device info */
|
|
|
|
int minor;
|
|
|
|
/* serialize open/release and registration */
|
|
|
|
struct mutex lock;
|
|
|
|
bool registered;
|
|
|
|
bool unregistered;
|
|
|
|
/* protect access to fhs */
|
|
|
|
struct mutex lock_fhs;
|
|
|
|
struct list_head fhs;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct cec_adapter;
|
|
|
|
struct cec_data;
|
|
|
|
struct cec_pin;
|
|
|
|
struct cec_notifier;
|
|
|
|
|
|
|
|
struct cec_data {
|
|
|
|
struct list_head list;
|
|
|
|
struct list_head xfer_list;
|
|
|
|
struct cec_adapter *adap;
|
|
|
|
struct cec_msg msg;
|
|
|
|
struct cec_fh *fh;
|
|
|
|
struct delayed_work work;
|
|
|
|
struct completion c;
|
|
|
|
u8 attempts;
|
|
|
|
bool blocking;
|
|
|
|
bool completed;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct cec_msg_entry {
|
|
|
|
struct list_head list;
|
|
|
|
struct cec_msg msg;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct cec_event_entry {
|
|
|
|
struct list_head list;
|
|
|
|
struct cec_event ev;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CEC_NUM_CORE_EVENTS 2
|
|
|
|
#define CEC_NUM_EVENTS CEC_EVENT_PIN_5V_HIGH
|
|
|
|
|
|
|
|
struct cec_fh {
|
|
|
|
struct list_head list;
|
|
|
|
struct list_head xfer_list;
|
|
|
|
struct cec_adapter *adap;
|
|
|
|
u8 mode_initiator;
|
|
|
|
u8 mode_follower;
|
|
|
|
|
|
|
|
/* Events */
|
|
|
|
wait_queue_head_t wait;
|
|
|
|
struct mutex lock;
|
|
|
|
struct list_head events[CEC_NUM_EVENTS]; /* queued events */
|
|
|
|
u16 queued_events[CEC_NUM_EVENTS];
|
|
|
|
unsigned int total_queued_events;
|
|
|
|
struct cec_event_entry core_events[CEC_NUM_CORE_EVENTS];
|
|
|
|
struct list_head msgs; /* queued messages */
|
|
|
|
unsigned int queued_msgs;
|
|
|
|
};
|
|
|
|
|
|
|
|
#define CEC_SIGNAL_FREE_TIME_RETRY 3
|
|
|
|
#define CEC_SIGNAL_FREE_TIME_NEW_INITIATOR 5
|
|
|
|
#define CEC_SIGNAL_FREE_TIME_NEXT_XFER 7
|
|
|
|
|
|
|
|
/* The nominal data bit period is 2.4 ms */
|
|
|
|
#define CEC_FREE_TIME_TO_USEC(ft) ((ft) * 2400)
|
|
|
|
|
|
|
|
struct cec_adap_ops {
|
2023-10-24 12:59:35 +02:00
|
|
|
/* Low-level callbacks, called with adap->lock held */
|
2023-08-30 17:31:07 +02:00
|
|
|
int (*adap_enable)(struct cec_adapter *adap, bool enable);
|
|
|
|
int (*adap_monitor_all_enable)(struct cec_adapter *adap, bool enable);
|
|
|
|
int (*adap_monitor_pin_enable)(struct cec_adapter *adap, bool enable);
|
|
|
|
int (*adap_log_addr)(struct cec_adapter *adap, u8 logical_addr);
|
2023-10-24 12:59:35 +02:00
|
|
|
void (*adap_unconfigured)(struct cec_adapter *adap);
|
2023-08-30 17:31:07 +02:00
|
|
|
int (*adap_transmit)(struct cec_adapter *adap, u8 attempts,
|
|
|
|
u32 signal_free_time, struct cec_msg *msg);
|
2023-10-24 12:59:35 +02:00
|
|
|
void (*adap_nb_transmit_canceled)(struct cec_adapter *adap,
|
|
|
|
const struct cec_msg *msg);
|
2023-08-30 17:31:07 +02:00
|
|
|
void (*adap_status)(struct cec_adapter *adap, struct seq_file *file);
|
|
|
|
void (*adap_free)(struct cec_adapter *adap);
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
/* Error injection callbacks, called without adap->lock held */
|
2023-08-30 17:31:07 +02:00
|
|
|
int (*error_inj_show)(struct cec_adapter *adap, struct seq_file *sf);
|
|
|
|
bool (*error_inj_parse_line)(struct cec_adapter *adap, char *line);
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
/* High-level CEC message callback, called without adap->lock held */
|
|
|
|
void (*configured)(struct cec_adapter *adap);
|
2023-08-30 17:31:07 +02:00
|
|
|
int (*received)(struct cec_adapter *adap, struct cec_msg *msg);
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The minimum message length you can receive (excepting poll messages) is 2.
|
|
|
|
* With a transfer rate of at most 36 bytes per second this makes 18 messages
|
|
|
|
* per second worst case.
|
|
|
|
*
|
|
|
|
* We queue at most 3 seconds worth of received messages. The CEC specification
|
|
|
|
* requires that messages are replied to within a second, so 3 seconds should
|
|
|
|
* give more than enough margin. Since most messages are actually more than 2
|
|
|
|
* bytes, this is in practice a lot more than 3 seconds.
|
|
|
|
*/
|
|
|
|
#define CEC_MAX_MSG_RX_QUEUE_SZ (18 * 3)
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The transmit queue is limited to 1 second worth of messages (worst case).
|
|
|
|
* Messages can be transmitted by userspace and kernel space. But for both it
|
|
|
|
* makes no sense to have a lot of messages queued up. One second seems
|
|
|
|
* reasonable.
|
|
|
|
*/
|
|
|
|
#define CEC_MAX_MSG_TX_QUEUE_SZ (18 * 1)
|
|
|
|
|
|
|
|
/**
|
|
|
|
* struct cec_adapter - cec adapter structure
|
|
|
|
* @owner: module owner
|
|
|
|
* @name: name of the CEC adapter
|
|
|
|
* @devnode: device node for the /dev/cecX device
|
|
|
|
* @lock: mutex controlling access to this structure
|
|
|
|
* @rc: remote control device
|
|
|
|
* @transmit_queue: queue of pending transmits
|
|
|
|
* @transmit_queue_sz: number of pending transmits
|
|
|
|
* @wait_queue: queue of transmits waiting for a reply
|
|
|
|
* @transmitting: CEC messages currently being transmitted
|
|
|
|
* @transmit_in_progress: true if a transmit is in progress
|
|
|
|
* @transmit_in_progress_aborted: true if a transmit is in progress is to be
|
|
|
|
* aborted. This happens if the logical address is
|
|
|
|
* invalidated while the transmit is ongoing. In that
|
|
|
|
* case the transmit will finish, but will not retransmit
|
|
|
|
* and be marked as ABORTED.
|
|
|
|
* @xfer_timeout_ms: the transfer timeout in ms.
|
|
|
|
* If 0, then timeout after 2.1 ms.
|
|
|
|
* @kthread_config: kthread used to configure a CEC adapter
|
|
|
|
* @config_completion: used to signal completion of the config kthread
|
|
|
|
* @kthread: main CEC processing thread
|
|
|
|
* @kthread_waitq: main CEC processing wait_queue
|
|
|
|
* @ops: cec adapter ops
|
|
|
|
* @priv: cec driver's private data
|
|
|
|
* @capabilities: cec adapter capabilities
|
|
|
|
* @available_log_addrs: maximum number of available logical addresses
|
|
|
|
* @phys_addr: the current physical address
|
|
|
|
* @needs_hpd: if true, then the HDMI HotPlug Detect pin must be high
|
|
|
|
* in order to transmit or receive CEC messages. This is usually a HW
|
|
|
|
* limitation.
|
|
|
|
* @is_enabled: the CEC adapter is enabled
|
|
|
|
* @is_configuring: the CEC adapter is configuring (i.e. claiming LAs)
|
|
|
|
* @must_reconfigure: while configuring, the PA changed, so reclaim LAs
|
|
|
|
* @is_configured: the CEC adapter is configured (i.e. has claimed LAs)
|
|
|
|
* @cec_pin_is_high: if true then the CEC pin is high. Only used with the
|
|
|
|
* CEC pin framework.
|
|
|
|
* @adap_controls_phys_addr: if true, then the CEC adapter controls the
|
|
|
|
* physical address, i.e. the CEC hardware can detect HPD changes and
|
|
|
|
* read the EDID and is not dependent on an external HDMI driver.
|
|
|
|
* Drivers that need this can set this field to true after the
|
|
|
|
* cec_allocate_adapter() call.
|
|
|
|
* @last_initiator: the initiator of the last transmitted message.
|
|
|
|
* @monitor_all_cnt: number of filehandles monitoring all msgs
|
|
|
|
* @monitor_pin_cnt: number of filehandles monitoring pin changes
|
|
|
|
* @follower_cnt: number of filehandles in follower mode
|
|
|
|
* @cec_follower: filehandle of the exclusive follower
|
|
|
|
* @cec_initiator: filehandle of the exclusive initiator
|
|
|
|
* @passthrough: if true, then the exclusive follower is in
|
|
|
|
* passthrough mode.
|
|
|
|
* @log_addrs: current logical addresses
|
|
|
|
* @conn_info: current connector info
|
|
|
|
* @tx_timeouts: number of transmit timeouts
|
|
|
|
* @notifier: CEC notifier
|
|
|
|
* @pin: CEC pin status struct
|
|
|
|
* @cec_dir: debugfs cec directory
|
|
|
|
* @status_file: debugfs cec status file
|
|
|
|
* @error_inj_file: debugfs cec error injection file
|
|
|
|
* @sequence: transmit sequence counter
|
|
|
|
* @input_phys: remote control input_phys name
|
|
|
|
*
|
|
|
|
* This structure represents a cec adapter.
|
|
|
|
*/
|
|
|
|
struct cec_adapter {
|
|
|
|
struct module *owner;
|
|
|
|
char name[32];
|
|
|
|
struct cec_devnode devnode;
|
|
|
|
struct mutex lock;
|
|
|
|
struct rc_dev *rc;
|
|
|
|
|
|
|
|
struct list_head transmit_queue;
|
|
|
|
unsigned int transmit_queue_sz;
|
|
|
|
struct list_head wait_queue;
|
|
|
|
struct cec_data *transmitting;
|
|
|
|
bool transmit_in_progress;
|
|
|
|
bool transmit_in_progress_aborted;
|
|
|
|
unsigned int xfer_timeout_ms;
|
|
|
|
|
|
|
|
struct task_struct *kthread_config;
|
|
|
|
struct completion config_completion;
|
|
|
|
|
|
|
|
struct task_struct *kthread;
|
|
|
|
wait_queue_head_t kthread_waitq;
|
|
|
|
|
|
|
|
const struct cec_adap_ops *ops;
|
|
|
|
void *priv;
|
|
|
|
u32 capabilities;
|
|
|
|
u8 available_log_addrs;
|
|
|
|
|
|
|
|
u16 phys_addr;
|
|
|
|
bool needs_hpd;
|
|
|
|
bool is_enabled;
|
|
|
|
bool is_configuring;
|
|
|
|
bool must_reconfigure;
|
|
|
|
bool is_configured;
|
|
|
|
bool cec_pin_is_high;
|
|
|
|
bool adap_controls_phys_addr;
|
|
|
|
u8 last_initiator;
|
|
|
|
u32 monitor_all_cnt;
|
|
|
|
u32 monitor_pin_cnt;
|
|
|
|
u32 follower_cnt;
|
|
|
|
struct cec_fh *cec_follower;
|
|
|
|
struct cec_fh *cec_initiator;
|
|
|
|
bool passthrough;
|
|
|
|
struct cec_log_addrs log_addrs;
|
|
|
|
struct cec_connector_info conn_info;
|
|
|
|
|
|
|
|
u32 tx_timeouts;
|
|
|
|
|
|
|
|
#ifdef CONFIG_CEC_NOTIFIER
|
|
|
|
struct cec_notifier *notifier;
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CEC_PIN
|
|
|
|
struct cec_pin *pin;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
struct dentry *cec_dir;
|
|
|
|
|
|
|
|
u32 sequence;
|
|
|
|
|
|
|
|
char input_phys[32];
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline void *cec_get_drvdata(const struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->priv;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cec_has_log_addr(const struct cec_adapter *adap, u8 log_addr)
|
|
|
|
{
|
|
|
|
return adap->log_addrs.log_addr_mask & (1 << log_addr);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline bool cec_is_sink(const struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap->phys_addr == 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_is_registered() - is the CEC adapter registered?
|
|
|
|
*
|
|
|
|
* @adap: the CEC adapter, may be NULL.
|
|
|
|
*
|
|
|
|
* Return: true if the adapter is registered, false otherwise.
|
|
|
|
*/
|
|
|
|
static inline bool cec_is_registered(const struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
return adap && adap->devnode.registered;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define cec_phys_addr_exp(pa) \
|
|
|
|
((pa) >> 12), ((pa) >> 8) & 0xf, ((pa) >> 4) & 0xf, (pa) & 0xf
|
|
|
|
|
|
|
|
struct edid;
|
|
|
|
struct drm_connector;
|
|
|
|
|
|
|
|
#if IS_REACHABLE(CONFIG_CEC_CORE)
|
|
|
|
struct cec_adapter *cec_allocate_adapter(const struct cec_adap_ops *ops,
|
|
|
|
void *priv, const char *name, u32 caps, u8 available_las);
|
|
|
|
int cec_register_adapter(struct cec_adapter *adap, struct device *parent);
|
|
|
|
void cec_unregister_adapter(struct cec_adapter *adap);
|
|
|
|
void cec_delete_adapter(struct cec_adapter *adap);
|
|
|
|
|
|
|
|
int cec_s_log_addrs(struct cec_adapter *adap, struct cec_log_addrs *log_addrs,
|
|
|
|
bool block);
|
|
|
|
void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr,
|
|
|
|
bool block);
|
|
|
|
void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
|
|
|
|
const struct edid *edid);
|
|
|
|
void cec_s_conn_info(struct cec_adapter *adap,
|
|
|
|
const struct cec_connector_info *conn_info);
|
|
|
|
int cec_transmit_msg(struct cec_adapter *adap, struct cec_msg *msg,
|
|
|
|
bool block);
|
|
|
|
|
|
|
|
/* Called by the adapter */
|
|
|
|
void cec_transmit_done_ts(struct cec_adapter *adap, u8 status,
|
|
|
|
u8 arb_lost_cnt, u8 nack_cnt, u8 low_drive_cnt,
|
|
|
|
u8 error_cnt, ktime_t ts);
|
|
|
|
|
|
|
|
static inline void cec_transmit_done(struct cec_adapter *adap, u8 status,
|
|
|
|
u8 arb_lost_cnt, u8 nack_cnt,
|
|
|
|
u8 low_drive_cnt, u8 error_cnt)
|
|
|
|
{
|
|
|
|
cec_transmit_done_ts(adap, status, arb_lost_cnt, nack_cnt,
|
|
|
|
low_drive_cnt, error_cnt, ktime_get());
|
|
|
|
}
|
|
|
|
/*
|
|
|
|
* Simplified version of cec_transmit_done for hardware that doesn't retry
|
|
|
|
* failed transmits. So this is always just one attempt in which case
|
|
|
|
* the status is sufficient.
|
|
|
|
*/
|
|
|
|
void cec_transmit_attempt_done_ts(struct cec_adapter *adap,
|
|
|
|
u8 status, ktime_t ts);
|
|
|
|
|
|
|
|
static inline void cec_transmit_attempt_done(struct cec_adapter *adap,
|
|
|
|
u8 status)
|
|
|
|
{
|
|
|
|
cec_transmit_attempt_done_ts(adap, status, ktime_get());
|
|
|
|
}
|
|
|
|
|
|
|
|
void cec_received_msg_ts(struct cec_adapter *adap,
|
|
|
|
struct cec_msg *msg, ktime_t ts);
|
|
|
|
|
|
|
|
static inline void cec_received_msg(struct cec_adapter *adap,
|
|
|
|
struct cec_msg *msg)
|
|
|
|
{
|
|
|
|
cec_received_msg_ts(adap, msg, ktime_get());
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_queue_pin_cec_event() - queue a CEC pin event with a given timestamp.
|
|
|
|
*
|
|
|
|
* @adap: pointer to the cec adapter
|
|
|
|
* @is_high: when true the CEC pin is high, otherwise it is low
|
|
|
|
* @dropped_events: when true some events were dropped
|
|
|
|
* @ts: the timestamp for this event
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void cec_queue_pin_cec_event(struct cec_adapter *adap, bool is_high,
|
|
|
|
bool dropped_events, ktime_t ts);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_queue_pin_hpd_event() - queue a pin event with a given timestamp.
|
|
|
|
*
|
|
|
|
* @adap: pointer to the cec adapter
|
|
|
|
* @is_high: when true the HPD pin is high, otherwise it is low
|
|
|
|
* @ts: the timestamp for this event
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void cec_queue_pin_hpd_event(struct cec_adapter *adap, bool is_high, ktime_t ts);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_queue_pin_5v_event() - queue a pin event with a given timestamp.
|
|
|
|
*
|
|
|
|
* @adap: pointer to the cec adapter
|
|
|
|
* @is_high: when true the 5V pin is high, otherwise it is low
|
|
|
|
* @ts: the timestamp for this event
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
void cec_queue_pin_5v_event(struct cec_adapter *adap, bool is_high, ktime_t ts);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_get_edid_phys_addr() - find and return the physical address
|
|
|
|
*
|
|
|
|
* @edid: pointer to the EDID data
|
|
|
|
* @size: size in bytes of the EDID data
|
|
|
|
* @offset: If not %NULL then the location of the physical address
|
|
|
|
* bytes in the EDID will be returned here. This is set to 0
|
|
|
|
* if there is no physical address found.
|
|
|
|
*
|
|
|
|
* Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
|
|
|
|
*/
|
|
|
|
u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
|
|
|
|
unsigned int *offset);
|
|
|
|
|
|
|
|
void cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
|
|
|
|
const struct drm_connector *connector);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static inline int cec_register_adapter(struct cec_adapter *adap,
|
|
|
|
struct device *parent)
|
|
|
|
{
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void cec_unregister_adapter(struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void cec_delete_adapter(struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void cec_s_phys_addr(struct cec_adapter *adap, u16 phys_addr,
|
|
|
|
bool block)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void cec_s_phys_addr_from_edid(struct cec_adapter *adap,
|
|
|
|
const struct edid *edid)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline u16 cec_get_edid_phys_addr(const u8 *edid, unsigned int size,
|
|
|
|
unsigned int *offset)
|
|
|
|
{
|
|
|
|
if (offset)
|
|
|
|
*offset = 0;
|
|
|
|
return CEC_PHYS_ADDR_INVALID;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void cec_s_conn_info(struct cec_adapter *adap,
|
|
|
|
const struct cec_connector_info *conn_info)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void
|
|
|
|
cec_fill_conn_info_from_drm(struct cec_connector_info *conn_info,
|
|
|
|
const struct drm_connector *connector)
|
|
|
|
{
|
|
|
|
memset(conn_info, 0, sizeof(*conn_info));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_phys_addr_invalidate() - set the physical address to INVALID
|
|
|
|
*
|
|
|
|
* @adap: the CEC adapter
|
|
|
|
*
|
|
|
|
* This is a simple helper function to invalidate the physical
|
|
|
|
* address.
|
|
|
|
*/
|
|
|
|
static inline void cec_phys_addr_invalidate(struct cec_adapter *adap)
|
|
|
|
{
|
|
|
|
cec_s_phys_addr(adap, CEC_PHYS_ADDR_INVALID, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* cec_get_edid_spa_location() - find location of the Source Physical Address
|
|
|
|
*
|
|
|
|
* @edid: the EDID
|
|
|
|
* @size: the size of the EDID
|
|
|
|
*
|
|
|
|
* This EDID is expected to be a CEA-861 compliant, which means that there are
|
|
|
|
* at least two blocks and one or more of the extensions blocks are CEA-861
|
|
|
|
* blocks.
|
|
|
|
*
|
|
|
|
* The returned location is guaranteed to be <= size-2.
|
|
|
|
*
|
|
|
|
* This is an inline function since it is used by both CEC and V4L2.
|
|
|
|
* Ideally this would go in a module shared by both, but it is overkill to do
|
|
|
|
* that for just a single function.
|
|
|
|
*/
|
|
|
|
static inline unsigned int cec_get_edid_spa_location(const u8 *edid,
|
|
|
|
unsigned int size)
|
|
|
|
{
|
|
|
|
unsigned int blocks = size / 128;
|
|
|
|
unsigned int block;
|
|
|
|
u8 d;
|
|
|
|
|
|
|
|
/* Sanity check: at least 2 blocks and a multiple of the block size */
|
|
|
|
if (blocks < 2 || size % 128)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If there are fewer extension blocks than the size, then update
|
|
|
|
* 'blocks'. It is allowed to have more extension blocks than the size,
|
|
|
|
* since some hardware can only read e.g. 256 bytes of the EDID, even
|
|
|
|
* though more blocks are present. The first CEA-861 extension block
|
|
|
|
* should normally be in block 1 anyway.
|
|
|
|
*/
|
|
|
|
if (edid[0x7e] + 1 < blocks)
|
|
|
|
blocks = edid[0x7e] + 1;
|
|
|
|
|
|
|
|
for (block = 1; block < blocks; block++) {
|
|
|
|
unsigned int offset = block * 128;
|
|
|
|
|
|
|
|
/* Skip any non-CEA-861 extension blocks */
|
|
|
|
if (edid[offset] != 0x02 || edid[offset + 1] != 0x03)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
/* search Vendor Specific Data Block (tag 3) */
|
|
|
|
d = edid[offset + 2] & 0x7f;
|
|
|
|
/* Check if there are Data Blocks */
|
|
|
|
if (d <= 4)
|
|
|
|
continue;
|
|
|
|
if (d > 4) {
|
|
|
|
unsigned int i = offset + 4;
|
|
|
|
unsigned int end = offset + d;
|
|
|
|
|
|
|
|
/* Note: 'end' is always < 'size' */
|
|
|
|
do {
|
|
|
|
u8 tag = edid[i] >> 5;
|
|
|
|
u8 len = edid[i] & 0x1f;
|
|
|
|
|
|
|
|
if (tag == 3 && len >= 5 && i + len <= end &&
|
|
|
|
edid[i + 1] == 0x03 &&
|
|
|
|
edid[i + 2] == 0x0c &&
|
|
|
|
edid[i + 3] == 0x00)
|
|
|
|
return i + 4;
|
|
|
|
i += len + 1;
|
|
|
|
} while (i < end);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* _MEDIA_CEC_H */
|