linux-zen-desktop/sound/pci/ctxfi/cthw20k1.c

2278 lines
48 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
*
* @File cthw20k1.c
*
* @Brief
* This file contains the implementation of hardware access methord for 20k1.
*
* @Author Liu Chun
* @Date Jun 24 2008
*/
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/string.h>
#include <linux/spinlock.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include "cthw20k1.h"
#include "ct20k1reg.h"
struct hw20k1 {
struct hw hw;
spinlock_t reg_20k1_lock;
spinlock_t reg_pci_lock;
};
static u32 hw_read_20kx(struct hw *hw, u32 reg);
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
static u32 hw_read_pci(struct hw *hw, u32 reg);
static void hw_write_pci(struct hw *hw, u32 reg, u32 data);
/*
* Type definition block.
* The layout of control structures can be directly applied on 20k2 chip.
*/
/*
* SRC control block definitions.
*/
/* SRC resource control block */
#define SRCCTL_STATE 0x00000007
#define SRCCTL_BM 0x00000008
#define SRCCTL_RSR 0x00000030
#define SRCCTL_SF 0x000001C0
#define SRCCTL_WR 0x00000200
#define SRCCTL_PM 0x00000400
#define SRCCTL_ROM 0x00001800
#define SRCCTL_VO 0x00002000
#define SRCCTL_ST 0x00004000
#define SRCCTL_IE 0x00008000
#define SRCCTL_ILSZ 0x000F0000
#define SRCCTL_BP 0x00100000
#define SRCCCR_CISZ 0x000007FF
#define SRCCCR_CWA 0x001FF800
#define SRCCCR_D 0x00200000
#define SRCCCR_RS 0x01C00000
#define SRCCCR_NAL 0x3E000000
#define SRCCCR_RA 0xC0000000
#define SRCCA_CA 0x03FFFFFF
#define SRCCA_RS 0x1C000000
#define SRCCA_NAL 0xE0000000
#define SRCSA_SA 0x03FFFFFF
#define SRCLA_LA 0x03FFFFFF
/* Mixer Parameter Ring ram Low and Hight register.
* Fixed-point value in 8.24 format for parameter channel */
#define MPRLH_PITCH 0xFFFFFFFF
/* SRC resource register dirty flags */
union src_dirty {
struct {
u16 ctl:1;
u16 ccr:1;
u16 sa:1;
u16 la:1;
u16 ca:1;
u16 mpr:1;
u16 czbfs:1; /* Clear Z-Buffers */
u16 rsv:9;
} bf;
u16 data;
};
struct src_rsc_ctrl_blk {
unsigned int ctl;
unsigned int ccr;
unsigned int ca;
unsigned int sa;
unsigned int la;
unsigned int mpr;
union src_dirty dirty;
};
/* SRC manager control block */
union src_mgr_dirty {
struct {
u16 enb0:1;
u16 enb1:1;
u16 enb2:1;
u16 enb3:1;
u16 enb4:1;
u16 enb5:1;
u16 enb6:1;
u16 enb7:1;
u16 enbsa:1;
u16 rsv:7;
} bf;
u16 data;
};
struct src_mgr_ctrl_blk {
unsigned int enbsa;
unsigned int enb[8];
union src_mgr_dirty dirty;
};
/* SRCIMP manager control block */
#define SRCAIM_ARC 0x00000FFF
#define SRCAIM_NXT 0x00FF0000
#define SRCAIM_SRC 0xFF000000
struct srcimap {
unsigned int srcaim;
unsigned int idx;
};
/* SRCIMP manager register dirty flags */
union srcimp_mgr_dirty {
struct {
u16 srcimap:1;
u16 rsv:15;
} bf;
u16 data;
};
struct srcimp_mgr_ctrl_blk {
struct srcimap srcimap;
union srcimp_mgr_dirty dirty;
};
/*
* Function implementation block.
*/
static int src_get_rsc_ctrl_blk(void **rblk)
{
struct src_rsc_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int src_put_rsc_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int src_set_state(void *blk, unsigned int state)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_STATE, state);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_bm(void *blk, unsigned int bm)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_BM, bm);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_rsr(void *blk, unsigned int rsr)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_RSR, rsr);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_sf(void *blk, unsigned int sf)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_SF, sf);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_wr(void *blk, unsigned int wr)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_WR, wr);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_pm(void *blk, unsigned int pm)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_PM, pm);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_rom(void *blk, unsigned int rom)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ROM, rom);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_vo(void *blk, unsigned int vo)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_VO, vo);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_st(void *blk, unsigned int st)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ST, st);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_ie(void *blk, unsigned int ie)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_IE, ie);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_ilsz(void *blk, unsigned int ilsz)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_bp(void *blk, unsigned int bp)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ctl, SRCCTL_BP, bp);
ctl->dirty.bf.ctl = 1;
return 0;
}
static int src_set_cisz(void *blk, unsigned int cisz)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
ctl->dirty.bf.ccr = 1;
return 0;
}
static int src_set_ca(void *blk, unsigned int ca)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->ca, SRCCA_CA, ca);
ctl->dirty.bf.ca = 1;
return 0;
}
static int src_set_sa(void *blk, unsigned int sa)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->sa, SRCSA_SA, sa);
ctl->dirty.bf.sa = 1;
return 0;
}
static int src_set_la(void *blk, unsigned int la)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->la, SRCLA_LA, la);
ctl->dirty.bf.la = 1;
return 0;
}
static int src_set_pitch(void *blk, unsigned int pitch)
{
struct src_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->mpr, MPRLH_PITCH, pitch);
ctl->dirty.bf.mpr = 1;
return 0;
}
static int src_set_clear_zbufs(void *blk, unsigned int clear)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
return 0;
}
static int src_set_dirty(void *blk, unsigned int flags)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
return 0;
}
static int src_set_dirty_all(void *blk)
{
((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
return 0;
}
#define AR_SLOT_SIZE 4096
#define AR_SLOT_BLOCK_SIZE 16
#define AR_PTS_PITCH 6
#define AR_PARAM_SRC_OFFSET 0x60
static unsigned int src_param_pitch_mixer(unsigned int src_idx)
{
return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
}
static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct src_rsc_ctrl_blk *ctl = blk;
int i;
if (ctl->dirty.bf.czbfs) {
/* Clear Z-Buffer registers */
for (i = 0; i < 8; i++)
hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0);
for (i = 0; i < 4; i++)
hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0);
for (i = 0; i < 8; i++)
hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0);
ctl->dirty.bf.czbfs = 0;
}
if (ctl->dirty.bf.mpr) {
/* Take the parameter mixer resource in the same group as that
* the idx src is in for simplicity. Unlike src, all conjugate
* parameter mixer resources must be programmed for
* corresponding conjugate src resources. */
unsigned int pm_idx = src_param_pitch_mixer(idx);
hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr);
hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3);
hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0);
ctl->dirty.bf.mpr = 0;
}
if (ctl->dirty.bf.sa) {
hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa);
ctl->dirty.bf.sa = 0;
}
if (ctl->dirty.bf.la) {
hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la);
ctl->dirty.bf.la = 0;
}
if (ctl->dirty.bf.ca) {
hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca);
ctl->dirty.bf.ca = 0;
}
/* Write srccf register */
hw_write_20kx(hw, SRCCF+idx*0x100, 0x0);
if (ctl->dirty.bf.ccr) {
hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr);
ctl->dirty.bf.ccr = 0;
}
if (ctl->dirty.bf.ctl) {
hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl);
ctl->dirty.bf.ctl = 0;
}
return 0;
}
static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
{
struct src_rsc_ctrl_blk *ctl = blk;
ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100);
ctl->dirty.bf.ca = 0;
return get_field(ctl->ca, SRCCA_CA);
}
static unsigned int src_get_dirty(void *blk)
{
return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
}
static unsigned int src_dirty_conj_mask(void)
{
return 0x20;
}
static int src_mgr_enbs_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0);
((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
return 0;
}
static int src_mgr_enb_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
return 0;
}
static int src_mgr_dsb_src(void *blk, unsigned int idx)
{
((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
return 0;
}
static int src_mgr_commit_write(struct hw *hw, void *blk)
{
struct src_mgr_ctrl_blk *ctl = blk;
int i;
unsigned int ret;
if (ctl->dirty.bf.enbsa) {
do {
ret = hw_read_20kx(hw, SRCENBSTAT);
} while (ret & 0x1);
hw_write_20kx(hw, SRCENBS, ctl->enbsa);
ctl->dirty.bf.enbsa = 0;
}
for (i = 0; i < 8; i++) {
if ((ctl->dirty.data & (0x1 << i))) {
hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]);
ctl->dirty.data &= ~(0x1 << i);
}
}
return 0;
}
static int src_mgr_get_ctrl_blk(void **rblk)
{
struct src_mgr_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int src_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int srcimp_mgr_get_ctrl_blk(void **rblk)
{
struct srcimp_mgr_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int srcimp_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
ctl->srcimap.idx = addr;
ctl->dirty.bf.srcimap = 1;
return 0;
}
static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
{
struct srcimp_mgr_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.srcimap) {
hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100,
ctl->srcimap.srcaim);
ctl->dirty.bf.srcimap = 0;
}
return 0;
}
/*
* AMIXER control block definitions.
*/
#define AMOPLO_M 0x00000003
#define AMOPLO_X 0x0003FFF0
#define AMOPLO_Y 0xFFFC0000
#define AMOPHI_SADR 0x000000FF
#define AMOPHI_SE 0x80000000
/* AMIXER resource register dirty flags */
union amixer_dirty {
struct {
u16 amoplo:1;
u16 amophi:1;
u16 rsv:14;
} bf;
u16 data;
};
/* AMIXER resource control block */
struct amixer_rsc_ctrl_blk {
unsigned int amoplo;
unsigned int amophi;
union amixer_dirty dirty;
};
static int amixer_set_mode(void *blk, unsigned int mode)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_M, mode);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_iv(void *blk, unsigned int iv)
{
/* 20k1 amixer does not have this field */
return 0;
}
static int amixer_set_x(void *blk, unsigned int x)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_X, x);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_y(void *blk, unsigned int y)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amoplo, AMOPLO_Y, y);
ctl->dirty.bf.amoplo = 1;
return 0;
}
static int amixer_set_sadr(void *blk, unsigned int sadr)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amophi, AMOPHI_SADR, sadr);
ctl->dirty.bf.amophi = 1;
return 0;
}
static int amixer_set_se(void *blk, unsigned int se)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
set_field(&ctl->amophi, AMOPHI_SE, se);
ctl->dirty.bf.amophi = 1;
return 0;
}
static int amixer_set_dirty(void *blk, unsigned int flags)
{
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
return 0;
}
static int amixer_set_dirty_all(void *blk)
{
((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
return 0;
}
static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo);
ctl->dirty.bf.amoplo = 0;
hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi);
ctl->dirty.bf.amophi = 0;
}
return 0;
}
static int amixer_get_y(void *blk)
{
struct amixer_rsc_ctrl_blk *ctl = blk;
return get_field(ctl->amoplo, AMOPLO_Y);
}
static unsigned int amixer_get_dirty(void *blk)
{
return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
}
static int amixer_rsc_get_ctrl_blk(void **rblk)
{
struct amixer_rsc_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int amixer_rsc_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int amixer_mgr_get_ctrl_blk(void **rblk)
{
/*amixer_mgr_ctrl_blk_t *blk;*/
*rblk = NULL;
/*blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;*/
return 0;
}
static int amixer_mgr_put_ctrl_blk(void *blk)
{
/*kfree((amixer_mgr_ctrl_blk_t *)blk);*/
return 0;
}
/*
* DAIO control block definitions.
*/
/* Receiver Sample Rate Tracker Control register */
#define SRTCTL_SRCR 0x000000FF
#define SRTCTL_SRCL 0x0000FF00
#define SRTCTL_RSR 0x00030000
#define SRTCTL_DRAT 0x000C0000
#define SRTCTL_RLE 0x10000000
#define SRTCTL_RLP 0x20000000
#define SRTCTL_EC 0x40000000
#define SRTCTL_ET 0x80000000
/* DAIO Receiver register dirty flags */
union dai_dirty {
struct {
u16 srtctl:1;
u16 rsv:15;
} bf;
u16 data;
};
/* DAIO Receiver control block */
struct dai_ctrl_blk {
unsigned int srtctl;
union dai_dirty dirty;
};
/* S/PDIF Transmitter register dirty flags */
union dao_dirty {
struct {
u16 spos:1;
u16 rsv:15;
} bf;
u16 data;
};
/* S/PDIF Transmitter control block */
struct dao_ctrl_blk {
unsigned int spos; /* S/PDIF Output Channel Status Register */
union dao_dirty dirty;
};
/* Audio Input Mapper RAM */
#define AIM_ARC 0x00000FFF
#define AIM_NXT 0x007F0000
struct daoimap {
unsigned int aim;
unsigned int idx;
};
/* I2S Transmitter/Receiver Control register */
#define I2SCTL_EA 0x00000004
#define I2SCTL_EI 0x00000010
/* S/PDIF Transmitter Control register */
#define SPOCTL_OE 0x00000001
#define SPOCTL_OS 0x0000000E
#define SPOCTL_RIV 0x00000010
#define SPOCTL_LIV 0x00000020
#define SPOCTL_SR 0x000000C0
/* S/PDIF Receiver Control register */
#define SPICTL_EN 0x00000001
#define SPICTL_I24 0x00000002
#define SPICTL_IB 0x00000004
#define SPICTL_SM 0x00000008
#define SPICTL_VM 0x00000010
/* DAIO manager register dirty flags */
union daio_mgr_dirty {
struct {
u32 i2soctl:4;
u32 i2sictl:4;
u32 spoctl:4;
u32 spictl:4;
u32 daoimap:1;
u32 rsv:15;
} bf;
u32 data;
};
/* DAIO manager control block */
struct daio_mgr_ctrl_blk {
unsigned int i2sctl;
unsigned int spoctl;
unsigned int spictl;
struct daoimap daoimap;
union daio_mgr_dirty dirty;
};
static int dai_srt_set_srcr(void *blk, unsigned int src)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_SRCR, src);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_srt_set_srcl(void *blk, unsigned int src)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_SRCL, src);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_srt_set_rsr(void *blk, unsigned int rsr)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_RSR, rsr);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_srt_set_drat(void *blk, unsigned int drat)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_DRAT, drat);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_srt_set_ec(void *blk, unsigned int ec)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_srt_set_et(void *blk, unsigned int et)
{
struct dai_ctrl_blk *ctl = blk;
set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0);
ctl->dirty.bf.srtctl = 1;
return 0;
}
static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct dai_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.srtctl) {
if (idx < 4) {
/* S/PDIF SRTs */
hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl);
} else {
/* I2S SRT */
hw_write_20kx(hw, SRTICTL, ctl->srtctl);
}
ctl->dirty.bf.srtctl = 0;
}
return 0;
}
static int dai_get_ctrl_blk(void **rblk)
{
struct dai_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int dai_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int dao_set_spos(void *blk, unsigned int spos)
{
((struct dao_ctrl_blk *)blk)->spos = spos;
((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1;
return 0;
}
static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
{
struct dao_ctrl_blk *ctl = blk;
if (ctl->dirty.bf.spos) {
if (idx < 4) {
/* S/PDIF SPOSx */
hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos);
}
ctl->dirty.bf.spos = 0;
}
return 0;
}
static int dao_get_spos(void *blk, unsigned int *spos)
{
*spos = ((struct dao_ctrl_blk *)blk)->spos;
return 0;
}
static int dao_get_ctrl_blk(void **rblk)
{
struct dao_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
*rblk = blk;
return 0;
}
static int dao_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
static int daio_mgr_enb_dai(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF input */
set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1);
ctl->dirty.bf.spictl |= (0x1 << idx);
} else {
/* I2S input */
idx %= 4;
set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1);
ctl->dirty.bf.i2sictl |= (0x1 << idx);
}
return 0;
}
static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF input */
set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0);
ctl->dirty.bf.spictl |= (0x1 << idx);
} else {
/* I2S input */
idx %= 4;
set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0);
ctl->dirty.bf.i2sictl |= (0x1 << idx);
}
return 0;
}
static int daio_mgr_enb_dao(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF output */
set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1);
ctl->dirty.bf.spoctl |= (0x1 << idx);
} else {
/* I2S output */
idx %= 4;
set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1);
ctl->dirty.bf.i2soctl |= (0x1 << idx);
}
return 0;
}
static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF output */
set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0);
ctl->dirty.bf.spoctl |= (0x1 << idx);
} else {
/* I2S output */
idx %= 4;
set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0);
ctl->dirty.bf.i2soctl |= (0x1 << idx);
}
return 0;
}
static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
{
struct daio_mgr_ctrl_blk *ctl = blk;
if (idx < 4) {
/* S/PDIF output */
switch ((conf & 0x7)) {
case 0:
set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3);
break; /* CDIF */
case 1:
set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0);
break;
case 2:
set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1);
break;
case 4:
set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2);
break;
default:
break;
}
set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8),
(conf >> 4) & 0x1); /* Non-audio */
set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8),
(conf >> 4) & 0x1); /* Non-audio */
set_field(&ctl->spoctl, SPOCTL_OS << (idx*8),
((conf >> 3) & 0x1) ? 2 : 2); /* Raw */
ctl->dirty.bf.spoctl |= (0x1 << idx);
} else {
/* I2S output */
/*idx %= 4; */
}
return 0;
}
static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->daoimap.aim, AIM_ARC, slot);
ctl->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
{
struct daio_mgr_ctrl_blk *ctl = blk;
set_field(&ctl->daoimap.aim, AIM_NXT, next);
ctl->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
{
struct daio_mgr_ctrl_blk *ctl = blk;
ctl->daoimap.idx = addr;
ctl->dirty.bf.daoimap = 1;
return 0;
}
static int daio_mgr_commit_write(struct hw *hw, void *blk)
{
struct daio_mgr_ctrl_blk *ctl = blk;
int i;
if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) {
for (i = 0; i < 4; i++) {
if ((ctl->dirty.bf.i2sictl & (0x1 << i)))
ctl->dirty.bf.i2sictl &= ~(0x1 << i);
if ((ctl->dirty.bf.i2soctl & (0x1 << i)))
ctl->dirty.bf.i2soctl &= ~(0x1 << i);
}
hw_write_20kx(hw, I2SCTL, ctl->i2sctl);
mdelay(1);
}
if (ctl->dirty.bf.spoctl) {
for (i = 0; i < 4; i++) {
if ((ctl->dirty.bf.spoctl & (0x1 << i)))
ctl->dirty.bf.spoctl &= ~(0x1 << i);
}
hw_write_20kx(hw, SPOCTL, ctl->spoctl);
mdelay(1);
}
if (ctl->dirty.bf.spictl) {
for (i = 0; i < 4; i++) {
if ((ctl->dirty.bf.spictl & (0x1 << i)))
ctl->dirty.bf.spictl &= ~(0x1 << i);
}
hw_write_20kx(hw, SPICTL, ctl->spictl);
mdelay(1);
}
if (ctl->dirty.bf.daoimap) {
hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4,
ctl->daoimap.aim);
ctl->dirty.bf.daoimap = 0;
}
return 0;
}
static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
{
struct daio_mgr_ctrl_blk *blk;
*rblk = NULL;
blk = kzalloc(sizeof(*blk), GFP_KERNEL);
if (!blk)
return -ENOMEM;
blk->i2sctl = hw_read_20kx(hw, I2SCTL);
blk->spoctl = hw_read_20kx(hw, SPOCTL);
blk->spictl = hw_read_20kx(hw, SPICTL);
*rblk = blk;
return 0;
}
static int daio_mgr_put_ctrl_blk(void *blk)
{
kfree(blk);
return 0;
}
/* Timer interrupt */
static int set_timer_irq(struct hw *hw, int enable)
{
hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
return 0;
}
static int set_timer_tick(struct hw *hw, unsigned int ticks)
{
if (ticks)
ticks |= TIMR_IE | TIMR_IP;
hw_write_20kx(hw, TIMR, ticks);
return 0;
}
static unsigned int get_wc(struct hw *hw)
{
return hw_read_20kx(hw, WC);
}
/* Card hardware initialization block */
struct dac_conf {
unsigned int msr; /* master sample rate in rsrs */
};
struct adc_conf {
unsigned int msr; /* master sample rate in rsrs */
unsigned char input; /* the input source of ADC */
unsigned char mic20db; /* boost mic by 20db if input is microphone */
};
struct daio_conf {
unsigned int msr; /* master sample rate in rsrs */
};
struct trn_conf {
unsigned long vm_pgt_phys;
};
static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
{
u32 i2sorg;
u32 spdorg;
/* Read I2S CTL. Keep original value. */
/*i2sorg = hw_read_20kx(hw, I2SCTL);*/
i2sorg = 0x94040404; /* enable all audio out and I2S-D input */
/* Program I2S with proper master sample rate and enable
* the correct I2S channel. */
i2sorg &= 0xfffffffc;
/* Enable S/PDIF-out-A in fixed 24-bit data
* format and default to 48kHz. */
/* Disable all before doing any changes. */
hw_write_20kx(hw, SPOCTL, 0x0);
spdorg = 0x05;
switch (info->msr) {
case 1:
i2sorg |= 1;
spdorg |= (0x0 << 6);
break;
case 2:
i2sorg |= 2;
spdorg |= (0x1 << 6);
break;
case 4:
i2sorg |= 3;
spdorg |= (0x2 << 6);
break;
default:
i2sorg |= 1;
break;
}
hw_write_20kx(hw, I2SCTL, i2sorg);
hw_write_20kx(hw, SPOCTL, spdorg);
/* Enable S/PDIF-in-A in fixed 24-bit data format. */
/* Disable all before doing any changes. */
hw_write_20kx(hw, SPICTL, 0x0);
mdelay(1);
spdorg = 0x0a0a0a0a;
hw_write_20kx(hw, SPICTL, spdorg);
mdelay(1);
return 0;
}
/* TRANSPORT operations */
static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
{
u32 trnctl;
u32 ptp_phys_low, ptp_phys_high;
/* Set up device page table */
if ((~0UL) == info->vm_pgt_phys) {
dev_err(hw->card->dev,
"Wrong device page table page address!\n");
return -1;
}
trnctl = 0x13; /* 32-bit, 4k-size page */
ptp_phys_low = (u32)info->vm_pgt_phys;
ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
if (sizeof(void *) == 8) /* 64bit address */
trnctl |= (1 << 2);
#if 0 /* Only 4k h/w pages for simplicitiy */
#if PAGE_SIZE == 8192
trnctl |= (1<<5);
#endif
#endif
hw_write_20kx(hw, PTPALX, ptp_phys_low);
hw_write_20kx(hw, PTPAHX, ptp_phys_high);
hw_write_20kx(hw, TRNCTL, trnctl);
hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */
return 0;
}
/* Card initialization */
#define GCTL_EAC 0x00000001
#define GCTL_EAI 0x00000002
#define GCTL_BEP 0x00000004
#define GCTL_BES 0x00000008
#define GCTL_DSP 0x00000010
#define GCTL_DBP 0x00000020
#define GCTL_ABP 0x00000040
#define GCTL_TBP 0x00000080
#define GCTL_SBP 0x00000100
#define GCTL_FBP 0x00000200
#define GCTL_XA 0x00000400
#define GCTL_ET 0x00000800
#define GCTL_PR 0x00001000
#define GCTL_MRL 0x00002000
#define GCTL_SDE 0x00004000
#define GCTL_SDI 0x00008000
#define GCTL_SM 0x00010000
#define GCTL_SR 0x00020000
#define GCTL_SD 0x00040000
#define GCTL_SE 0x00080000
#define GCTL_AID 0x00100000
static int hw_pll_init(struct hw *hw, unsigned int rsr)
{
unsigned int pllctl;
int i;
pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731;
for (i = 0; i < 3; i++) {
if (hw_read_20kx(hw, PLLCTL) == pllctl)
break;
hw_write_20kx(hw, PLLCTL, pllctl);
msleep(40);
}
if (i >= 3) {
dev_alert(hw->card->dev, "PLL initialization failed!!!\n");
return -EBUSY;
}
return 0;
}
static int hw_auto_init(struct hw *hw)
{
unsigned int gctl;
int i;
gctl = hw_read_20kx(hw, GCTL);
set_field(&gctl, GCTL_EAI, 0);
hw_write_20kx(hw, GCTL, gctl);
set_field(&gctl, GCTL_EAI, 1);
hw_write_20kx(hw, GCTL, gctl);
mdelay(10);
for (i = 0; i < 400000; i++) {
gctl = hw_read_20kx(hw, GCTL);
if (get_field(gctl, GCTL_AID))
break;
}
if (!get_field(gctl, GCTL_AID)) {
dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
return -EBUSY;
}
return 0;
}
static int i2c_unlock(struct hw *hw)
{
if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
return 0;
hw_write_pci(hw, 0xcc, 0x8c);
hw_write_pci(hw, 0xcc, 0x0e);
if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
return 0;
hw_write_pci(hw, 0xcc, 0xee);
hw_write_pci(hw, 0xcc, 0xaa);
if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
return 0;
return -1;
}
static void i2c_lock(struct hw *hw)
{
if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa)
hw_write_pci(hw, 0xcc, 0x00);
}
static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data)
{
unsigned int ret;
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000));
hw_write_pci(hw, 0xE0, device);
hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff));
}
/* DAC operations */
static int hw_reset_dac(struct hw *hw)
{
u32 i;
u16 gpioorg;
unsigned int ret;
if (i2c_unlock(hw))
return -1;
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000));
hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
/* To be effective, need to reset the DAC twice. */
for (i = 0; i < 2; i++) {
/* set gpio */
msleep(100);
gpioorg = (u16)hw_read_20kx(hw, GPIO);
gpioorg &= 0xfffd;
hw_write_20kx(hw, GPIO, gpioorg);
mdelay(1);
hw_write_20kx(hw, GPIO, gpioorg | 0x2);
}
i2c_write(hw, 0x00180080, 0x01, 0x80);
i2c_write(hw, 0x00180080, 0x02, 0x10);
i2c_lock(hw);
return 0;
}
static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
{
u32 data;
u16 gpioorg;
unsigned int ret;
if (hw->model == CTSB055X) {
/* SB055x, unmute outputs */
gpioorg = (u16)hw_read_20kx(hw, GPIO);
gpioorg &= 0xffbf; /* set GPIO6 to low */
gpioorg |= 2; /* set GPIO1 to high */
hw_write_20kx(hw, GPIO, gpioorg);
return 0;
}
/* mute outputs */
gpioorg = (u16)hw_read_20kx(hw, GPIO);
gpioorg &= 0xffbf;
hw_write_20kx(hw, GPIO, gpioorg);
hw_reset_dac(hw);
if (i2c_unlock(hw))
return -1;
hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000));
switch (info->msr) {
case 1:
data = 0x24;
break;
case 2:
data = 0x25;
break;
case 4:
data = 0x26;
break;
default:
data = 0x24;
break;
}
i2c_write(hw, 0x00180080, 0x06, data);
i2c_write(hw, 0x00180080, 0x09, data);
i2c_write(hw, 0x00180080, 0x0c, data);
i2c_write(hw, 0x00180080, 0x0f, data);
i2c_lock(hw);
/* unmute outputs */
gpioorg = (u16)hw_read_20kx(hw, GPIO);
gpioorg = gpioorg | 0x40;
hw_write_20kx(hw, GPIO, gpioorg);
return 0;
}
/* ADC operations */
static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type)
{
return 0;
}
static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type)
{
u32 data;
data = hw_read_20kx(hw, GPIO);
switch (type) {
case ADC_MICIN:
data = ((data & (0x1<<7)) && (data & (0x1<<8)));
break;
case ADC_LINEIN:
data = (!(data & (0x1<<7)) && (data & (0x1<<8)));
break;
case ADC_NONE: /* Digital I/O */
data = (!(data & (0x1<<8)));
break;
default:
data = 0;
}
return data;
}
static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type)
{
u32 data;
data = hw_read_20kx(hw, GPIO);
switch (type) {
case ADC_MICIN:
data = (data & (0x1 << 7)) ? 1 : 0;
break;
case ADC_LINEIN:
data = (data & (0x1 << 7)) ? 0 : 1;
break;
default:
data = 0;
}
return data;
}
static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
{
switch (hw->model) {
case CTSB055X:
return is_adc_input_selected_SB055x(hw, type);
case CTSB073X:
return is_adc_input_selected_hendrix(hw, type);
case CTUAA:
return is_adc_input_selected_hendrix(hw, type);
default:
return is_adc_input_selected_SBx(hw, type);
}
}
static int
adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost)
{
u32 data;
/*
* check and set the following GPIO bits accordingly
* ADC_Gain = GPIO2
* DRM_off = GPIO3
* Mic_Pwr_on = GPIO7
* Digital_IO_Sel = GPIO8
* Mic_Sw = GPIO9
* Aux/MicLine_Sw = GPIO12
*/
data = hw_read_20kx(hw, GPIO);
data &= 0xec73;
switch (type) {
case ADC_MICIN:
data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ;
data |= boost ? (0x1<<2) : 0;
break;
case ADC_LINEIN:
data |= (0x1<<8);
break;
case ADC_AUX:
data |= (0x1<<8) | (0x1<<12);
break;
case ADC_NONE:
data |= (0x1<<12); /* set to digital */
break;
default:
return -1;
}
hw_write_20kx(hw, GPIO, data);
return 0;
}
static int
adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost)
{
u32 data;
u32 i2c_data;
unsigned int ret;
if (i2c_unlock(hw))
return -1;
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000)); /* i2c ready poll */
/* set i2c access mode as Direct Control */
hw_write_pci(hw, 0xEC, 0x05);
data = hw_read_20kx(hw, GPIO);
switch (type) {
case ADC_MICIN:
data |= ((0x1 << 7) | (0x1 << 8));
i2c_data = 0x1; /* Mic-in */
break;
case ADC_LINEIN:
data &= ~(0x1 << 7);
data |= (0x1 << 8);
i2c_data = 0x2; /* Line-in */
break;
case ADC_NONE:
data &= ~(0x1 << 8);
i2c_data = 0x0; /* set to Digital */
break;
default:
i2c_lock(hw);
return -1;
}
hw_write_20kx(hw, GPIO, data);
i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
if (boost) {
i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
} else {
i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
}
i2c_lock(hw);
return 0;
}
static int
adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost)
{
u32 data;
u32 i2c_data;
unsigned int ret;
if (i2c_unlock(hw))
return -1;
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000)); /* i2c ready poll */
/* set i2c access mode as Direct Control */
hw_write_pci(hw, 0xEC, 0x05);
data = hw_read_20kx(hw, GPIO);
switch (type) {
case ADC_MICIN:
data |= (0x1 << 7);
i2c_data = 0x1; /* Mic-in */
break;
case ADC_LINEIN:
data &= ~(0x1 << 7);
i2c_data = 0x2; /* Line-in */
break;
default:
i2c_lock(hw);
return -1;
}
hw_write_20kx(hw, GPIO, data);
i2c_write(hw, 0x001a0080, 0x2a, i2c_data);
if (boost) {
i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */
i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */
} else {
i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */
i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */
}
i2c_lock(hw);
return 0;
}
static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
{
int state = type == ADC_MICIN;
switch (hw->model) {
case CTSB055X:
return adc_input_select_SB055x(hw, type, state);
case CTSB073X:
return adc_input_select_hendrix(hw, type, state);
case CTUAA:
return adc_input_select_hendrix(hw, type, state);
default:
return adc_input_select_SBx(hw, type, state);
}
}
static int adc_init_SB055x(struct hw *hw, int input, int mic20db)
{
return adc_input_select_SB055x(hw, input, mic20db);
}
static int adc_init_SBx(struct hw *hw, int input, int mic20db)
{
u16 gpioorg;
u16 input_source;
u32 adcdata;
unsigned int ret;
input_source = 0x100; /* default to analog */
switch (input) {
case ADC_MICIN:
adcdata = 0x1;
input_source = 0x180; /* set GPIO7 to select Mic */
break;
case ADC_LINEIN:
adcdata = 0x2;
break;
case ADC_VIDEO:
adcdata = 0x4;
break;
case ADC_AUX:
adcdata = 0x8;
break;
case ADC_NONE:
adcdata = 0x0;
input_source = 0x0; /* set to Digital */
break;
default:
adcdata = 0x0;
break;
}
if (i2c_unlock(hw))
return -1;
do {
ret = hw_read_pci(hw, 0xEC);
} while (!(ret & 0x800000)); /* i2c ready poll */
hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */
i2c_write(hw, 0x001a0080, 0x0e, 0x08);
i2c_write(hw, 0x001a0080, 0x18, 0x0a);
i2c_write(hw, 0x001a0080, 0x28, 0x86);
i2c_write(hw, 0x001a0080, 0x2a, adcdata);
if (mic20db) {
i2c_write(hw, 0x001a0080, 0x1c, 0xf7);
i2c_write(hw, 0x001a0080, 0x1e, 0xf7);
} else {
i2c_write(hw, 0x001a0080, 0x1c, 0xcf);
i2c_write(hw, 0x001a0080, 0x1e, 0xcf);
}
if (!(hw_read_20kx(hw, ID0) & 0x100))
i2c_write(hw, 0x001a0080, 0x16, 0x26);
i2c_lock(hw);
gpioorg = (u16)hw_read_20kx(hw, GPIO);
gpioorg &= 0xfe7f;
gpioorg |= input_source;
hw_write_20kx(hw, GPIO, gpioorg);
return 0;
}
static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
{
if (hw->model == CTSB055X)
return adc_init_SB055x(hw, info->input, info->mic20db);
else
return adc_init_SBx(hw, info->input, info->mic20db);
}
static struct capabilities hw_capabilities(struct hw *hw)
{
struct capabilities cap;
/* SB073x and Vista compatible cards have no digit IO switch */
cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA);
cap.dedicated_mic = 0;
cap.output_switch = 0;
cap.mic_source_switch = 0;
return cap;
}
#define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d))
#define UAA_CFG_PWRSTATUS 0x44
#define UAA_CFG_SPACE_FLAG 0xA0
#define UAA_CORE_CHANGE 0x3FFC
static int uaa_to_xfi(struct pci_dev *pci)
{
unsigned int bar0, bar1, bar2, bar3, bar4, bar5;
unsigned int cmd, irq, cl_size, l_timer, pwr;
unsigned int is_uaa;
unsigned int data[4] = {0};
unsigned int io_base;
void __iomem *mem_base;
int i;
const u32 CTLX = CTLBITS('C', 'T', 'L', 'X');
const u32 CTL_ = CTLBITS('C', 'T', 'L', '-');
const u32 CTLF = CTLBITS('C', 'T', 'L', 'F');
const u32 CTLi = CTLBITS('C', 'T', 'L', 'i');
const u32 CTLA = CTLBITS('C', 'T', 'L', 'A');
const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z');
const u32 CTLL = CTLBITS('C', 'T', 'L', 'L');
/* By default, Hendrix card UAA Bar0 should be using memory... */
io_base = pci_resource_start(pci, 0);
mem_base = ioremap(io_base, pci_resource_len(pci, 0));
if (!mem_base)
return -ENOENT;
/* Read current mode from Mode Change Register */
for (i = 0; i < 4; i++)
data[i] = readl(mem_base + UAA_CORE_CHANGE);
/* Determine current mode... */
if (data[0] == CTLA) {
is_uaa = ((data[1] == CTLZ && data[2] == CTLL
&& data[3] == CTLA) || (data[1] == CTLA
&& data[2] == CTLZ && data[3] == CTLL));
} else if (data[0] == CTLZ) {
is_uaa = (data[1] == CTLL
&& data[2] == CTLA && data[3] == CTLA);
} else if (data[0] == CTLL) {
is_uaa = (data[1] == CTLA
&& data[2] == CTLA && data[3] == CTLZ);
} else {
is_uaa = 0;
}
if (!is_uaa) {
/* Not in UAA mode currently. Return directly. */
iounmap(mem_base);
return 0;
}
pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0);
pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1);
pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2);
pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3);
pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4);
pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5);
pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq);
pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size);
pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer);
pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr);
pci_read_config_dword(pci, PCI_COMMAND, &cmd);
/* Set up X-Fi core PCI configuration space. */
/* Switch to X-Fi config space with BAR0 exposed. */
pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321);
/* Copy UAA's BAR5 into X-Fi BAR0 */
pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5);
/* Switch to X-Fi config space without BAR0 exposed. */
pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678);
pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1);
pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2);
pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3);
pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4);
pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq);
pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size);
pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer);
pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr);
pci_write_config_dword(pci, PCI_COMMAND, cmd);
/* Switch to X-Fi mode */
writel(CTLX, (mem_base + UAA_CORE_CHANGE));
writel(CTL_, (mem_base + UAA_CORE_CHANGE));
writel(CTLF, (mem_base + UAA_CORE_CHANGE));
writel(CTLi, (mem_base + UAA_CORE_CHANGE));
iounmap(mem_base);
return 0;
}
static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id)
{
struct hw *hw = dev_id;
unsigned int status;
status = hw_read_20kx(hw, GIP);
if (!status)
return IRQ_NONE;
if (hw->irq_callback)
hw->irq_callback(hw->irq_callback_data, status);
hw_write_20kx(hw, GIP, status);
return IRQ_HANDLED;
}
static int hw_card_start(struct hw *hw)
{
int err;
struct pci_dev *pci = hw->pci;
const unsigned int dma_bits = BITS_PER_LONG;
err = pci_enable_device(pci);
if (err < 0)
return err;
/* Set DMA transfer mask */
if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(dma_bits)))
dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32));
if (!hw->io_base) {
err = pci_request_regions(pci, "XFi");
if (err < 0)
goto error1;
if (hw->model == CTUAA)
hw->io_base = pci_resource_start(pci, 5);
else
hw->io_base = pci_resource_start(pci, 0);
}
/* Switch to X-Fi mode from UAA mode if needed */
if (hw->model == CTUAA) {
err = uaa_to_xfi(pci);
if (err)
goto error2;
}
if (hw->irq < 0) {
err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED,
KBUILD_MODNAME, hw);
if (err < 0) {
dev_err(hw->card->dev,
"XFi: Cannot get irq %d\n", pci->irq);
goto error2;
}
hw->irq = pci->irq;
hw->card->sync_irq = hw->irq;
}
pci_set_master(pci);
return 0;
error2:
pci_release_regions(pci);
hw->io_base = 0;
error1:
pci_disable_device(pci);
return err;
}
static int hw_card_stop(struct hw *hw)
{
unsigned int data;
/* disable transport bus master and queueing of request */
hw_write_20kx(hw, TRNCTL, 0x00);
/* disable pll */
data = hw_read_20kx(hw, PLLCTL);
hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12))));
return 0;
}
static int hw_card_shutdown(struct hw *hw)
{
if (hw->irq >= 0)
free_irq(hw->irq, hw);
hw->irq = -1;
iounmap(hw->mem_base);
hw->mem_base = NULL;
if (hw->io_base)
pci_release_regions(hw->pci);
hw->io_base = 0;
pci_disable_device(hw->pci);
return 0;
}
static int hw_card_init(struct hw *hw, struct card_conf *info)
{
int err;
unsigned int gctl;
u32 data;
struct dac_conf dac_info = {0};
struct adc_conf adc_info = {0};
struct daio_conf daio_info = {0};
struct trn_conf trn_info = {0};
/* Get PCI io port base address and do Hendrix switch if needed. */
err = hw_card_start(hw);
if (err)
return err;
/* PLL init */
err = hw_pll_init(hw, info->rsr);
if (err < 0)
return err;
/* kick off auto-init */
err = hw_auto_init(hw);
if (err < 0)
return err;
/* Enable audio ring */
gctl = hw_read_20kx(hw, GCTL);
set_field(&gctl, GCTL_EAC, 1);
set_field(&gctl, GCTL_DBP, 1);
set_field(&gctl, GCTL_TBP, 1);
set_field(&gctl, GCTL_FBP, 1);
set_field(&gctl, GCTL_ET, 1);
hw_write_20kx(hw, GCTL, gctl);
mdelay(10);
/* Reset all global pending interrupts */
hw_write_20kx(hw, GIE, 0);
/* Reset all SRC pending interrupts */
hw_write_20kx(hw, SRCIP, 0);
msleep(30);
/* Detect the card ID and configure GPIO accordingly. */
switch (hw->model) {
case CTSB055X:
hw_write_20kx(hw, GPIOCTL, 0x13fe);
break;
case CTSB073X:
hw_write_20kx(hw, GPIOCTL, 0x00e6);
break;
case CTUAA:
hw_write_20kx(hw, GPIOCTL, 0x00c2);
break;
default:
hw_write_20kx(hw, GPIOCTL, 0x01e6);
break;
}
trn_info.vm_pgt_phys = info->vm_pgt_phys;
err = hw_trn_init(hw, &trn_info);
if (err < 0)
return err;
daio_info.msr = info->msr;
err = hw_daio_init(hw, &daio_info);
if (err < 0)
return err;
dac_info.msr = info->msr;
err = hw_dac_init(hw, &dac_info);
if (err < 0)
return err;
adc_info.msr = info->msr;
adc_info.input = ADC_LINEIN;
adc_info.mic20db = 0;
err = hw_adc_init(hw, &adc_info);
if (err < 0)
return err;
data = hw_read_20kx(hw, SRCMCTL);
data |= 0x1; /* Enables input from the audio ring */
hw_write_20kx(hw, SRCMCTL, data);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int hw_suspend(struct hw *hw)
{
struct pci_dev *pci = hw->pci;
hw_card_stop(hw);
if (hw->model == CTUAA) {
/* Switch to UAA config space. */
pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0);
}
return 0;
}
static int hw_resume(struct hw *hw, struct card_conf *info)
{
/* Re-initialize card hardware. */
return hw_card_init(hw, info);
}
#endif
static u32 hw_read_20kx(struct hw *hw, u32 reg)
{
u32 value;
unsigned long flags;
spin_lock_irqsave(
&container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
outl(reg, hw->io_base + 0x0);
value = inl(hw->io_base + 0x4);
spin_unlock_irqrestore(
&container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
return value;
}
static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
{
unsigned long flags;
spin_lock_irqsave(
&container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
outl(reg, hw->io_base + 0x0);
outl(data, hw->io_base + 0x4);
spin_unlock_irqrestore(
&container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags);
}
static u32 hw_read_pci(struct hw *hw, u32 reg)
{
u32 value;
unsigned long flags;
spin_lock_irqsave(
&container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
outl(reg, hw->io_base + 0x10);
value = inl(hw->io_base + 0x14);
spin_unlock_irqrestore(
&container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
return value;
}
static void hw_write_pci(struct hw *hw, u32 reg, u32 data)
{
unsigned long flags;
spin_lock_irqsave(
&container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
outl(reg, hw->io_base + 0x10);
outl(data, hw->io_base + 0x14);
spin_unlock_irqrestore(
&container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags);
}
static const struct hw ct20k1_preset = {
.irq = -1,
.card_init = hw_card_init,
.card_stop = hw_card_stop,
.pll_init = hw_pll_init,
.is_adc_source_selected = hw_is_adc_input_selected,
.select_adc_source = hw_adc_input_select,
.capabilities = hw_capabilities,
#ifdef CONFIG_PM_SLEEP
.suspend = hw_suspend,
.resume = hw_resume,
#endif
.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
.src_set_state = src_set_state,
.src_set_bm = src_set_bm,
.src_set_rsr = src_set_rsr,
.src_set_sf = src_set_sf,
.src_set_wr = src_set_wr,
.src_set_pm = src_set_pm,
.src_set_rom = src_set_rom,
.src_set_vo = src_set_vo,
.src_set_st = src_set_st,
.src_set_ie = src_set_ie,
.src_set_ilsz = src_set_ilsz,
.src_set_bp = src_set_bp,
.src_set_cisz = src_set_cisz,
.src_set_ca = src_set_ca,
.src_set_sa = src_set_sa,
.src_set_la = src_set_la,
.src_set_pitch = src_set_pitch,
.src_set_dirty = src_set_dirty,
.src_set_clear_zbufs = src_set_clear_zbufs,
.src_set_dirty_all = src_set_dirty_all,
.src_commit_write = src_commit_write,
.src_get_ca = src_get_ca,
.src_get_dirty = src_get_dirty,
.src_dirty_conj_mask = src_dirty_conj_mask,
.src_mgr_enbs_src = src_mgr_enbs_src,
.src_mgr_enb_src = src_mgr_enb_src,
.src_mgr_dsb_src = src_mgr_dsb_src,
.src_mgr_commit_write = src_mgr_commit_write,
.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
.amixer_set_mode = amixer_set_mode,
.amixer_set_iv = amixer_set_iv,
.amixer_set_x = amixer_set_x,
.amixer_set_y = amixer_set_y,
.amixer_set_sadr = amixer_set_sadr,
.amixer_set_se = amixer_set_se,
.amixer_set_dirty = amixer_set_dirty,
.amixer_set_dirty_all = amixer_set_dirty_all,
.amixer_commit_write = amixer_commit_write,
.amixer_get_y = amixer_get_y,
.amixer_get_dirty = amixer_get_dirty,
.dai_get_ctrl_blk = dai_get_ctrl_blk,
.dai_put_ctrl_blk = dai_put_ctrl_blk,
.dai_srt_set_srco = dai_srt_set_srcr,
.dai_srt_set_srcm = dai_srt_set_srcl,
.dai_srt_set_rsr = dai_srt_set_rsr,
.dai_srt_set_drat = dai_srt_set_drat,
.dai_srt_set_ec = dai_srt_set_ec,
.dai_srt_set_et = dai_srt_set_et,
.dai_commit_write = dai_commit_write,
.dao_get_ctrl_blk = dao_get_ctrl_blk,
.dao_put_ctrl_blk = dao_put_ctrl_blk,
.dao_set_spos = dao_set_spos,
.dao_commit_write = dao_commit_write,
.dao_get_spos = dao_get_spos,
.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
.daio_mgr_enb_dai = daio_mgr_enb_dai,
.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
.daio_mgr_enb_dao = daio_mgr_enb_dao,
.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
.daio_mgr_dao_init = daio_mgr_dao_init,
.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
.daio_mgr_commit_write = daio_mgr_commit_write,
.set_timer_irq = set_timer_irq,
.set_timer_tick = set_timer_tick,
.get_wc = get_wc,
};
int create_20k1_hw_obj(struct hw **rhw)
{
struct hw20k1 *hw20k1;
*rhw = NULL;
hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL);
if (!hw20k1)
return -ENOMEM;
spin_lock_init(&hw20k1->reg_20k1_lock);
spin_lock_init(&hw20k1->reg_pci_lock);
hw20k1->hw = ct20k1_preset;
*rhw = &hw20k1->hw;
return 0;
}
int destroy_20k1_hw_obj(struct hw *hw)
{
if (hw->io_base)
hw_card_shutdown(hw);
kfree(container_of(hw, struct hw20k1, hw));
return 0;
}