2023-08-30 17:31:07 +02:00
|
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "alloc_nid_api.h"
|
|
|
|
|
|
|
|
static int alloc_nid_test_flags = TEST_F_NONE;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* contains the fraction of MEM_SIZE contained in each node in basis point
|
|
|
|
* units (one hundredth of 1% or 1/10000)
|
|
|
|
*/
|
|
|
|
static const unsigned int node_fractions[] = {
|
|
|
|
2500, /* 1/4 */
|
|
|
|
625, /* 1/16 */
|
|
|
|
1250, /* 1/8 */
|
|
|
|
1250, /* 1/8 */
|
|
|
|
625, /* 1/16 */
|
|
|
|
625, /* 1/16 */
|
|
|
|
2500, /* 1/4 */
|
|
|
|
625, /* 1/16 */
|
|
|
|
};
|
|
|
|
|
|
|
|
static inline const char * const get_memblock_alloc_nid_name(int flags)
|
|
|
|
{
|
|
|
|
if (flags & TEST_F_EXACT)
|
|
|
|
return "memblock_alloc_exact_nid_raw";
|
|
|
|
if (flags & TEST_F_RAW)
|
|
|
|
return "memblock_alloc_try_nid_raw";
|
|
|
|
return "memblock_alloc_try_nid";
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *run_memblock_alloc_nid(phys_addr_t size,
|
|
|
|
phys_addr_t align,
|
|
|
|
phys_addr_t min_addr,
|
|
|
|
phys_addr_t max_addr, int nid)
|
|
|
|
{
|
|
|
|
assert(!(alloc_nid_test_flags & TEST_F_EXACT) ||
|
|
|
|
(alloc_nid_test_flags & TEST_F_RAW));
|
|
|
|
/*
|
|
|
|
* TEST_F_EXACT should be checked before TEST_F_RAW since
|
|
|
|
* memblock_alloc_exact_nid_raw() performs raw allocations.
|
|
|
|
*/
|
|
|
|
if (alloc_nid_test_flags & TEST_F_EXACT)
|
|
|
|
return memblock_alloc_exact_nid_raw(size, align, min_addr,
|
|
|
|
max_addr, nid);
|
|
|
|
if (alloc_nid_test_flags & TEST_F_RAW)
|
|
|
|
return memblock_alloc_try_nid_raw(size, align, min_addr,
|
|
|
|
max_addr, nid);
|
|
|
|
return memblock_alloc_try_nid(size, align, min_addr, max_addr, nid);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region within min_addr and
|
|
|
|
* max_addr range:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | + +-----------+ |
|
|
|
|
* | | | rgn | |
|
|
|
|
* +----+-------+-----------+------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to allocate a region that ends at max_addr.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_simple_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_128;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t rgn_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
|
|
|
|
max_addr = min_addr + SZ_512;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
rgn_end = rgn->base + rgn->size;
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, max_addr - size);
|
|
|
|
ASSERT_EQ(rgn_end, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region within min_addr and
|
|
|
|
* max_addr range, where the end address is misaligned:
|
|
|
|
*
|
|
|
|
* + + +
|
|
|
|
* | + +---------+ + |
|
|
|
|
* | | | rgn | | |
|
|
|
|
* +------+-------+---------+--+----+
|
|
|
|
* ^ ^ ^
|
|
|
|
* | | |
|
|
|
|
* min_add | max_addr
|
|
|
|
* |
|
|
|
|
* Aligned address
|
|
|
|
* boundary
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region that ends before max_addr.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_end_misaligned_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_128;
|
|
|
|
phys_addr_t misalign = SZ_2;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t rgn_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
|
|
|
|
max_addr = min_addr + SZ_512 + misalign;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
rgn_end = rgn->base + rgn->size;
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, max_addr - size - misalign);
|
|
|
|
ASSERT_LT(rgn_end, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region, which spans over the
|
|
|
|
* min_addr and max_addr range:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +---------------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +------+---------------+-------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to allocate a region that starts at min_addr and ends at
|
|
|
|
* max_addr, given that min_addr is aligned.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_exact_address_generic_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_1K;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t rgn_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
rgn_end = rgn->base + rgn->size;
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, min_addr);
|
|
|
|
ASSERT_EQ(rgn_end, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, which can't fit into
|
|
|
|
* min_addr and max_addr range:
|
|
|
|
*
|
|
|
|
* + + +
|
|
|
|
* | +----------+-----+ |
|
|
|
|
* | | rgn + | |
|
|
|
|
* +--------+----------+-----+----+
|
|
|
|
* ^ ^ ^
|
|
|
|
* | | |
|
|
|
|
* Aligned | max_addr
|
|
|
|
* address |
|
|
|
|
* boundary min_add
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region which
|
|
|
|
* ends at max_addr (if the address is aligned).
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_narrow_range_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_256;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SZ_512;
|
|
|
|
max_addr = min_addr + SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, max_addr - size);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, which can't fit into
|
|
|
|
* min_addr and max_addr range, with the latter being too close to the beginning
|
|
|
|
* of the available memory:
|
|
|
|
*
|
|
|
|
* +-------------+
|
|
|
|
* | new |
|
|
|
|
* +-------------+
|
|
|
|
* + +
|
|
|
|
* | + |
|
|
|
|
* | | |
|
|
|
|
* +-------+--------------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_addr
|
|
|
|
*
|
|
|
|
* Expect no allocation to happen.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_low_max_generic_check(void)
|
|
|
|
{
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_1K;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = min_addr + SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_EQ(allocated_ptr, NULL);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region within min_addr min_addr range,
|
|
|
|
* with min_addr being so close that it's next to an allocated region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +--------+---------------|
|
|
|
|
* | | r1 | rgn |
|
|
|
|
* +-------+--------+---------------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect a merge of both regions. Only the region size gets updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_min_reserved_generic_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t r1_size = SZ_128;
|
|
|
|
phys_addr_t r2_size = SZ_64;
|
|
|
|
phys_addr_t total_size = r1_size + r2_size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t reserved_base;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
min_addr = max_addr - r2_size;
|
|
|
|
reserved_base = min_addr - r1_size;
|
|
|
|
|
|
|
|
memblock_reserve(reserved_base, r1_size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, total_size);
|
|
|
|
ASSERT_EQ(rgn->base, reserved_base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region within min_addr and max_addr,
|
|
|
|
* with max_addr being so close that it's next to an allocated region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +-------------+--------|
|
|
|
|
* | | rgn | r1 |
|
|
|
|
* +----------+-------------+--------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect a merge of regions. Only the region size gets updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_max_reserved_generic_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t r1_size = SZ_64;
|
|
|
|
phys_addr_t r2_size = SZ_128;
|
|
|
|
phys_addr_t total_size = r1_size + r2_size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
max_addr = memblock_end_of_DRAM() - r1_size;
|
|
|
|
min_addr = max_addr - r2_size;
|
|
|
|
|
|
|
|
memblock_reserve(max_addr, r1_size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r2_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r2_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, total_size);
|
|
|
|
ASSERT_EQ(rgn->base, min_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, when
|
|
|
|
* there are two reserved regions at the borders, with a gap big enough to fit
|
|
|
|
* a new region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +--------+ +-------+------+ |
|
|
|
|
* | | r2 | | rgn | r1 | |
|
|
|
|
* +----+--------+---+-------+------+--+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to merge the new region with r1. The second region does not get
|
|
|
|
* updated. The total size field gets updated.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int alloc_nid_top_down_reserved_with_space_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_64;
|
|
|
|
phys_addr_t gap_size = SMP_CACHE_BYTES;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (r3_size + gap_size + r2.size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + r3_size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn1->size, r1.size + r3_size);
|
|
|
|
ASSERT_EQ(rgn1->base, max_addr - r3_size);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn2->size, r2.size);
|
|
|
|
ASSERT_EQ(rgn2->base, r2.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, when
|
|
|
|
* there are two reserved regions at the borders, with a gap of a size equal to
|
|
|
|
* the size of the new region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +--------+--------+--------+ |
|
|
|
|
* | | r2 | r3 | r1 | |
|
|
|
|
* +-----+--------+--------+--------+-----+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to merge all of the regions into one. The region counter and total
|
|
|
|
* size fields get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_reserved_full_merge_generic_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_64;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (r3_size + r2.size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + r3_size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, total_size);
|
|
|
|
ASSERT_EQ(rgn->base, r2.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, when
|
|
|
|
* there are two reserved regions at the borders, with a gap that can't fit
|
|
|
|
* a new region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +----------+------+ +------+ |
|
|
|
|
* | | r3 | r2 | | r1 | |
|
|
|
|
* +--+----------+------+----+------+---+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_addr
|
|
|
|
*
|
|
|
|
* Expect to merge the new region with r2. The second region does not get
|
|
|
|
* updated. The total size counter gets updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_reserved_no_space_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_256;
|
|
|
|
phys_addr_t gap_size = SMP_CACHE_BYTES;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (r2.size + gap_size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + r3_size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn1->size, r1.size);
|
|
|
|
ASSERT_EQ(rgn1->base, r1.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn2->size, r2.size + r3_size);
|
|
|
|
ASSERT_EQ(rgn2->base, r2.base - r3_size);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, but
|
|
|
|
* it's too narrow and everything else is reserved:
|
|
|
|
*
|
|
|
|
* +-----------+
|
|
|
|
* | new |
|
|
|
|
* +-----------+
|
|
|
|
* + +
|
|
|
|
* |--------------+ +----------|
|
|
|
|
* | r2 | | r1 |
|
|
|
|
* +--------------+------+----------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_addr
|
|
|
|
*
|
|
|
|
* Expect no allocation to happen.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int alloc_nid_reserved_all_generic_check(void)
|
|
|
|
{
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_256;
|
|
|
|
phys_addr_t gap_size = SMP_CACHE_BYTES;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = MEM_SIZE - (r1.size + gap_size);
|
|
|
|
r2.base = memblock_start_of_DRAM();
|
|
|
|
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_EQ(allocated_ptr, NULL);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, where max_addr is
|
|
|
|
* bigger than the end address of the available memory. Expect to allocate
|
|
|
|
* a region that ends before the end of the memory.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_cap_max_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_256;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_end_of_DRAM() - SZ_1K;
|
|
|
|
max_addr = memblock_end_of_DRAM() + SZ_256;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, where min_addr is
|
|
|
|
* smaller than the start address of the available memory. Expect to allocate
|
|
|
|
* a region that ends before the end of the memory.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_cap_min_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_1K;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() - SZ_256;
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, memblock_end_of_DRAM() - size);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region within min_addr and
|
|
|
|
* max_addr range:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +-----------+ | |
|
|
|
|
* | | rgn | | |
|
|
|
|
* +----+-----------+-----------+------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to allocate a region that ends before max_addr.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_simple_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_128;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t rgn_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SMP_CACHE_BYTES * 2;
|
|
|
|
max_addr = min_addr + SZ_512;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
rgn_end = rgn->base + rgn->size;
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, min_addr);
|
|
|
|
ASSERT_LT(rgn_end, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region within min_addr and
|
|
|
|
* max_addr range, where the start address is misaligned:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | + +-----------+ + |
|
|
|
|
* | | | rgn | | |
|
|
|
|
* +-----+---+-----------+-----+-----+
|
|
|
|
* ^ ^----. ^
|
|
|
|
* | | |
|
|
|
|
* min_add | max_addr
|
|
|
|
* |
|
|
|
|
* Aligned address
|
|
|
|
* boundary
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region that ends before max_addr.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_start_misaligned_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_128;
|
|
|
|
phys_addr_t misalign = SZ_2;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t rgn_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + misalign;
|
|
|
|
max_addr = min_addr + SZ_512;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
rgn_end = rgn->base + rgn->size;
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, min_addr + (SMP_CACHE_BYTES - misalign));
|
|
|
|
ASSERT_LT(rgn_end, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, which can't fit into min_addr
|
|
|
|
* and max_addr range:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* |---------+ + + |
|
|
|
|
* | rgn | | | |
|
|
|
|
* +---------+---------+----+------+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_add
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region which
|
|
|
|
* starts at the beginning of the available memory.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_narrow_range_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_256;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SZ_512;
|
|
|
|
max_addr = min_addr + SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, when
|
|
|
|
* there are two reserved regions at the borders, with a gap big enough to fit
|
|
|
|
* a new region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* | +--------+-------+ +------+ |
|
|
|
|
* | | r2 | rgn | | r1 | |
|
|
|
|
* +----+--------+-------+---+------+--+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* min_addr max_addr
|
|
|
|
*
|
|
|
|
* Expect to merge the new region with r2. The second region does not get
|
|
|
|
* updated. The total size field gets updated.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int alloc_nid_bottom_up_reserved_with_space_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn1 = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *rgn2 = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_64;
|
|
|
|
phys_addr_t gap_size = SMP_CACHE_BYTES;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (r3_size + gap_size + r2.size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + r3_size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn1->size, r1.size);
|
|
|
|
ASSERT_EQ(rgn1->base, max_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn2->size, r2.size + r3_size);
|
|
|
|
ASSERT_EQ(rgn2->base, r2.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range, when
|
|
|
|
* there are two reserved regions at the borders, with a gap of a size equal to
|
|
|
|
* the size of the new region:
|
|
|
|
*
|
|
|
|
* + +
|
|
|
|
* |----------+ +------+ +----+ |
|
|
|
|
* | r3 | | r2 | | r1 | |
|
|
|
|
* +----------+----+------+---+----+--+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_addr
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate memory at the beginning of the
|
|
|
|
* available memory. The region counter and total size fields get updated.
|
|
|
|
* Other regions are not modified.
|
|
|
|
*/
|
|
|
|
|
|
|
|
static int alloc_nid_bottom_up_reserved_no_space_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn1 = &memblock.reserved.regions[2];
|
|
|
|
struct memblock_region *rgn2 = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *rgn3 = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t r3_size = SZ_256;
|
|
|
|
phys_addr_t gap_size = SMP_CACHE_BYTES;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
r1.base = memblock_end_of_DRAM() - SMP_CACHE_BYTES * 2;
|
|
|
|
r1.size = SMP_CACHE_BYTES;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (r2.size + gap_size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + r3_size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(r3_size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, r3_size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn3->size, r3_size);
|
|
|
|
ASSERT_EQ(rgn3->base, memblock_start_of_DRAM());
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn2->size, r2.size);
|
|
|
|
ASSERT_EQ(rgn2->base, r2.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn1->size, r1.size);
|
|
|
|
ASSERT_EQ(rgn1->base, r1.base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 3);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, where max_addr is
|
|
|
|
* bigger than the end address of the available memory. Expect to allocate
|
|
|
|
* a region that starts at the min_addr.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_cap_max_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_256;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM() + SZ_1K;
|
|
|
|
max_addr = memblock_end_of_DRAM() + SZ_256;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, min_addr);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region, where min_addr is
|
|
|
|
* smaller than the start address of the available memory. Expect to allocate
|
|
|
|
* a region at the beginning of the available memory.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_cap_min_check(void)
|
|
|
|
{
|
|
|
|
struct memblock_region *rgn = &memblock.reserved.regions[0];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_1K;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_memblock();
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM() - SZ_256;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(rgn->size, size);
|
|
|
|
ASSERT_EQ(rgn->base, memblock_start_of_DRAM());
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Test case wrappers for range tests */
|
|
|
|
static int alloc_nid_simple_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_simple_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_simple_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_misaligned_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_end_misaligned_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_start_misaligned_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_narrow_range_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_narrow_range_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_narrow_range_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_reserved_with_space_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_reserved_with_space_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_reserved_with_space_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_reserved_no_space_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_reserved_no_space_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_reserved_no_space_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_cap_max_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_cap_max_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_cap_max_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_cap_min_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_cap_min_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_cap_min_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_min_reserved_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_min_reserved_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_min_reserved_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_max_reserved_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_max_reserved_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_max_reserved_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_exact_address_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_exact_address_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_exact_address_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_reserved_full_merge_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_reserved_full_merge_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_reserved_full_merge_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_reserved_all_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_reserved_all_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_reserved_all_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_low_max_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_low_max_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_low_max_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memblock_alloc_nid_range_checks(void)
|
|
|
|
{
|
|
|
|
test_print("Running %s range tests...\n",
|
|
|
|
get_memblock_alloc_nid_name(alloc_nid_test_flags));
|
|
|
|
|
|
|
|
alloc_nid_simple_check();
|
|
|
|
alloc_nid_misaligned_check();
|
|
|
|
alloc_nid_narrow_range_check();
|
|
|
|
alloc_nid_reserved_with_space_check();
|
|
|
|
alloc_nid_reserved_no_space_check();
|
|
|
|
alloc_nid_cap_max_check();
|
|
|
|
alloc_nid_cap_min_check();
|
|
|
|
|
|
|
|
alloc_nid_min_reserved_check();
|
|
|
|
alloc_nid_max_reserved_check();
|
|
|
|
alloc_nid_exact_address_check();
|
|
|
|
alloc_nid_reserved_full_merge_check();
|
|
|
|
alloc_nid_reserved_all_check();
|
|
|
|
alloc_nid_low_max_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* has enough memory to allocate a region of the requested size.
|
|
|
|
* Expect to allocate an aligned region at the end of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_simple_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 3;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_4, req_node->size);
|
|
|
|
size = req_node->size / SZ_4;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
|
|
|
|
ASSERT_LE(req_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* does not have enough memory to allocate a region of the requested size:
|
|
|
|
*
|
|
|
|
* | +-----+ +------------------+ |
|
|
|
|
* | | req | | expected | |
|
|
|
|
* +---+-----+----------+------------------+-----+
|
|
|
|
*
|
|
|
|
* | +---------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----------------------------+---------+-----+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the end of the last node that has
|
|
|
|
* enough memory (in this case, nid = 6) after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_small_node_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 1;
|
|
|
|
int nid_exp = 6;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = SZ_2 * req_node->size;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
|
|
|
|
ASSERT_LE(exp_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is fully reserved:
|
|
|
|
*
|
|
|
|
* | +---------+ +------------------+ |
|
|
|
|
* | |requested| | expected | |
|
|
|
|
* +--------------+---------+------------+------------------+-----+
|
|
|
|
*
|
|
|
|
* | +---------+ +---------+ |
|
|
|
|
* | | reserved| | new | |
|
|
|
|
* +--------------+---------+---------------------+---------+-----+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the end of the last node that is
|
|
|
|
* large enough and has enough unreserved memory (in this case, nid = 6) after
|
|
|
|
* falling back to NUMA_NO_NODE. The region count and total size get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_node_reserved_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
int nid_exp = 6;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = req_node->size;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
memblock_reserve(req_node->base, req_node->size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
|
|
|
|
ASSERT_LE(exp_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is partially reserved but has enough memory for the allocated region:
|
|
|
|
*
|
|
|
|
* | +---------------------------------------+ |
|
|
|
|
* | | requested | |
|
|
|
|
* +-----------+---------------------------------------+----------+
|
|
|
|
*
|
|
|
|
* | +------------------+ +-----+ |
|
|
|
|
* | | reserved | | new | |
|
|
|
|
* +-----------+------------------+--------------+-----+----------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the end of the requested node. The
|
|
|
|
* region count and total size get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_part_reserved_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 4;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_8, req_node->size);
|
|
|
|
r1.base = req_node->base;
|
|
|
|
r1.size = req_node->size / SZ_2;
|
|
|
|
size = r1.size / SZ_4;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
|
|
|
|
ASSERT_LE(req_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is partially reserved and does not have enough contiguous memory for the
|
|
|
|
* allocated region:
|
|
|
|
*
|
|
|
|
* | +-----------------------+ +----------------------|
|
|
|
|
* | | requested | | expected |
|
|
|
|
* +-----------+-----------------------+---------+----------------------+
|
|
|
|
*
|
|
|
|
* | +----------+ +-----------|
|
|
|
|
* | | reserved | | new |
|
|
|
|
* +-----------------+----------+---------------------------+-----------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the end of the last node that is
|
|
|
|
* large enough and has enough unreserved memory (in this case,
|
|
|
|
* nid = NUMA_NODES - 1) after falling back to NUMA_NO_NODE. The region count
|
|
|
|
* and total size get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_part_reserved_fallback_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 4;
|
|
|
|
int nid_exp = NUMA_NODES - 1;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[1];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_4, req_node->size);
|
|
|
|
size = req_node->size / SZ_2;
|
|
|
|
r1.base = req_node->base + (size / SZ_2);
|
|
|
|
r1.size = size;
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(exp_node) - size);
|
|
|
|
ASSERT_LE(exp_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the first
|
|
|
|
* node is the requested node:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +-----------------------+-----------+ |
|
|
|
|
* | | requested | node3 | |
|
|
|
|
* +-----------+-----------------------+-----------+--------------+
|
|
|
|
* + +
|
|
|
|
* | +-----------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----------------------+-----------+--------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region that ends at
|
|
|
|
* the end of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_split_range_low_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_512;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t req_node_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
req_node_end = region_end(req_node);
|
|
|
|
min_addr = req_node_end - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, req_node_end - size);
|
|
|
|
ASSERT_LE(req_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the second
|
|
|
|
* node is the requested node:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +--------------------------+---------+ |
|
|
|
|
* | | expected |requested| |
|
|
|
|
* +------+--------------------------+---------+----------------+
|
|
|
|
* + +
|
|
|
|
* | +---------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----------------------+---------+--------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region that
|
|
|
|
* ends at the end of the first node that overlaps with the range.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_split_range_high_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 3;
|
|
|
|
int nid_exp = nid_req - 1;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_512;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t exp_node_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
exp_node_end = region_end(exp_node);
|
|
|
|
min_addr = exp_node_end - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, exp_node_end - size);
|
|
|
|
ASSERT_LE(exp_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the requested
|
|
|
|
* node ends before min_addr:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +---------------+ +-------------+---------+ |
|
|
|
|
* | | requested | | node1 | node2 | |
|
|
|
|
* +----+---------------+--------+-------------+---------+----------+
|
|
|
|
* + +
|
|
|
|
* | +---------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +----------+---------+-------------------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region that ends at
|
|
|
|
* the end of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_no_overlap_split_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *node2 = &memblock.memory.regions[6];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = SZ_512;
|
|
|
|
min_addr = node2->base - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, region_end(req_node) - size);
|
|
|
|
ASSERT_LE(req_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range when
|
|
|
|
* the requested node and the range do not overlap, and requested node ends
|
|
|
|
* before min_addr. The range overlaps with multiple nodes along node
|
|
|
|
* boundaries:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* |-----------+ +----------+----...----+----------+ |
|
|
|
|
* | requested | | min node | ... | max node | |
|
|
|
|
* +-----------+-----------+----------+----...----+----------+------+
|
|
|
|
* + +
|
|
|
|
* | +-----+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +---------------------------------------------------+-----+------+
|
|
|
|
*
|
|
|
|
* Expect to allocate a memory region at the end of the final node in
|
|
|
|
* the range after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_no_overlap_low_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *min_node = &memblock.memory.regions[2];
|
|
|
|
struct memblock_region *max_node = &memblock.memory.regions[5];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_64;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
min_addr = min_node->base;
|
|
|
|
max_addr = region_end(max_node);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, max_addr - size);
|
|
|
|
ASSERT_LE(max_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range when
|
|
|
|
* the requested node and the range do not overlap, and requested node starts
|
|
|
|
* after max_addr. The range overlaps with multiple nodes along node
|
|
|
|
* boundaries:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +----------+----...----+----------+ +-----------+ |
|
|
|
|
* | | min node | ... | max node | | requested | |
|
|
|
|
* +-----+----------+----...----+----------+--------+-----------+---+
|
|
|
|
* + +
|
|
|
|
* | +-----+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +---------------------------------+-----+------------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate a memory region at the end of the final node in
|
|
|
|
* the range after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_top_down_numa_no_overlap_high_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 7;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *min_node = &memblock.memory.regions[2];
|
|
|
|
struct memblock_region *max_node = &memblock.memory.regions[5];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_64;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
min_addr = min_node->base;
|
|
|
|
max_addr = region_end(max_node);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, max_addr - size);
|
|
|
|
ASSERT_LE(max_node->base, new_rgn->base);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* has enough memory to allocate a region of the requested size.
|
|
|
|
* Expect to allocate an aligned region at the beginning of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_simple_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 3;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_4, req_node->size);
|
|
|
|
size = req_node->size / SZ_4;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, req_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(req_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* does not have enough memory to allocate a region of the requested size:
|
|
|
|
*
|
|
|
|
* |----------------------+-----+ |
|
|
|
|
* | expected | req | |
|
|
|
|
* +----------------------+-----+----------------+
|
|
|
|
*
|
|
|
|
* |---------+ |
|
|
|
|
* | rgn | |
|
|
|
|
* +---------+-----------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the beginning of the first node that
|
|
|
|
* has enough memory (in this case, nid = 0) after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_small_node_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 1;
|
|
|
|
int nid_exp = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = SZ_2 * req_node->size;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, exp_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is fully reserved:
|
|
|
|
*
|
|
|
|
* |----------------------+ +-----------+ |
|
|
|
|
* | expected | | requested | |
|
|
|
|
* +----------------------+-----+-----------+--------------------+
|
|
|
|
*
|
|
|
|
* |-----------+ +-----------+ |
|
|
|
|
* | new | | reserved | |
|
|
|
|
* +-----------+----------------+-----------+--------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the beginning of the first node that
|
|
|
|
* is large enough and has enough unreserved memory (in this case, nid = 0)
|
|
|
|
* after falling back to NUMA_NO_NODE. The region count and total size get
|
|
|
|
* updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_node_reserved_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
int nid_exp = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = req_node->size;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
memblock_reserve(req_node->base, req_node->size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, exp_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size + req_node->size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is partially reserved but has enough memory for the allocated region:
|
|
|
|
*
|
|
|
|
* | +---------------------------------------+ |
|
|
|
|
* | | requested | |
|
|
|
|
* +-----------+---------------------------------------+---------+
|
|
|
|
*
|
|
|
|
* | +------------------+-----+ |
|
|
|
|
* | | reserved | new | |
|
|
|
|
* +-----------+------------------+-----+------------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region in the requested node that merges with
|
|
|
|
* the existing reserved region. The total size gets updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_part_reserved_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 4;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_8, req_node->size);
|
|
|
|
r1.base = req_node->base;
|
|
|
|
r1.size = req_node->size / SZ_2;
|
|
|
|
size = r1.size / SZ_4;
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
total_size = size + r1.size;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, total_size);
|
|
|
|
ASSERT_EQ(new_rgn->base, req_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(req_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* is partially reserved and does not have enough contiguous memory for the
|
|
|
|
* allocated region:
|
|
|
|
*
|
|
|
|
* |----------------------+ +-----------------------+ |
|
|
|
|
* | expected | | requested | |
|
|
|
|
* +----------------------+-------+-----------------------+---------+
|
|
|
|
*
|
|
|
|
* |-----------+ +----------+ |
|
|
|
|
* | new | | reserved | |
|
|
|
|
* +-----------+------------------------+----------+----------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate an aligned region at the beginning of the first
|
|
|
|
* node that is large enough and has enough unreserved memory (in this case,
|
|
|
|
* nid = 0) after falling back to NUMA_NO_NODE. The region count and total size
|
|
|
|
* get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_part_reserved_fallback_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 4;
|
|
|
|
int nid_exp = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
ASSERT_LE(SZ_4, req_node->size);
|
|
|
|
size = req_node->size / SZ_2;
|
|
|
|
r1.base = req_node->base + (size / SZ_2);
|
|
|
|
r1.size = size;
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, exp_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(exp_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 2);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size + r1.size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the first
|
|
|
|
* node is the requested node:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +-----------------------+-----------+ |
|
|
|
|
* | | requested | node3 | |
|
|
|
|
* +-----------+-----------------------+-----------+--------------+
|
|
|
|
* + +
|
|
|
|
* | +-----------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----------+-----------+--------------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region at the beginning
|
|
|
|
* of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_split_range_low_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_512;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t req_node_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
req_node_end = region_end(req_node);
|
|
|
|
min_addr = req_node_end - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, req_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), req_node_end);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the second
|
|
|
|
* node is the requested node:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* |------------------+ +----------------------+---------+ |
|
|
|
|
* | expected | | previous |requested| |
|
|
|
|
* +------------------+--------+----------------------+---------+------+
|
|
|
|
* + +
|
|
|
|
* |---------+ |
|
|
|
|
* | rgn | |
|
|
|
|
* +---------+---------------------------------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region at the beginning
|
|
|
|
* of the first node that has enough memory.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_split_range_high_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 3;
|
|
|
|
int nid_exp = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *exp_node = &memblock.memory.regions[nid_exp];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_512;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t exp_node_end;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
exp_node_end = region_end(req_node);
|
|
|
|
min_addr = req_node->base - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, exp_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), exp_node_end);
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region that spans over the min_addr
|
|
|
|
* and max_addr range and overlaps with two different nodes, where the requested
|
|
|
|
* node ends before min_addr:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +---------------+ +-------------+---------+ |
|
|
|
|
* | | requested | | node1 | node2 | |
|
|
|
|
* +----+---------------+--------+-------------+---------+---------+
|
|
|
|
* + +
|
|
|
|
* | +---------+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +----+---------+------------------------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to drop the lower limit and allocate a memory region that starts at
|
|
|
|
* the beginning of the requested node.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_no_overlap_split_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *node2 = &memblock.memory.regions[6];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
size = SZ_512;
|
|
|
|
min_addr = node2->base - SZ_256;
|
|
|
|
max_addr = min_addr + size;
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, req_node->base);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(req_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range when
|
|
|
|
* the requested node and the range do not overlap, and requested node ends
|
|
|
|
* before min_addr. The range overlaps with multiple nodes along node
|
|
|
|
* boundaries:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* |-----------+ +----------+----...----+----------+ |
|
|
|
|
* | requested | | min node | ... | max node | |
|
|
|
|
* +-----------+-----------+----------+----...----+----------+------+
|
|
|
|
* + +
|
|
|
|
* | +-----+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----------------------+-----+----------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate a memory region at the beginning of the first node
|
|
|
|
* in the range after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_no_overlap_low_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 0;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *min_node = &memblock.memory.regions[2];
|
|
|
|
struct memblock_region *max_node = &memblock.memory.regions[5];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_64;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
min_addr = min_node->base;
|
|
|
|
max_addr = region_end(max_node);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, min_addr);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(min_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range when
|
|
|
|
* the requested node and the range do not overlap, and requested node starts
|
|
|
|
* after max_addr. The range overlaps with multiple nodes along node
|
|
|
|
* boundaries:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +----------+----...----+----------+ +---------+ |
|
|
|
|
* | | min node | ... | max node | |requested| |
|
|
|
|
* +-----+----------+----...----+----------+---------+---------+---+
|
|
|
|
* + +
|
|
|
|
* | +-----+ |
|
|
|
|
* | | rgn | |
|
|
|
|
* +-----+-----+---------------------------------------------------+
|
|
|
|
*
|
|
|
|
* Expect to allocate a memory region at the beginning of the first node
|
|
|
|
* in the range after falling back to NUMA_NO_NODE.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_bottom_up_numa_no_overlap_high_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 7;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *min_node = &memblock.memory.regions[2];
|
|
|
|
struct memblock_region *max_node = &memblock.memory.regions[5];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = SZ_64;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
min_addr = min_node->base;
|
|
|
|
max_addr = region_end(max_node);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, size);
|
|
|
|
ASSERT_EQ(new_rgn->base, min_addr);
|
|
|
|
ASSERT_LE(region_end(new_rgn), region_end(min_node));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate a memory region in a specific NUMA node that
|
|
|
|
* does not have enough memory to allocate a region of the requested size.
|
|
|
|
* Additionally, none of the nodes have enough memory to allocate the region:
|
|
|
|
*
|
|
|
|
* +-----------------------------------+
|
|
|
|
* | new |
|
|
|
|
* +-----------------------------------+
|
|
|
|
* |-------+-------+-------+-------+-------+-------+-------+-------|
|
|
|
|
* | node0 | node1 | node2 | node3 | node4 | node5 | node6 | node7 |
|
|
|
|
* +-------+-------+-------+-------+-------+-------+-------+-------+
|
|
|
|
*
|
|
|
|
* Expect no allocation to happen.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_numa_large_region_generic_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 3;
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
phys_addr_t size = MEM_SIZE / SZ_2;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
min_addr = memblock_start_of_DRAM();
|
|
|
|
max_addr = memblock_end_of_DRAM();
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
ASSERT_EQ(allocated_ptr, NULL);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_addr range when
|
|
|
|
* there are two reserved regions at the borders. The requested node starts at
|
|
|
|
* min_addr and ends at max_addr and is the same size as the region to be
|
|
|
|
* allocated:
|
|
|
|
*
|
|
|
|
* min_addr
|
|
|
|
* | max_addr
|
|
|
|
* | |
|
|
|
|
* v v
|
|
|
|
* | +-----------+-----------------------+-----------------------|
|
|
|
|
* | | node5 | requested | node7 |
|
|
|
|
* +------+-----------+-----------------------+-----------------------+
|
|
|
|
* + +
|
|
|
|
* | +----+-----------------------+----+ |
|
|
|
|
* | | r2 | new | r1 | |
|
|
|
|
* +-------------+----+-----------------------+----+------------------+
|
|
|
|
*
|
|
|
|
* Expect to merge all of the regions into one. The region counter and total
|
|
|
|
* size fields get updated.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_numa_reserved_full_merge_generic_check(void)
|
|
|
|
{
|
|
|
|
int nid_req = 6;
|
|
|
|
int nid_next = nid_req + 1;
|
|
|
|
struct memblock_region *new_rgn = &memblock.reserved.regions[0];
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
struct memblock_region *next_node = &memblock.memory.regions[nid_next];
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t size = req_node->size;
|
|
|
|
phys_addr_t total_size;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
r1.base = next_node->base;
|
|
|
|
r1.size = SZ_128;
|
|
|
|
|
|
|
|
r2.size = SZ_128;
|
|
|
|
r2.base = r1.base - (size + r2.size);
|
|
|
|
|
|
|
|
total_size = r1.size + r2.size + size;
|
|
|
|
min_addr = r2.base + r2.size;
|
|
|
|
max_addr = r1.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
assert_mem_content(allocated_ptr, size, alloc_nid_test_flags);
|
|
|
|
|
|
|
|
ASSERT_EQ(new_rgn->size, total_size);
|
|
|
|
ASSERT_EQ(new_rgn->base, r2.base);
|
|
|
|
|
|
|
|
ASSERT_LE(new_rgn->base, req_node->base);
|
|
|
|
ASSERT_LE(region_end(req_node), region_end(new_rgn));
|
|
|
|
|
|
|
|
ASSERT_EQ(memblock.reserved.cnt, 1);
|
|
|
|
ASSERT_EQ(memblock.reserved.total_size, total_size);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* A test that tries to allocate memory within min_addr and max_add range,
|
|
|
|
* where the total range can fit the region, but it is split between two nodes
|
|
|
|
* and everything else is reserved. Additionally, nid is set to NUMA_NO_NODE
|
|
|
|
* instead of requesting a specific node:
|
|
|
|
*
|
|
|
|
* +-----------+
|
|
|
|
* | new |
|
|
|
|
* +-----------+
|
|
|
|
* | +---------------------+-----------|
|
|
|
|
* | | prev node | next node |
|
|
|
|
* +------+---------------------+-----------+
|
|
|
|
* + +
|
|
|
|
* |----------------------+ +-----|
|
|
|
|
* | r1 | | r2 |
|
|
|
|
* +----------------------+-----------+-----+
|
|
|
|
* ^ ^
|
|
|
|
* | |
|
|
|
|
* | max_addr
|
|
|
|
* |
|
|
|
|
* min_addr
|
|
|
|
*
|
|
|
|
* Expect no allocation to happen.
|
|
|
|
*/
|
|
|
|
static int alloc_nid_numa_split_all_reserved_generic_check(void)
|
|
|
|
{
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
struct memblock_region *next_node = &memblock.memory.regions[7];
|
|
|
|
struct region r1, r2;
|
|
|
|
phys_addr_t size = SZ_256;
|
|
|
|
phys_addr_t max_addr;
|
|
|
|
phys_addr_t min_addr;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
r2.base = next_node->base + SZ_128;
|
|
|
|
r2.size = memblock_end_of_DRAM() - r2.base;
|
|
|
|
|
|
|
|
r1.size = MEM_SIZE - (r2.size + size);
|
|
|
|
r1.base = memblock_start_of_DRAM();
|
|
|
|
|
|
|
|
min_addr = r1.base + r1.size;
|
|
|
|
max_addr = r2.base;
|
|
|
|
|
|
|
|
memblock_reserve(r1.base, r1.size);
|
|
|
|
memblock_reserve(r2.base, r2.size);
|
|
|
|
|
|
|
|
allocated_ptr = run_memblock_alloc_nid(size, SMP_CACHE_BYTES,
|
|
|
|
min_addr, max_addr,
|
|
|
|
NUMA_NO_NODE);
|
|
|
|
|
|
|
|
ASSERT_EQ(allocated_ptr, NULL);
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
/*
|
|
|
|
* A simple test that tries to allocate a memory region through the
|
|
|
|
* memblock_alloc_node() on a NUMA node with id `nid`. Expected to have the
|
|
|
|
* correct NUMA node set for the new region.
|
|
|
|
*/
|
|
|
|
static int alloc_node_on_correct_nid(void)
|
|
|
|
{
|
|
|
|
int nid_req = 2;
|
|
|
|
void *allocated_ptr = NULL;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
struct memblock_region *req_node = &memblock.memory.regions[nid_req];
|
|
|
|
#endif
|
|
|
|
phys_addr_t size = SZ_512;
|
|
|
|
|
|
|
|
PREFIX_PUSH();
|
|
|
|
setup_numa_memblock(node_fractions);
|
|
|
|
|
|
|
|
allocated_ptr = memblock_alloc_node(size, SMP_CACHE_BYTES, nid_req);
|
|
|
|
|
|
|
|
ASSERT_NE(allocated_ptr, NULL);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
ASSERT_EQ(nid_req, req_node->nid);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
test_pass_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
/* Test case wrappers for NUMA tests */
|
|
|
|
static int alloc_nid_numa_simple_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_simple_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_simple_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_small_node_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_small_node_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_small_node_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_node_reserved_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_node_reserved_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_node_reserved_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_part_reserved_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_part_reserved_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_part_reserved_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_part_reserved_fallback_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_part_reserved_fallback_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_part_reserved_fallback_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_split_range_low_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_split_range_low_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_split_range_low_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_split_range_high_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_split_range_high_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_split_range_high_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_no_overlap_split_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_no_overlap_split_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_no_overlap_split_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_no_overlap_low_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_no_overlap_low_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_no_overlap_low_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_no_overlap_high_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
memblock_set_bottom_up(false);
|
|
|
|
alloc_nid_top_down_numa_no_overlap_high_check();
|
|
|
|
memblock_set_bottom_up(true);
|
|
|
|
alloc_nid_bottom_up_numa_no_overlap_high_check();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_large_region_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_numa_large_region_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_numa_large_region_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_reserved_full_merge_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_numa_reserved_full_merge_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_numa_reserved_full_merge_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int alloc_nid_numa_split_all_reserved_check(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_nid_numa_split_all_reserved_generic_check);
|
|
|
|
run_bottom_up(alloc_nid_numa_split_all_reserved_generic_check);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
static int alloc_node_numa_on_correct_nid(void)
|
|
|
|
{
|
|
|
|
test_print("\tRunning %s...\n", __func__);
|
|
|
|
run_top_down(alloc_node_on_correct_nid);
|
|
|
|
run_bottom_up(alloc_node_on_correct_nid);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
int __memblock_alloc_nid_numa_checks(void)
|
|
|
|
{
|
|
|
|
test_print("Running %s NUMA tests...\n",
|
|
|
|
get_memblock_alloc_nid_name(alloc_nid_test_flags));
|
|
|
|
|
|
|
|
alloc_nid_numa_simple_check();
|
|
|
|
alloc_nid_numa_small_node_check();
|
|
|
|
alloc_nid_numa_node_reserved_check();
|
|
|
|
alloc_nid_numa_part_reserved_check();
|
|
|
|
alloc_nid_numa_part_reserved_fallback_check();
|
|
|
|
alloc_nid_numa_split_range_low_check();
|
|
|
|
alloc_nid_numa_split_range_high_check();
|
|
|
|
|
|
|
|
alloc_nid_numa_no_overlap_split_check();
|
|
|
|
alloc_nid_numa_no_overlap_low_check();
|
|
|
|
alloc_nid_numa_no_overlap_high_check();
|
|
|
|
alloc_nid_numa_large_region_check();
|
|
|
|
alloc_nid_numa_reserved_full_merge_check();
|
|
|
|
alloc_nid_numa_split_all_reserved_check();
|
|
|
|
|
2023-10-24 12:59:35 +02:00
|
|
|
alloc_node_numa_on_correct_nid();
|
|
|
|
|
2023-08-30 17:31:07 +02:00
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int memblock_alloc_nid_checks_internal(int flags)
|
|
|
|
{
|
|
|
|
alloc_nid_test_flags = flags;
|
|
|
|
|
|
|
|
prefix_reset();
|
|
|
|
prefix_push(get_memblock_alloc_nid_name(flags));
|
|
|
|
|
|
|
|
reset_memblock_attributes();
|
|
|
|
dummy_physical_memory_init();
|
|
|
|
|
|
|
|
memblock_alloc_nid_range_checks();
|
|
|
|
memblock_alloc_nid_numa_checks();
|
|
|
|
|
|
|
|
dummy_physical_memory_cleanup();
|
|
|
|
|
|
|
|
prefix_pop();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int memblock_alloc_nid_checks(void)
|
|
|
|
{
|
|
|
|
memblock_alloc_nid_checks_internal(TEST_F_NONE);
|
|
|
|
memblock_alloc_nid_checks_internal(TEST_F_RAW);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int memblock_alloc_exact_nid_range_checks(void)
|
|
|
|
{
|
|
|
|
alloc_nid_test_flags = (TEST_F_RAW | TEST_F_EXACT);
|
|
|
|
|
|
|
|
memblock_alloc_nid_range_checks();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|