linux-zen-desktop/arch/m68k/mac/via.c

637 lines
16 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0
/*
* 6522 Versatile Interface Adapter (VIA)
*
* There are two of these on the Mac II. Some IRQs are vectored
* via them as are assorted bits and bobs - eg RTC, ADB.
*
* CSA: Motorola seems to have removed documentation on the 6522 from
* their web site; try
* http://nerini.drf.com/vectrex/other/text/chips/6522/
* http://www.zymurgy.net/classic/vic20/vicdet1.htm
* and
* http://193.23.168.87/mikro_laborversuche/via_iobaustein/via6522_1.html
* for info. A full-text web search on 6522 AND VIA will probably also
* net some usefulness. <cananian@alumni.princeton.edu> 20apr1999
*
* Additional data is here (the SY6522 was used in the Mac II etc):
* http://www.6502.org/documents/datasheets/synertek/synertek_sy6522.pdf
* http://www.6502.org/documents/datasheets/synertek/synertek_sy6522_programming_reference.pdf
*
* PRAM/RTC access algorithms are from the NetBSD RTC toolkit version 1.08b
* by Erik Vogan and adapted to Linux by Joshua M. Thompson (funaho@jurai.org)
*
*/
#include <linux/clocksource.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/irq.h>
#include <asm/macintosh.h>
#include <asm/macints.h>
#include <asm/mac_via.h>
#include <asm/mac_psc.h>
#include <asm/mac_oss.h>
volatile __u8 *via1, *via2;
int rbv_present;
int via_alt_mapping;
EXPORT_SYMBOL(via_alt_mapping);
static __u8 rbv_clear;
/*
* Globals for accessing the VIA chip registers without having to
* check if we're hitting a real VIA or an RBV. Normally you could
* just hit the combined register (ie, vIER|rIER) but that seems to
* break on AV Macs...probably because they actually decode more than
* eight address bits. Why can't Apple engineers at least be
* _consistently_ lazy? - 1999-05-21 (jmt)
*/
static int gIER,gIFR,gBufA,gBufB;
/*
* On Macs with a genuine VIA chip there is no way to mask an individual slot
* interrupt. This limitation also seems to apply to VIA clone logic cores in
* Quadra-like ASICs. (RBV and OSS machines don't have this limitation.)
*
* We used to fake it by configuring the relevant VIA pin as an output
* (to mask the interrupt) or input (to unmask). That scheme did not work on
* (at least) the Quadra 700. A NuBus card's /NMRQ signal is an open-collector
* circuit (see Designing Cards and Drivers for Macintosh II and Macintosh SE,
* p. 10-11 etc) but VIA outputs are not (see datasheet).
*
* Driving these outputs high must cause the VIA to source current and the
* card to sink current when it asserts /NMRQ. Current will flow but the pin
* voltage is uncertain and so the /NMRQ condition may still cause a transition
* at the VIA2 CA1 input (which explains the lost interrupts). A side effect
* is that a disabled slot IRQ can never be tested as pending or not.
*
* Driving these outputs low doesn't work either. All the slot /NMRQ lines are
* (active low) OR'd together to generate the CA1 (aka "SLOTS") interrupt (see
* The Guide To Macintosh Family Hardware, 2nd edition p. 167). If we drive a
* disabled /NMRQ line low, the falling edge immediately triggers a CA1
* interrupt and all slot interrupts after that will generate no transition
* and therefore no interrupt, even after being re-enabled.
*
* So we make the VIA port A I/O lines inputs and use nubus_disabled to keep
* track of their states. When any slot IRQ becomes disabled we mask the CA1
* umbrella interrupt. Only when all slot IRQs become enabled do we unmask
* the CA1 interrupt. It must remain enabled even when cards have no interrupt
* handler registered. Drivers must therefore disable a slot interrupt at the
* device before they call free_irq (like shared and autovector interrupts).
*
* There is also a related problem when MacOS is used to boot Linux. A network
* card brought up by a MacOS driver may raise an interrupt while Linux boots.
* This can be fatal since it can't be handled until the right driver loads
* (if such a driver exists at all). Apparently related to this hardware
* limitation, "Designing Cards and Drivers", p. 9-8, says that a slot
* interrupt with no driver would crash MacOS (the book was written before
* the appearance of Macs with RBV or OSS).
*/
static u8 nubus_disabled;
void via_debug_dump(void);
static void via_nubus_init(void);
/*
* Initialize the VIAs
*
* First we figure out where they actually _are_ as well as what type of
* VIA we have for VIA2 (it could be a real VIA or an RBV or even an OSS.)
* Then we pretty much clear them out and disable all IRQ sources.
*/
void __init via_init(void)
{
via1 = (void *)VIA1_BASE;
pr_debug("VIA1 detected at %p\n", via1);
if (oss_present) {
via2 = NULL;
rbv_present = 0;
} else {
switch (macintosh_config->via_type) {
/* IIci, IIsi, IIvx, IIvi (P6xx), LC series */
case MAC_VIA_IICI:
via2 = (void *)RBV_BASE;
pr_debug("VIA2 (RBV) detected at %p\n", via2);
rbv_present = 1;
if (macintosh_config->ident == MAC_MODEL_LCIII) {
rbv_clear = 0x00;
} else {
/* on most RBVs (& unlike the VIAs), you */
/* need to set bit 7 when you write to IFR */
/* in order for your clear to occur. */
rbv_clear = 0x80;
}
gIER = rIER;
gIFR = rIFR;
gBufA = rSIFR;
gBufB = rBufB;
break;
/* Quadra and early MacIIs agree on the VIA locations */
case MAC_VIA_QUADRA:
case MAC_VIA_II:
via2 = (void *) VIA2_BASE;
pr_debug("VIA2 detected at %p\n", via2);
rbv_present = 0;
rbv_clear = 0x00;
gIER = vIER;
gIFR = vIFR;
gBufA = vBufA;
gBufB = vBufB;
break;
default:
panic("UNKNOWN VIA TYPE");
}
}
#ifdef DEBUG_VIA
via_debug_dump();
#endif
/*
* Shut down all IRQ sources, reset the timers, and
* kill the timer latch on VIA1.
*/
via1[vIER] = 0x7F;
via1[vIFR] = 0x7F;
via1[vT1CL] = 0;
via1[vT1CH] = 0;
via1[vT2CL] = 0;
via1[vT2CH] = 0;
via1[vACR] &= ~0xC0; /* setup T1 timer with no PB7 output */
via1[vACR] &= ~0x03; /* disable port A & B latches */
/*
* SE/30: disable video IRQ
*/
if (macintosh_config->ident == MAC_MODEL_SE30) {
via1[vDirB] |= 0x40;
via1[vBufB] |= 0x40;
}
switch (macintosh_config->adb_type) {
case MAC_ADB_IOP:
case MAC_ADB_II:
case MAC_ADB_PB1:
/*
* Set the RTC bits to a known state: all lines to outputs and
* RTC disabled (yes that's 0 to enable and 1 to disable).
*/
via1[vDirB] |= VIA1B_vRTCEnb | VIA1B_vRTCClk | VIA1B_vRTCData;
via1[vBufB] |= VIA1B_vRTCEnb | VIA1B_vRTCClk;
break;
}
/* Everything below this point is VIA2/RBV only... */
if (oss_present)
return;
if ((macintosh_config->via_type == MAC_VIA_QUADRA) &&
(macintosh_config->adb_type != MAC_ADB_PB1) &&
(macintosh_config->adb_type != MAC_ADB_PB2) &&
(macintosh_config->ident != MAC_MODEL_C660) &&
(macintosh_config->ident != MAC_MODEL_Q840)) {
via_alt_mapping = 1;
via1[vDirB] |= 0x40;
via1[vBufB] &= ~0x40;
} else {
via_alt_mapping = 0;
}
/*
* Now initialize VIA2. For RBV we just kill all interrupts;
* for a regular VIA we also reset the timers and stuff.
*/
via2[gIER] = 0x7F;
via2[gIFR] = 0x7F | rbv_clear;
if (!rbv_present) {
via2[vT1CL] = 0;
via2[vT1CH] = 0;
via2[vT2CL] = 0;
via2[vT2CH] = 0;
via2[vACR] &= ~0xC0; /* setup T1 timer with no PB7 output */
via2[vACR] &= ~0x03; /* disable port A & B latches */
}
via_nubus_init();
/* Everything below this point is VIA2 only... */
if (rbv_present)
return;
/*
* Set vPCR for control line interrupts.
*
* CA1 (SLOTS IRQ), CB1 (ASC IRQ): negative edge trigger.
*
* Macs with ESP SCSI have a negative edge triggered SCSI interrupt.
* Testing reveals that PowerBooks do too. However, the SE/30
* schematic diagram shows an active high NCR5380 IRQ line.
*/
pr_debug("VIA2 vPCR is 0x%02X\n", via2[vPCR]);
if (macintosh_config->via_type == MAC_VIA_II) {
/* CA2 (SCSI DRQ), CB2 (SCSI IRQ): indep. input, pos. edge */
via2[vPCR] = 0x66;
} else {
/* CA2 (SCSI DRQ), CB2 (SCSI IRQ): indep. input, neg. edge */
via2[vPCR] = 0x22;
}
}
/*
* Debugging dump, used in various places to see what's going on.
*/
void via_debug_dump(void)
{
printk(KERN_DEBUG "VIA1: DDRA = 0x%02X DDRB = 0x%02X ACR = 0x%02X\n",
(uint) via1[vDirA], (uint) via1[vDirB], (uint) via1[vACR]);
printk(KERN_DEBUG " PCR = 0x%02X IFR = 0x%02X IER = 0x%02X\n",
(uint) via1[vPCR], (uint) via1[vIFR], (uint) via1[vIER]);
if (!via2)
return;
if (rbv_present) {
printk(KERN_DEBUG "VIA2: IFR = 0x%02X IER = 0x%02X\n",
(uint) via2[rIFR], (uint) via2[rIER]);
printk(KERN_DEBUG " SIFR = 0x%02X SIER = 0x%02X\n",
(uint) via2[rSIFR], (uint) via2[rSIER]);
} else {
printk(KERN_DEBUG "VIA2: DDRA = 0x%02X DDRB = 0x%02X ACR = 0x%02X\n",
(uint) via2[vDirA], (uint) via2[vDirB],
(uint) via2[vACR]);
printk(KERN_DEBUG " PCR = 0x%02X IFR = 0x%02X IER = 0x%02X\n",
(uint) via2[vPCR],
(uint) via2[vIFR], (uint) via2[vIER]);
}
}
/*
* Flush the L2 cache on Macs that have it by flipping
* the system into 24-bit mode for an instant.
*/
void via_l2_flush(int writeback)
{
unsigned long flags;
local_irq_save(flags);
via2[gBufB] &= ~VIA2B_vMode32;
via2[gBufB] |= VIA2B_vMode32;
local_irq_restore(flags);
}
/*
* Initialize VIA2 for Nubus access
*/
static void __init via_nubus_init(void)
{
/* unlock nubus transactions */
if ((macintosh_config->adb_type != MAC_ADB_PB1) &&
(macintosh_config->adb_type != MAC_ADB_PB2)) {
/* set the line to be an output on non-RBV machines */
if (!rbv_present)
via2[vDirB] |= 0x02;
/* this seems to be an ADB bit on PMU machines */
/* according to MkLinux. -- jmt */
via2[gBufB] |= 0x02;
}
/*
* Disable the slot interrupts. On some hardware that's not possible.
* On some hardware it's unclear what all of these I/O lines do.
*/
switch (macintosh_config->via_type) {
case MAC_VIA_II:
case MAC_VIA_QUADRA:
pr_debug("VIA2 vDirA is 0x%02X\n", via2[vDirA]);
break;
case MAC_VIA_IICI:
/* RBV. Disable all the slot interrupts. SIER works like IER. */
via2[rSIER] = 0x7F;
break;
}
}
void via_nubus_irq_startup(int irq)
{
int irq_idx = IRQ_IDX(irq);
switch (macintosh_config->via_type) {
case MAC_VIA_II:
case MAC_VIA_QUADRA:
/* Make the port A line an input. Probably redundant. */
if (macintosh_config->via_type == MAC_VIA_II) {
/* The top two bits are RAM size outputs. */
via2[vDirA] &= 0xC0 | ~(1 << irq_idx);
} else {
/* Allow NuBus slots 9 through F. */
via2[vDirA] &= 0x80 | ~(1 << irq_idx);
}
fallthrough;
case MAC_VIA_IICI:
via_irq_enable(irq);
break;
}
}
void via_nubus_irq_shutdown(int irq)
{
switch (macintosh_config->via_type) {
case MAC_VIA_II:
case MAC_VIA_QUADRA:
/* Ensure that the umbrella CA1 interrupt remains enabled. */
via_irq_enable(irq);
break;
case MAC_VIA_IICI:
via_irq_disable(irq);
break;
}
}
/*
* The generic VIA interrupt routines (shamelessly stolen from Alan Cox's
* via6522.c :-), disable/pending masks added.
*/
#define VIA_TIMER_1_INT BIT(6)
void via1_irq(struct irq_desc *desc)
{
int irq_num;
unsigned char irq_bit, events;
events = via1[vIFR] & via1[vIER] & 0x7F;
if (!events)
return;
irq_num = IRQ_MAC_TIMER_1;
irq_bit = VIA_TIMER_1_INT;
if (events & irq_bit) {
unsigned long flags;
local_irq_save(flags);
via1[vIFR] = irq_bit;
generic_handle_irq(irq_num);
local_irq_restore(flags);
events &= ~irq_bit;
if (!events)
return;
}
irq_num = VIA1_SOURCE_BASE;
irq_bit = 1;
do {
if (events & irq_bit) {
via1[vIFR] = irq_bit;
generic_handle_irq(irq_num);
}
++irq_num;
irq_bit <<= 1;
} while (events >= irq_bit);
}
static void via2_irq(struct irq_desc *desc)
{
int irq_num;
unsigned char irq_bit, events;
events = via2[gIFR] & via2[gIER] & 0x7F;
if (!events)
return;
irq_num = VIA2_SOURCE_BASE;
irq_bit = 1;
do {
if (events & irq_bit) {
via2[gIFR] = irq_bit | rbv_clear;
generic_handle_irq(irq_num);
}
++irq_num;
irq_bit <<= 1;
} while (events >= irq_bit);
}
/*
* Dispatch Nubus interrupts. We are called as a secondary dispatch by the
* VIA2 dispatcher as a fast interrupt handler.
*/
static void via_nubus_irq(struct irq_desc *desc)
{
int slot_irq;
unsigned char slot_bit, events;
events = ~via2[gBufA] & 0x7F;
if (rbv_present)
events &= via2[rSIER];
else
events &= ~via2[vDirA];
if (!events)
return;
do {
slot_irq = IRQ_NUBUS_F;
slot_bit = 0x40;
do {
if (events & slot_bit) {
events &= ~slot_bit;
generic_handle_irq(slot_irq);
}
--slot_irq;
slot_bit >>= 1;
} while (events);
/* clear the CA1 interrupt and make certain there's no more. */
via2[gIFR] = 0x02 | rbv_clear;
events = ~via2[gBufA] & 0x7F;
if (rbv_present)
events &= via2[rSIER];
else
events &= ~via2[vDirA];
} while (events);
}
/*
* Register the interrupt dispatchers for VIA or RBV machines only.
*/
void __init via_register_interrupts(void)
{
if (via_alt_mapping) {
/* software interrupt */
irq_set_chained_handler(IRQ_AUTO_1, via1_irq);
/* via1 interrupt */
irq_set_chained_handler(IRQ_AUTO_6, via1_irq);
} else {
irq_set_chained_handler(IRQ_AUTO_1, via1_irq);
}
irq_set_chained_handler(IRQ_AUTO_2, via2_irq);
irq_set_chained_handler(IRQ_MAC_NUBUS, via_nubus_irq);
}
void via_irq_enable(int irq) {
int irq_src = IRQ_SRC(irq);
int irq_idx = IRQ_IDX(irq);
if (irq_src == 1) {
via1[vIER] = IER_SET_BIT(irq_idx);
} else if (irq_src == 2) {
if (irq != IRQ_MAC_NUBUS || nubus_disabled == 0)
via2[gIER] = IER_SET_BIT(irq_idx);
} else if (irq_src == 7) {
switch (macintosh_config->via_type) {
case MAC_VIA_II:
case MAC_VIA_QUADRA:
nubus_disabled &= ~(1 << irq_idx);
/* Enable the CA1 interrupt when no slot is disabled. */
if (!nubus_disabled)
via2[gIER] = IER_SET_BIT(1);
break;
case MAC_VIA_IICI:
/* On RBV, enable the slot interrupt.
* SIER works like IER.
*/
via2[rSIER] = IER_SET_BIT(irq_idx);
break;
}
}
}
void via_irq_disable(int irq) {
int irq_src = IRQ_SRC(irq);
int irq_idx = IRQ_IDX(irq);
if (irq_src == 1) {
via1[vIER] = IER_CLR_BIT(irq_idx);
} else if (irq_src == 2) {
via2[gIER] = IER_CLR_BIT(irq_idx);
} else if (irq_src == 7) {
switch (macintosh_config->via_type) {
case MAC_VIA_II:
case MAC_VIA_QUADRA:
nubus_disabled |= 1 << irq_idx;
if (nubus_disabled)
via2[gIER] = IER_CLR_BIT(1);
break;
case MAC_VIA_IICI:
via2[rSIER] = IER_CLR_BIT(irq_idx);
break;
}
}
}
void via1_set_head(int head)
{
if (head == 0)
via1[vBufA] &= ~VIA1A_vHeadSel;
else
via1[vBufA] |= VIA1A_vHeadSel;
}
EXPORT_SYMBOL(via1_set_head);
int via2_scsi_drq_pending(void)
{
return via2[gIFR] & (1 << IRQ_IDX(IRQ_MAC_SCSIDRQ));
}
EXPORT_SYMBOL(via2_scsi_drq_pending);
/* timer and clock source */
#define VIA_CLOCK_FREQ 783360 /* VIA "phase 2" clock in Hz */
#define VIA_TIMER_CYCLES (VIA_CLOCK_FREQ / HZ) /* clock cycles per jiffy */
#define VIA_TC (VIA_TIMER_CYCLES - 2) /* including 0 and -1 */
#define VIA_TC_LOW (VIA_TC & 0xFF)
#define VIA_TC_HIGH (VIA_TC >> 8)
static u64 mac_read_clk(struct clocksource *cs);
static struct clocksource mac_clk = {
.name = "via1",
.rating = 250,
.read = mac_read_clk,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 clk_total, clk_offset;
static irqreturn_t via_timer_handler(int irq, void *dev_id)
{
clk_total += VIA_TIMER_CYCLES;
clk_offset = 0;
legacy_timer_tick(1);
return IRQ_HANDLED;
}
void __init via_init_clock(void)
{
if (request_irq(IRQ_MAC_TIMER_1, via_timer_handler, IRQF_TIMER, "timer",
NULL)) {
pr_err("Couldn't register %s interrupt\n", "timer");
return;
}
via1[vT1CL] = VIA_TC_LOW;
via1[vT1CH] = VIA_TC_HIGH;
via1[vACR] |= 0x40;
clocksource_register_hz(&mac_clk, VIA_CLOCK_FREQ);
}
static u64 mac_read_clk(struct clocksource *cs)
{
unsigned long flags;
u8 count_high;
u16 count;
u32 ticks;
/*
* Timer counter wrap-around is detected with the timer interrupt flag
* but reading the counter low byte (vT1CL) would reset the flag.
* Also, accessing both counter registers is essentially a data race.
* These problems are avoided by ignoring the low byte. Clock accuracy
* is 256 times worse (error can reach 0.327 ms) but CPU overhead is
* reduced by avoiding slow VIA register accesses.
*/
local_irq_save(flags);
count_high = via1[vT1CH];
if (count_high == 0xFF)
count_high = 0;
if (count_high > 0 && (via1[vIFR] & VIA_TIMER_1_INT))
clk_offset = VIA_TIMER_CYCLES;
count = count_high << 8;
ticks = VIA_TIMER_CYCLES - count;
ticks += clk_offset + clk_total;
local_irq_restore(flags);
return ticks;
}