linux-zen-desktop/arch/arm64/crypto/polyval-ce-core.S

362 lines
10 KiB
ArmAsm
Raw Normal View History

2023-08-30 17:31:07 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Implementation of POLYVAL using ARMv8 Crypto Extensions.
*
* Copyright 2021 Google LLC
*/
/*
* This is an efficient implementation of POLYVAL using ARMv8 Crypto Extensions
* It works on 8 blocks at a time, by precomputing the first 8 keys powers h^8,
* ..., h^1 in the POLYVAL finite field. This precomputation allows us to split
* finite field multiplication into two steps.
*
* In the first step, we consider h^i, m_i as normal polynomials of degree less
* than 128. We then compute p(x) = h^8m_0 + ... + h^1m_7 where multiplication
* is simply polynomial multiplication.
*
* In the second step, we compute the reduction of p(x) modulo the finite field
* modulus g(x) = x^128 + x^127 + x^126 + x^121 + 1.
*
* This two step process is equivalent to computing h^8m_0 + ... + h^1m_7 where
* multiplication is finite field multiplication. The advantage is that the
* two-step process only requires 1 finite field reduction for every 8
* polynomial multiplications. Further parallelism is gained by interleaving the
* multiplications and polynomial reductions.
*/
#include <linux/linkage.h>
#define STRIDE_BLOCKS 8
KEY_POWERS .req x0
MSG .req x1
BLOCKS_LEFT .req x2
ACCUMULATOR .req x3
KEY_START .req x10
EXTRA_BYTES .req x11
TMP .req x13
M0 .req v0
M1 .req v1
M2 .req v2
M3 .req v3
M4 .req v4
M5 .req v5
M6 .req v6
M7 .req v7
KEY8 .req v8
KEY7 .req v9
KEY6 .req v10
KEY5 .req v11
KEY4 .req v12
KEY3 .req v13
KEY2 .req v14
KEY1 .req v15
PL .req v16
PH .req v17
TMP_V .req v18
LO .req v20
MI .req v21
HI .req v22
SUM .req v23
GSTAR .req v24
.text
.arch armv8-a+crypto
.align 4
.Lgstar:
.quad 0xc200000000000000, 0xc200000000000000
/*
* Computes the product of two 128-bit polynomials in X and Y and XORs the
* components of the 256-bit product into LO, MI, HI.
*
* Given:
* X = [X_1 : X_0]
* Y = [Y_1 : Y_0]
*
* We compute:
* LO += X_0 * Y_0
* MI += (X_0 + X_1) * (Y_0 + Y_1)
* HI += X_1 * Y_1
*
* Later, the 256-bit result can be extracted as:
* [HI_1 : HI_0 + HI_1 + MI_1 + LO_1 : LO_1 + HI_0 + MI_0 + LO_0 : LO_0]
* This step is done when computing the polynomial reduction for efficiency
* reasons.
*
* Karatsuba multiplication is used instead of Schoolbook multiplication because
* it was found to be slightly faster on ARM64 CPUs.
*
*/
.macro karatsuba1 X Y
X .req \X
Y .req \Y
ext v25.16b, X.16b, X.16b, #8
ext v26.16b, Y.16b, Y.16b, #8
eor v25.16b, v25.16b, X.16b
eor v26.16b, v26.16b, Y.16b
pmull2 v28.1q, X.2d, Y.2d
pmull v29.1q, X.1d, Y.1d
pmull v27.1q, v25.1d, v26.1d
eor HI.16b, HI.16b, v28.16b
eor LO.16b, LO.16b, v29.16b
eor MI.16b, MI.16b, v27.16b
.unreq X
.unreq Y
.endm
/*
* Same as karatsuba1, except overwrites HI, LO, MI rather than XORing into
* them.
*/
.macro karatsuba1_store X Y
X .req \X
Y .req \Y
ext v25.16b, X.16b, X.16b, #8
ext v26.16b, Y.16b, Y.16b, #8
eor v25.16b, v25.16b, X.16b
eor v26.16b, v26.16b, Y.16b
pmull2 HI.1q, X.2d, Y.2d
pmull LO.1q, X.1d, Y.1d
pmull MI.1q, v25.1d, v26.1d
.unreq X
.unreq Y
.endm
/*
* Computes the 256-bit polynomial represented by LO, HI, MI. Stores
* the result in PL, PH.
* [PH : PL] =
* [HI_1 : HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
*/
.macro karatsuba2
// v4 = [HI_1 + MI_1 : HI_0 + MI_0]
eor v4.16b, HI.16b, MI.16b
// v4 = [HI_1 + MI_1 + LO_1 : HI_0 + MI_0 + LO_0]
eor v4.16b, v4.16b, LO.16b
// v5 = [HI_0 : LO_1]
ext v5.16b, LO.16b, HI.16b, #8
// v4 = [HI_1 + HI_0 + MI_1 + LO_1 : HI_0 + MI_0 + LO_1 + LO_0]
eor v4.16b, v4.16b, v5.16b
// HI = [HI_0 : HI_1]
ext HI.16b, HI.16b, HI.16b, #8
// LO = [LO_0 : LO_1]
ext LO.16b, LO.16b, LO.16b, #8
// PH = [HI_1 : HI_1 + HI_0 + MI_1 + LO_1]
ext PH.16b, v4.16b, HI.16b, #8
// PL = [HI_0 + MI_0 + LO_1 + LO_0 : LO_0]
ext PL.16b, LO.16b, v4.16b, #8
.endm
/*
* Computes the 128-bit reduction of PH : PL. Stores the result in dest.
*
* This macro computes p(x) mod g(x) where p(x) is in montgomery form and g(x) =
* x^128 + x^127 + x^126 + x^121 + 1.
*
* We have a 256-bit polynomial PH : PL = P_3 : P_2 : P_1 : P_0 that is the
* product of two 128-bit polynomials in Montgomery form. We need to reduce it
* mod g(x). Also, since polynomials in Montgomery form have an "extra" factor
* of x^128, this product has two extra factors of x^128. To get it back into
* Montgomery form, we need to remove one of these factors by dividing by x^128.
*
* To accomplish both of these goals, we add multiples of g(x) that cancel out
* the low 128 bits P_1 : P_0, leaving just the high 128 bits. Since the low
* bits are zero, the polynomial division by x^128 can be done by right
* shifting.
*
* Since the only nonzero term in the low 64 bits of g(x) is the constant term,
* the multiple of g(x) needed to cancel out P_0 is P_0 * g(x). The CPU can
* only do 64x64 bit multiplications, so split P_0 * g(x) into x^128 * P_0 +
* x^64 * g*(x) * P_0 + P_0, where g*(x) is bits 64-127 of g(x). Adding this to
* the original polynomial gives P_3 : P_2 + P_0 + T_1 : P_1 + T_0 : 0, where T
* = T_1 : T_0 = g*(x) * P_0. Thus, bits 0-63 got "folded" into bits 64-191.
*
* Repeating this same process on the next 64 bits "folds" bits 64-127 into bits
* 128-255, giving the answer in bits 128-255. This time, we need to cancel P_1
* + T_0 in bits 64-127. The multiple of g(x) required is (P_1 + T_0) * g(x) *
* x^64. Adding this to our previous computation gives P_3 + P_1 + T_0 + V_1 :
* P_2 + P_0 + T_1 + V_0 : 0 : 0, where V = V_1 : V_0 = g*(x) * (P_1 + T_0).
*
* So our final computation is:
* T = T_1 : T_0 = g*(x) * P_0
* V = V_1 : V_0 = g*(x) * (P_1 + T_0)
* p(x) / x^{128} mod g(x) = P_3 + P_1 + T_0 + V_1 : P_2 + P_0 + T_1 + V_0
*
* The implementation below saves a XOR instruction by computing P_1 + T_0 : P_0
* + T_1 and XORing into dest, rather than separately XORing P_1 : P_0 and T_0 :
* T_1 into dest. This allows us to reuse P_1 + T_0 when computing V.
*/
.macro montgomery_reduction dest
DEST .req \dest
// TMP_V = T_1 : T_0 = P_0 * g*(x)
pmull TMP_V.1q, PL.1d, GSTAR.1d
// TMP_V = T_0 : T_1
ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
// TMP_V = P_1 + T_0 : P_0 + T_1
eor TMP_V.16b, PL.16b, TMP_V.16b
// PH = P_3 + P_1 + T_0 : P_2 + P_0 + T_1
eor PH.16b, PH.16b, TMP_V.16b
// TMP_V = V_1 : V_0 = (P_1 + T_0) * g*(x)
pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d
eor DEST.16b, PH.16b, TMP_V.16b
.unreq DEST
.endm
/*
* Compute Polyval on 8 blocks.
*
* If reduce is set, also computes the montgomery reduction of the
* previous full_stride call and XORs with the first message block.
* (m_0 + REDUCE(PL, PH))h^8 + ... + m_7h^1.
* I.e., the first multiplication uses m_0 + REDUCE(PL, PH) instead of m_0.
*
* Sets PL, PH.
*/
.macro full_stride reduce
eor LO.16b, LO.16b, LO.16b
eor MI.16b, MI.16b, MI.16b
eor HI.16b, HI.16b, HI.16b
ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
ld1 {M4.16b, M5.16b, M6.16b, M7.16b}, [MSG], #64
karatsuba1 M7 KEY1
.if \reduce
pmull TMP_V.1q, PL.1d, GSTAR.1d
.endif
karatsuba1 M6 KEY2
.if \reduce
ext TMP_V.16b, TMP_V.16b, TMP_V.16b, #8
.endif
karatsuba1 M5 KEY3
.if \reduce
eor TMP_V.16b, PL.16b, TMP_V.16b
.endif
karatsuba1 M4 KEY4
.if \reduce
eor PH.16b, PH.16b, TMP_V.16b
.endif
karatsuba1 M3 KEY5
.if \reduce
pmull2 TMP_V.1q, TMP_V.2d, GSTAR.2d
.endif
karatsuba1 M2 KEY6
.if \reduce
eor SUM.16b, PH.16b, TMP_V.16b
.endif
karatsuba1 M1 KEY7
eor M0.16b, M0.16b, SUM.16b
karatsuba1 M0 KEY8
karatsuba2
.endm
/*
* Handle any extra blocks after full_stride loop.
*/
.macro partial_stride
add KEY_POWERS, KEY_START, #(STRIDE_BLOCKS << 4)
sub KEY_POWERS, KEY_POWERS, BLOCKS_LEFT, lsl #4
ld1 {KEY1.16b}, [KEY_POWERS], #16
ld1 {TMP_V.16b}, [MSG], #16
eor SUM.16b, SUM.16b, TMP_V.16b
karatsuba1_store KEY1 SUM
sub BLOCKS_LEFT, BLOCKS_LEFT, #1
tst BLOCKS_LEFT, #4
beq .Lpartial4BlocksDone
ld1 {M0.16b, M1.16b, M2.16b, M3.16b}, [MSG], #64
ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
karatsuba1 M0 KEY8
karatsuba1 M1 KEY7
karatsuba1 M2 KEY6
karatsuba1 M3 KEY5
.Lpartial4BlocksDone:
tst BLOCKS_LEFT, #2
beq .Lpartial2BlocksDone
ld1 {M0.16b, M1.16b}, [MSG], #32
ld1 {KEY8.16b, KEY7.16b}, [KEY_POWERS], #32
karatsuba1 M0 KEY8
karatsuba1 M1 KEY7
.Lpartial2BlocksDone:
tst BLOCKS_LEFT, #1
beq .LpartialDone
ld1 {M0.16b}, [MSG], #16
ld1 {KEY8.16b}, [KEY_POWERS], #16
karatsuba1 M0 KEY8
.LpartialDone:
karatsuba2
montgomery_reduction SUM
.endm
/*
* Perform montgomery multiplication in GF(2^128) and store result in op1.
*
* Computes op1*op2*x^{-128} mod x^128 + x^127 + x^126 + x^121 + 1
* If op1, op2 are in montgomery form, this computes the montgomery
* form of op1*op2.
*
* void pmull_polyval_mul(u8 *op1, const u8 *op2);
*/
SYM_FUNC_START(pmull_polyval_mul)
adr TMP, .Lgstar
ld1 {GSTAR.2d}, [TMP]
ld1 {v0.16b}, [x0]
ld1 {v1.16b}, [x1]
karatsuba1_store v0 v1
karatsuba2
montgomery_reduction SUM
st1 {SUM.16b}, [x0]
ret
SYM_FUNC_END(pmull_polyval_mul)
/*
* Perform polynomial evaluation as specified by POLYVAL. This computes:
* h^n * accumulator + h^n * m_0 + ... + h^1 * m_{n-1}
* where n=nblocks, h is the hash key, and m_i are the message blocks.
*
* x0 - pointer to precomputed key powers h^8 ... h^1
* x1 - pointer to message blocks
* x2 - number of blocks to hash
* x3 - pointer to accumulator
*
* void pmull_polyval_update(const struct polyval_ctx *ctx, const u8 *in,
* size_t nblocks, u8 *accumulator);
*/
SYM_FUNC_START(pmull_polyval_update)
adr TMP, .Lgstar
mov KEY_START, KEY_POWERS
ld1 {GSTAR.2d}, [TMP]
ld1 {SUM.16b}, [ACCUMULATOR]
subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
blt .LstrideLoopExit
ld1 {KEY8.16b, KEY7.16b, KEY6.16b, KEY5.16b}, [KEY_POWERS], #64
ld1 {KEY4.16b, KEY3.16b, KEY2.16b, KEY1.16b}, [KEY_POWERS], #64
full_stride 0
subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
blt .LstrideLoopExitReduce
.LstrideLoop:
full_stride 1
subs BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
bge .LstrideLoop
.LstrideLoopExitReduce:
montgomery_reduction SUM
.LstrideLoopExit:
adds BLOCKS_LEFT, BLOCKS_LEFT, #STRIDE_BLOCKS
beq .LskipPartial
partial_stride
.LskipPartial:
st1 {SUM.16b}, [ACCUMULATOR]
ret
SYM_FUNC_END(pmull_polyval_update)