720 lines
13 KiB
C
720 lines
13 KiB
C
|
// SPDX-License-Identifier: GPL-2.0
|
||
|
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
|
||
|
|
||
|
#include <stdbool.h>
|
||
|
#include <linux/bpf.h>
|
||
|
#include <bpf/bpf_helpers.h>
|
||
|
#include "bpf_misc.h"
|
||
|
|
||
|
#define ARRAY_SIZE(x) (sizeof(x) / sizeof((x)[0]))
|
||
|
|
||
|
static volatile int zero = 0;
|
||
|
|
||
|
int my_pid;
|
||
|
int arr[256];
|
||
|
int small_arr[16] SEC(".data.small_arr");
|
||
|
|
||
|
#ifdef REAL_TEST
|
||
|
#define MY_PID_GUARD() if (my_pid != (bpf_get_current_pid_tgid() >> 32)) return 0
|
||
|
#else
|
||
|
#define MY_PID_GUARD() ({ })
|
||
|
#endif
|
||
|
|
||
|
SEC("?raw_tp")
|
||
|
__failure __msg("math between map_value pointer and register with unbounded min value is not allowed")
|
||
|
int iter_err_unsafe_c_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, i = zero; /* obscure initial value of i */
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 1000);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
i++;
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
small_arr[i] = 123; /* invalid */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("?raw_tp")
|
||
|
__failure __msg("unbounded memory access")
|
||
|
int iter_err_unsafe_asm_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
asm volatile (
|
||
|
"r6 = %[zero];" /* iteration counter */
|
||
|
"r1 = %[it];" /* iterator state */
|
||
|
"r2 = 0;"
|
||
|
"r3 = 1000;"
|
||
|
"r4 = 1;"
|
||
|
"call %[bpf_iter_num_new];"
|
||
|
"loop:"
|
||
|
"r1 = %[it];"
|
||
|
"call %[bpf_iter_num_next];"
|
||
|
"if r0 == 0 goto out;"
|
||
|
"r6 += 1;"
|
||
|
"goto loop;"
|
||
|
"out:"
|
||
|
"r1 = %[it];"
|
||
|
"call %[bpf_iter_num_destroy];"
|
||
|
"r1 = %[small_arr];"
|
||
|
"r2 = r6;"
|
||
|
"r2 <<= 2;"
|
||
|
"r1 += r2;"
|
||
|
"*(u32 *)(r1 + 0) = r6;" /* invalid */
|
||
|
:
|
||
|
: [it]"r"(&it),
|
||
|
[small_arr]"p"(small_arr),
|
||
|
[zero]"p"(zero),
|
||
|
__imm(bpf_iter_num_new),
|
||
|
__imm(bpf_iter_num_next),
|
||
|
__imm(bpf_iter_num_destroy)
|
||
|
: __clobber_common, "r6"
|
||
|
);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_while_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 3);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_while_loop_auto_cleanup(const void *ctx)
|
||
|
{
|
||
|
__attribute__((cleanup(bpf_iter_num_destroy))) struct bpf_iter_num it;
|
||
|
int *v;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 3);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
||
|
}
|
||
|
/* (!) no explicit bpf_iter_num_destroy() */
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_for_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 5, 10);
|
||
|
for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
|
||
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_bpf_for_each_macro(const void *ctx)
|
||
|
{
|
||
|
int *v;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_for_each(num, v, 5, 10) {
|
||
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_bpf_for_macro(const void *ctx)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_for(i, 5, 10) {
|
||
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", i);
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_pragma_unroll_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, i;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 2);
|
||
|
#pragma nounroll
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_manual_unroll_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 100, 200);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_multiple_sequential_loops(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, i;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 3);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_iter_num_new(&it, 5, 10);
|
||
|
for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
|
||
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 2);
|
||
|
#pragma nounroll
|
||
|
for (i = 0; i < 3; i++) {
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_iter_num_new(&it, 100, 200);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
||
|
v = bpf_iter_num_next(&it);
|
||
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_limit_cond_break_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, i = 0, sum = 0;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 10);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
bpf_printk("ITER_SIMPLE: i=%d v=%d", i, *v);
|
||
|
sum += *v;
|
||
|
|
||
|
i++;
|
||
|
if (i > 3)
|
||
|
break;
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_printk("ITER_SIMPLE: sum=%d\n", sum);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_obfuscate_counter(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, sum = 0;
|
||
|
/* Make i's initial value unknowable for verifier to prevent it from
|
||
|
* pruning if/else branch inside the loop body and marking i as precise.
|
||
|
*/
|
||
|
int i = zero;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 10);
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
int x;
|
||
|
|
||
|
i += 1;
|
||
|
|
||
|
/* If we initialized i as `int i = 0;` above, verifier would
|
||
|
* track that i becomes 1 on first iteration after increment
|
||
|
* above, and here verifier would eagerly prune else branch
|
||
|
* and mark i as precise, ruining open-coded iterator logic
|
||
|
* completely, as each next iteration would have a different
|
||
|
* *precise* value of i, and thus there would be no
|
||
|
* convergence of state. This would result in reaching maximum
|
||
|
* instruction limit, no matter what the limit is.
|
||
|
*/
|
||
|
if (i == 1)
|
||
|
x = 123;
|
||
|
else
|
||
|
x = i * 3 + 1;
|
||
|
|
||
|
bpf_printk("ITER_OBFUSCATE_COUNTER: i=%d v=%d x=%d", i, *v, x);
|
||
|
|
||
|
sum += x;
|
||
|
}
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_printk("ITER_OBFUSCATE_COUNTER: sum=%d\n", sum);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_search_loop(const void *ctx)
|
||
|
{
|
||
|
struct bpf_iter_num it;
|
||
|
int *v, *elem = NULL;
|
||
|
bool found = false;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_iter_num_new(&it, 0, 10);
|
||
|
|
||
|
while ((v = bpf_iter_num_next(&it))) {
|
||
|
bpf_printk("ITER_SEARCH_LOOP: v=%d", *v);
|
||
|
|
||
|
if (*v == 2) {
|
||
|
found = true;
|
||
|
elem = v;
|
||
|
barrier_var(elem);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* should fail to verify if bpf_iter_num_destroy() is here */
|
||
|
|
||
|
if (found)
|
||
|
/* here found element will be wrong, we should have copied
|
||
|
* value to a variable, but here we want to make sure we can
|
||
|
* access memory after the loop anyways
|
||
|
*/
|
||
|
bpf_printk("ITER_SEARCH_LOOP: FOUND IT = %d!\n", *elem);
|
||
|
else
|
||
|
bpf_printk("ITER_SEARCH_LOOP: NOT FOUND IT!\n");
|
||
|
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_array_fill(const void *ctx)
|
||
|
{
|
||
|
int sum, i;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_for(i, 0, ARRAY_SIZE(arr)) {
|
||
|
arr[i] = i * 2;
|
||
|
}
|
||
|
|
||
|
sum = 0;
|
||
|
bpf_for(i, 0, ARRAY_SIZE(arr)) {
|
||
|
sum += arr[i];
|
||
|
}
|
||
|
|
||
|
bpf_printk("ITER_ARRAY_FILL: sum=%d (should be %d)\n", sum, 255 * 256);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static int arr2d[4][5];
|
||
|
static int arr2d_row_sums[4];
|
||
|
static int arr2d_col_sums[5];
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_nested_iters(const void *ctx)
|
||
|
{
|
||
|
int sum, row, col;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
bpf_for( col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
arr2d[row][col] = row * col;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* zero-initialize sums */
|
||
|
sum = 0;
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
arr2d_row_sums[row] = 0;
|
||
|
}
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
arr2d_col_sums[col] = 0;
|
||
|
}
|
||
|
|
||
|
/* calculate sums */
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
sum += arr2d[row][col];
|
||
|
arr2d_row_sums[row] += arr2d[row][col];
|
||
|
arr2d_col_sums[col] += arr2d[row][col];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bpf_printk("ITER_NESTED_ITERS: total sum=%d", sum);
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
bpf_printk("ITER_NESTED_ITERS: row #%d sum=%d", row, arr2d_row_sums[row]);
|
||
|
}
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
bpf_printk("ITER_NESTED_ITERS: col #%d sum=%d%s",
|
||
|
col, arr2d_col_sums[col],
|
||
|
col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_nested_deeply_iters(const void *ctx)
|
||
|
{
|
||
|
int sum = 0;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_repeat(10) {
|
||
|
bpf_repeat(10) {
|
||
|
bpf_repeat(10) {
|
||
|
bpf_repeat(10) {
|
||
|
bpf_repeat(10) {
|
||
|
sum += 1;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* validate that we can break from inside bpf_repeat() */
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
static __noinline void fill_inner_dimension(int row)
|
||
|
{
|
||
|
int col;
|
||
|
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
arr2d[row][col] = row * col;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __noinline int sum_inner_dimension(int row)
|
||
|
{
|
||
|
int sum = 0, col;
|
||
|
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
sum += arr2d[row][col];
|
||
|
arr2d_row_sums[row] += arr2d[row][col];
|
||
|
arr2d_col_sums[col] += arr2d[row][col];
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_subprog_iters(const void *ctx)
|
||
|
{
|
||
|
int sum, row, col;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
fill_inner_dimension(row);
|
||
|
}
|
||
|
|
||
|
/* zero-initialize sums */
|
||
|
sum = 0;
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
arr2d_row_sums[row] = 0;
|
||
|
}
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
arr2d_col_sums[col] = 0;
|
||
|
}
|
||
|
|
||
|
/* calculate sums */
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
sum += sum_inner_dimension(row);
|
||
|
}
|
||
|
|
||
|
bpf_printk("ITER_SUBPROG_ITERS: total sum=%d", sum);
|
||
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
||
|
bpf_printk("ITER_SUBPROG_ITERS: row #%d sum=%d",
|
||
|
row, arr2d_row_sums[row]);
|
||
|
}
|
||
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
||
|
bpf_printk("ITER_SUBPROG_ITERS: col #%d sum=%d%s",
|
||
|
col, arr2d_col_sums[col],
|
||
|
col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
struct {
|
||
|
__uint(type, BPF_MAP_TYPE_ARRAY);
|
||
|
__type(key, int);
|
||
|
__type(value, int);
|
||
|
__uint(max_entries, 1000);
|
||
|
} arr_map SEC(".maps");
|
||
|
|
||
|
SEC("?raw_tp")
|
||
|
__failure __msg("invalid mem access 'scalar'")
|
||
|
int iter_err_too_permissive1(const void *ctx)
|
||
|
{
|
||
|
int *map_val = NULL;
|
||
|
int key = 0;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
map_val = bpf_map_lookup_elem(&arr_map, &key);
|
||
|
if (!map_val)
|
||
|
return 0;
|
||
|
|
||
|
bpf_repeat(1000000) {
|
||
|
map_val = NULL;
|
||
|
}
|
||
|
|
||
|
*map_val = 123;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("?raw_tp")
|
||
|
__failure __msg("invalid mem access 'map_value_or_null'")
|
||
|
int iter_err_too_permissive2(const void *ctx)
|
||
|
{
|
||
|
int *map_val = NULL;
|
||
|
int key = 0;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
map_val = bpf_map_lookup_elem(&arr_map, &key);
|
||
|
if (!map_val)
|
||
|
return 0;
|
||
|
|
||
|
bpf_repeat(1000000) {
|
||
|
map_val = bpf_map_lookup_elem(&arr_map, &key);
|
||
|
}
|
||
|
|
||
|
*map_val = 123;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("?raw_tp")
|
||
|
__failure __msg("invalid mem access 'map_value_or_null'")
|
||
|
int iter_err_too_permissive3(const void *ctx)
|
||
|
{
|
||
|
int *map_val = NULL;
|
||
|
int key = 0;
|
||
|
bool found = false;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_repeat(1000000) {
|
||
|
map_val = bpf_map_lookup_elem(&arr_map, &key);
|
||
|
found = true;
|
||
|
}
|
||
|
|
||
|
if (found)
|
||
|
*map_val = 123;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_tricky_but_fine(const void *ctx)
|
||
|
{
|
||
|
int *map_val = NULL;
|
||
|
int key = 0;
|
||
|
bool found = false;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
bpf_repeat(1000000) {
|
||
|
map_val = bpf_map_lookup_elem(&arr_map, &key);
|
||
|
if (map_val) {
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (found)
|
||
|
*map_val = 123;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#define __bpf_memzero(p, sz) bpf_probe_read_kernel((p), (sz), 0)
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_stack_array_loop(const void *ctx)
|
||
|
{
|
||
|
long arr1[16], arr2[16], sum = 0;
|
||
|
int i;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
/* zero-init arr1 and arr2 in such a way that verifier doesn't know
|
||
|
* it's all zeros; if we don't do that, we'll make BPF verifier track
|
||
|
* all combination of zero/non-zero stack slots for arr1/arr2, which
|
||
|
* will lead to O(2^(ARRAY_SIZE(arr1)+ARRAY_SIZE(arr2))) different
|
||
|
* states
|
||
|
*/
|
||
|
__bpf_memzero(arr1, sizeof(arr1));
|
||
|
__bpf_memzero(arr2, sizeof(arr1));
|
||
|
|
||
|
/* validate that we can break and continue when using bpf_for() */
|
||
|
bpf_for(i, 0, ARRAY_SIZE(arr1)) {
|
||
|
if (i & 1) {
|
||
|
arr1[i] = i;
|
||
|
continue;
|
||
|
} else {
|
||
|
arr2[i] = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bpf_for(i, 0, ARRAY_SIZE(arr1)) {
|
||
|
sum += arr1[i] + arr2[i];
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
static __noinline void fill(struct bpf_iter_num *it, int *arr, __u32 n, int mul)
|
||
|
{
|
||
|
int *t, i;
|
||
|
|
||
|
while ((t = bpf_iter_num_next(it))) {
|
||
|
i = *t;
|
||
|
if (i >= n)
|
||
|
break;
|
||
|
arr[i] = i * mul;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static __noinline int sum(struct bpf_iter_num *it, int *arr, __u32 n)
|
||
|
{
|
||
|
int *t, i, sum = 0;;
|
||
|
|
||
|
while ((t = bpf_iter_num_next(it))) {
|
||
|
i = *t;
|
||
|
if (i >= n)
|
||
|
break;
|
||
|
sum += arr[i];
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
SEC("raw_tp")
|
||
|
__success
|
||
|
int iter_pass_iter_ptr_to_subprog(const void *ctx)
|
||
|
{
|
||
|
int arr1[16], arr2[32];
|
||
|
struct bpf_iter_num it;
|
||
|
int n, sum1, sum2;
|
||
|
|
||
|
MY_PID_GUARD();
|
||
|
|
||
|
/* fill arr1 */
|
||
|
n = ARRAY_SIZE(arr1);
|
||
|
bpf_iter_num_new(&it, 0, n);
|
||
|
fill(&it, arr1, n, 2);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
/* fill arr2 */
|
||
|
n = ARRAY_SIZE(arr2);
|
||
|
bpf_iter_num_new(&it, 0, n);
|
||
|
fill(&it, arr2, n, 10);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
/* sum arr1 */
|
||
|
n = ARRAY_SIZE(arr1);
|
||
|
bpf_iter_num_new(&it, 0, n);
|
||
|
sum1 = sum(&it, arr1, n);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
/* sum arr2 */
|
||
|
n = ARRAY_SIZE(arr2);
|
||
|
bpf_iter_num_new(&it, 0, n);
|
||
|
sum2 = sum(&it, arr2, n);
|
||
|
bpf_iter_num_destroy(&it);
|
||
|
|
||
|
bpf_printk("sum1=%d, sum2=%d", sum1, sum2);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
char _license[] SEC("license") = "GPL";
|