linux-zen-desktop/arch/loongarch/kernel/smp.c

701 lines
16 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2020-2022 Loongson Technology Corporation Limited
*
* Derived from MIPS:
* Copyright (C) 2000, 2001 Kanoj Sarcar
* Copyright (C) 2000, 2001 Ralf Baechle
* Copyright (C) 2000, 2001 Silicon Graphics, Inc.
* Copyright (C) 2000, 2001, 2003 Broadcom Corporation
*/
#include <linux/cpu.h>
#include <linux/cpumask.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/seq_file.h>
#include <linux/smp.h>
#include <linux/threads.h>
#include <linux/export.h>
#include <linux/syscore_ops.h>
#include <linux/time.h>
#include <linux/tracepoint.h>
#include <linux/sched/hotplug.h>
#include <linux/sched/task_stack.h>
#include <asm/cpu.h>
#include <asm/idle.h>
#include <asm/loongson.h>
#include <asm/mmu_context.h>
#include <asm/numa.h>
#include <asm/processor.h>
#include <asm/setup.h>
#include <asm/time.h>
int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
EXPORT_SYMBOL(__cpu_number_map);
int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
EXPORT_SYMBOL(__cpu_logical_map);
/* Number of threads (siblings) per CPU core */
int smp_num_siblings = 1;
EXPORT_SYMBOL(smp_num_siblings);
/* Representing the threads (siblings) of each logical CPU */
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_sibling_map);
/* Representing the core map of multi-core chips of each logical CPU */
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_core_map);
static DECLARE_COMPLETION(cpu_starting);
static DECLARE_COMPLETION(cpu_running);
/*
* A logcal cpu mask containing only one VPE per core to
* reduce the number of IPIs on large MT systems.
*/
cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(cpu_foreign_map);
/* representing cpus for which sibling maps can be computed */
static cpumask_t cpu_sibling_setup_map;
/* representing cpus for which core maps can be computed */
static cpumask_t cpu_core_setup_map;
struct secondary_data cpuboot_data;
static DEFINE_PER_CPU(int, cpu_state);
enum ipi_msg_type {
IPI_RESCHEDULE,
IPI_CALL_FUNCTION,
};
static const char *ipi_types[NR_IPI] __tracepoint_string = {
[IPI_RESCHEDULE] = "Rescheduling interrupts",
[IPI_CALL_FUNCTION] = "Function call interrupts",
};
void show_ipi_list(struct seq_file *p, int prec)
{
unsigned int cpu, i;
for (i = 0; i < NR_IPI; i++) {
seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i, prec >= 4 ? " " : "");
for_each_online_cpu(cpu)
seq_printf(p, "%10u ", per_cpu(irq_stat, cpu).ipi_irqs[i]);
seq_printf(p, " LoongArch %d %s\n", i + 1, ipi_types[i]);
}
}
/* Send mailbox buffer via Mail_Send */
static void csr_mail_send(uint64_t data, int cpu, int mailbox)
{
uint64_t val;
/* Send high 32 bits */
val = IOCSR_MBUF_SEND_BLOCKING;
val |= (IOCSR_MBUF_SEND_BOX_HI(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
val |= (data & IOCSR_MBUF_SEND_H32_MASK);
iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
/* Send low 32 bits */
val = IOCSR_MBUF_SEND_BLOCKING;
val |= (IOCSR_MBUF_SEND_BOX_LO(mailbox) << IOCSR_MBUF_SEND_BOX_SHIFT);
val |= (cpu << IOCSR_MBUF_SEND_CPU_SHIFT);
val |= (data << IOCSR_MBUF_SEND_BUF_SHIFT);
iocsr_write64(val, LOONGARCH_IOCSR_MBUF_SEND);
};
static u32 ipi_read_clear(int cpu)
{
u32 action;
/* Load the ipi register to figure out what we're supposed to do */
action = iocsr_read32(LOONGARCH_IOCSR_IPI_STATUS);
/* Clear the ipi register to clear the interrupt */
iocsr_write32(action, LOONGARCH_IOCSR_IPI_CLEAR);
smp_mb();
return action;
}
static void ipi_write_action(int cpu, u32 action)
{
unsigned int irq = 0;
while ((irq = ffs(action))) {
uint32_t val = IOCSR_IPI_SEND_BLOCKING;
val |= (irq - 1);
val |= (cpu << IOCSR_IPI_SEND_CPU_SHIFT);
iocsr_write32(val, LOONGARCH_IOCSR_IPI_SEND);
action &= ~BIT(irq - 1);
}
}
void loongson_send_ipi_single(int cpu, unsigned int action)
{
ipi_write_action(cpu_logical_map(cpu), (u32)action);
}
void loongson_send_ipi_mask(const struct cpumask *mask, unsigned int action)
{
unsigned int i;
for_each_cpu(i, mask)
ipi_write_action(cpu_logical_map(i), (u32)action);
}
/*
* This function sends a 'reschedule' IPI to another CPU.
* it goes straight through and wastes no time serializing
* anything. Worst case is that we lose a reschedule ...
*/
void smp_send_reschedule(int cpu)
{
loongson_send_ipi_single(cpu, SMP_RESCHEDULE);
}
EXPORT_SYMBOL_GPL(smp_send_reschedule);
irqreturn_t loongson_ipi_interrupt(int irq, void *dev)
{
unsigned int action;
unsigned int cpu = smp_processor_id();
action = ipi_read_clear(cpu_logical_map(cpu));
if (action & SMP_RESCHEDULE) {
scheduler_ipi();
per_cpu(irq_stat, cpu).ipi_irqs[IPI_RESCHEDULE]++;
}
if (action & SMP_CALL_FUNCTION) {
generic_smp_call_function_interrupt();
per_cpu(irq_stat, cpu).ipi_irqs[IPI_CALL_FUNCTION]++;
}
return IRQ_HANDLED;
}
static void __init fdt_smp_setup(void)
{
#ifdef CONFIG_OF
unsigned int cpu, cpuid;
struct device_node *node = NULL;
for_each_of_cpu_node(node) {
if (!of_device_is_available(node))
continue;
cpuid = of_get_cpu_hwid(node, 0);
if (cpuid >= nr_cpu_ids)
continue;
if (cpuid == loongson_sysconf.boot_cpu_id) {
cpu = 0;
numa_add_cpu(cpu);
} else {
cpu = cpumask_next_zero(-1, cpu_present_mask);
}
num_processors++;
set_cpu_possible(cpu, true);
set_cpu_present(cpu, true);
__cpu_number_map[cpuid] = cpu;
__cpu_logical_map[cpu] = cpuid;
}
loongson_sysconf.nr_cpus = num_processors;
#endif
}
void __init loongson_smp_setup(void)
{
fdt_smp_setup();
cpu_data[0].core = cpu_logical_map(0) % loongson_sysconf.cores_per_package;
cpu_data[0].package = cpu_logical_map(0) / loongson_sysconf.cores_per_package;
iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
pr_info("Detected %i available CPU(s)\n", loongson_sysconf.nr_cpus);
}
void __init loongson_prepare_cpus(unsigned int max_cpus)
{
int i = 0;
for (i = 0; i < loongson_sysconf.nr_cpus; i++) {
set_cpu_present(i, true);
csr_mail_send(0, __cpu_logical_map[i], 0);
}
per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
}
/*
* Setup the PC, SP, and TP of a secondary processor and start it running!
*/
void loongson_boot_secondary(int cpu, struct task_struct *idle)
{
unsigned long entry;
pr_info("Booting CPU#%d...\n", cpu);
entry = __pa_symbol((unsigned long)&smpboot_entry);
cpuboot_data.stack = (unsigned long)__KSTK_TOS(idle);
cpuboot_data.thread_info = (unsigned long)task_thread_info(idle);
csr_mail_send(entry, cpu_logical_map(cpu), 0);
loongson_send_ipi_single(cpu, SMP_BOOT_CPU);
}
/*
* SMP init and finish on secondary CPUs
*/
void loongson_init_secondary(void)
{
unsigned int cpu = smp_processor_id();
unsigned int imask = ECFGF_IP0 | ECFGF_IP1 | ECFGF_IP2 |
ECFGF_IPI | ECFGF_PMC | ECFGF_TIMER;
change_csr_ecfg(ECFG0_IM, imask);
iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
#ifdef CONFIG_NUMA
numa_add_cpu(cpu);
#endif
per_cpu(cpu_state, cpu) = CPU_ONLINE;
cpu_data[cpu].core =
cpu_logical_map(cpu) % loongson_sysconf.cores_per_package;
cpu_data[cpu].package =
cpu_logical_map(cpu) / loongson_sysconf.cores_per_package;
}
void loongson_smp_finish(void)
{
local_irq_enable();
iocsr_write64(0, LOONGARCH_IOCSR_MBUF0);
pr_info("CPU#%d finished\n", smp_processor_id());
}
#ifdef CONFIG_HOTPLUG_CPU
int loongson_cpu_disable(void)
{
unsigned long flags;
unsigned int cpu = smp_processor_id();
if (io_master(cpu))
return -EBUSY;
#ifdef CONFIG_NUMA
numa_remove_cpu(cpu);
#endif
set_cpu_online(cpu, false);
calculate_cpu_foreign_map();
local_irq_save(flags);
irq_migrate_all_off_this_cpu();
clear_csr_ecfg(ECFG0_IM);
local_irq_restore(flags);
local_flush_tlb_all();
return 0;
}
void loongson_cpu_die(unsigned int cpu)
{
while (per_cpu(cpu_state, cpu) != CPU_DEAD)
cpu_relax();
mb();
}
void play_dead(void)
{
register uint64_t addr;
register void (*init_fn)(void);
idle_task_exit();
local_irq_enable();
set_csr_ecfg(ECFGF_IPI);
__this_cpu_write(cpu_state, CPU_DEAD);
__smp_mb();
do {
__asm__ __volatile__("idle 0\n\t");
addr = iocsr_read64(LOONGARCH_IOCSR_MBUF0);
} while (addr == 0);
init_fn = (void *)TO_CACHE(addr);
iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_CLEAR);
init_fn();
unreachable();
}
#endif
/*
* Power management
*/
#ifdef CONFIG_PM
static int loongson_ipi_suspend(void)
{
return 0;
}
static void loongson_ipi_resume(void)
{
iocsr_write32(0xffffffff, LOONGARCH_IOCSR_IPI_EN);
}
static struct syscore_ops loongson_ipi_syscore_ops = {
.resume = loongson_ipi_resume,
.suspend = loongson_ipi_suspend,
};
/*
* Enable boot cpu ipi before enabling nonboot cpus
* during syscore_resume.
*/
static int __init ipi_pm_init(void)
{
register_syscore_ops(&loongson_ipi_syscore_ops);
return 0;
}
core_initcall(ipi_pm_init);
#endif
static inline void set_cpu_sibling_map(int cpu)
{
int i;
cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
if (smp_num_siblings <= 1)
cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
else {
for_each_cpu(i, &cpu_sibling_setup_map) {
if (cpus_are_siblings(cpu, i)) {
cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
}
}
}
}
static inline void set_cpu_core_map(int cpu)
{
int i;
cpumask_set_cpu(cpu, &cpu_core_setup_map);
for_each_cpu(i, &cpu_core_setup_map) {
if (cpu_data[cpu].package == cpu_data[i].package) {
cpumask_set_cpu(i, &cpu_core_map[cpu]);
cpumask_set_cpu(cpu, &cpu_core_map[i]);
}
}
}
/*
* Calculate a new cpu_foreign_map mask whenever a
* new cpu appears or disappears.
*/
void calculate_cpu_foreign_map(void)
{
int i, k, core_present;
cpumask_t temp_foreign_map;
/* Re-calculate the mask */
cpumask_clear(&temp_foreign_map);
for_each_online_cpu(i) {
core_present = 0;
for_each_cpu(k, &temp_foreign_map)
if (cpus_are_siblings(i, k))
core_present = 1;
if (!core_present)
cpumask_set_cpu(i, &temp_foreign_map);
}
for_each_online_cpu(i)
cpumask_andnot(&cpu_foreign_map[i],
&temp_foreign_map, &cpu_sibling_map[i]);
}
/* Preload SMP state for boot cpu */
void smp_prepare_boot_cpu(void)
{
unsigned int cpu, node, rr_node;
set_cpu_possible(0, true);
set_cpu_online(0, true);
set_my_cpu_offset(per_cpu_offset(0));
rr_node = first_node(node_online_map);
for_each_possible_cpu(cpu) {
node = early_cpu_to_node(cpu);
/*
* The mapping between present cpus and nodes has been
* built during MADT and SRAT parsing.
*
* If possible cpus = present cpus here, early_cpu_to_node
* will return valid node.
*
* If possible cpus > present cpus here (e.g. some possible
* cpus will be added by cpu-hotplug later), for possible but
* not present cpus, early_cpu_to_node will return NUMA_NO_NODE,
* and we just map them to online nodes in round-robin way.
* Once hotplugged, new correct mapping will be built for them.
*/
if (node != NUMA_NO_NODE)
set_cpu_numa_node(cpu, node);
else {
set_cpu_numa_node(cpu, rr_node);
rr_node = next_node_in(rr_node, node_online_map);
}
}
}
/* called from main before smp_init() */
void __init smp_prepare_cpus(unsigned int max_cpus)
{
init_new_context(current, &init_mm);
current_thread_info()->cpu = 0;
loongson_prepare_cpus(max_cpus);
set_cpu_sibling_map(0);
set_cpu_core_map(0);
calculate_cpu_foreign_map();
#ifndef CONFIG_HOTPLUG_CPU
init_cpu_present(cpu_possible_mask);
#endif
}
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
{
loongson_boot_secondary(cpu, tidle);
/* Wait for CPU to start and be ready to sync counters */
if (!wait_for_completion_timeout(&cpu_starting,
msecs_to_jiffies(5000))) {
pr_crit("CPU%u: failed to start\n", cpu);
return -EIO;
}
/* Wait for CPU to finish startup & mark itself online before return */
wait_for_completion(&cpu_running);
return 0;
}
/*
* First C code run on the secondary CPUs after being started up by
* the master.
*/
asmlinkage void start_secondary(void)
{
unsigned int cpu;
sync_counter();
cpu = smp_processor_id();
set_my_cpu_offset(per_cpu_offset(cpu));
cpu_probe();
constant_clockevent_init();
loongson_init_secondary();
set_cpu_sibling_map(cpu);
set_cpu_core_map(cpu);
notify_cpu_starting(cpu);
/* Notify boot CPU that we're starting */
complete(&cpu_starting);
/* The CPU is running, now mark it online */
set_cpu_online(cpu, true);
calculate_cpu_foreign_map();
/*
* Notify boot CPU that we're up & online and it can safely return
* from __cpu_up()
*/
complete(&cpu_running);
/*
* irq will be enabled in loongson_smp_finish(), enabling it too
* early is dangerous.
*/
WARN_ON_ONCE(!irqs_disabled());
loongson_smp_finish();
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
}
void __init smp_cpus_done(unsigned int max_cpus)
{
}
static void stop_this_cpu(void *dummy)
{
set_cpu_online(smp_processor_id(), false);
calculate_cpu_foreign_map();
local_irq_disable();
while (true);
}
void smp_send_stop(void)
{
smp_call_function(stop_this_cpu, NULL, 0);
}
int setup_profiling_timer(unsigned int multiplier)
{
return 0;
}
static void flush_tlb_all_ipi(void *info)
{
local_flush_tlb_all();
}
void flush_tlb_all(void)
{
on_each_cpu(flush_tlb_all_ipi, NULL, 1);
}
static void flush_tlb_mm_ipi(void *mm)
{
local_flush_tlb_mm((struct mm_struct *)mm);
}
void flush_tlb_mm(struct mm_struct *mm)
{
if (atomic_read(&mm->mm_users) == 0)
return; /* happens as a result of exit_mmap() */
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
on_each_cpu_mask(mm_cpumask(mm), flush_tlb_mm_ipi, mm, 1);
} else {
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
cpu_context(cpu, mm) = 0;
}
local_flush_tlb_mm(mm);
}
preempt_enable();
}
struct flush_tlb_data {
struct vm_area_struct *vma;
unsigned long addr1;
unsigned long addr2;
};
static void flush_tlb_range_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
}
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
struct mm_struct *mm = vma->vm_mm;
preempt_disable();
if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
struct flush_tlb_data fd = {
.vma = vma,
.addr1 = start,
.addr2 = end,
};
on_each_cpu_mask(mm_cpumask(mm), flush_tlb_range_ipi, &fd, 1);
} else {
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
cpu_context(cpu, mm) = 0;
}
local_flush_tlb_range(vma, start, end);
}
preempt_enable();
}
static void flush_tlb_kernel_range_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
}
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
struct flush_tlb_data fd = {
.addr1 = start,
.addr2 = end,
};
on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
}
static void flush_tlb_page_ipi(void *info)
{
struct flush_tlb_data *fd = info;
local_flush_tlb_page(fd->vma, fd->addr1);
}
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
{
preempt_disable();
if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
struct flush_tlb_data fd = {
.vma = vma,
.addr1 = page,
};
on_each_cpu_mask(mm_cpumask(vma->vm_mm), flush_tlb_page_ipi, &fd, 1);
} else {
unsigned int cpu;
for_each_online_cpu(cpu) {
if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
cpu_context(cpu, vma->vm_mm) = 0;
}
local_flush_tlb_page(vma, page);
}
preempt_enable();
}
EXPORT_SYMBOL(flush_tlb_page);
static void flush_tlb_one_ipi(void *info)
{
unsigned long vaddr = (unsigned long) info;
local_flush_tlb_one(vaddr);
}
void flush_tlb_one(unsigned long vaddr)
{
on_each_cpu(flush_tlb_one_ipi, (void *)vaddr, 1);
}
EXPORT_SYMBOL(flush_tlb_one);