239 lines
6.7 KiB
C
239 lines
6.7 KiB
C
|
// SPDX-License-Identifier: GPL-2.0-only
|
||
|
/*
|
||
|
* Copyright (C) 2005 Intel Corporation
|
||
|
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
||
|
* - Added _PDC for SMP C-states on Intel CPUs
|
||
|
*/
|
||
|
|
||
|
#include <linux/kernel.h>
|
||
|
#include <linux/export.h>
|
||
|
#include <linux/init.h>
|
||
|
#include <linux/acpi.h>
|
||
|
#include <linux/cpu.h>
|
||
|
#include <linux/sched.h>
|
||
|
|
||
|
#include <acpi/processor.h>
|
||
|
#include <asm/mwait.h>
|
||
|
#include <asm/special_insns.h>
|
||
|
|
||
|
/*
|
||
|
* Initialize bm_flags based on the CPU cache properties
|
||
|
* On SMP it depends on cache configuration
|
||
|
* - When cache is not shared among all CPUs, we flush cache
|
||
|
* before entering C3.
|
||
|
* - When cache is shared among all CPUs, we use bm_check
|
||
|
* mechanism as in UP case
|
||
|
*
|
||
|
* This routine is called only after all the CPUs are online
|
||
|
*/
|
||
|
void acpi_processor_power_init_bm_check(struct acpi_processor_flags *flags,
|
||
|
unsigned int cpu)
|
||
|
{
|
||
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
||
|
|
||
|
flags->bm_check = 0;
|
||
|
if (num_online_cpus() == 1)
|
||
|
flags->bm_check = 1;
|
||
|
else if (c->x86_vendor == X86_VENDOR_INTEL) {
|
||
|
/*
|
||
|
* Today all MP CPUs that support C3 share cache.
|
||
|
* And caches should not be flushed by software while
|
||
|
* entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_check = 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On all recent Intel platforms, ARB_DISABLE is a nop.
|
||
|
* So, set bm_control to zero to indicate that ARB_DISABLE
|
||
|
* is not required while entering C3 type state on
|
||
|
* P4, Core and beyond CPUs
|
||
|
*/
|
||
|
if (c->x86_vendor == X86_VENDOR_INTEL &&
|
||
|
(c->x86 > 0xf || (c->x86 == 6 && c->x86_model >= 0x0f)))
|
||
|
flags->bm_control = 0;
|
||
|
|
||
|
if (c->x86_vendor == X86_VENDOR_CENTAUR) {
|
||
|
if (c->x86 > 6 || (c->x86 == 6 && c->x86_model == 0x0f &&
|
||
|
c->x86_stepping >= 0x0e)) {
|
||
|
/*
|
||
|
* For all recent Centaur CPUs, the ucode will make sure that each
|
||
|
* core can keep cache coherence with each other while entering C3
|
||
|
* type state. So, set bm_check to 1 to indicate that the kernel
|
||
|
* doesn't need to execute a cache flush operation (WBINVD) when
|
||
|
* entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_check = 1;
|
||
|
/*
|
||
|
* For all recent Centaur platforms, ARB_DISABLE is a nop.
|
||
|
* Set bm_control to zero to indicate that ARB_DISABLE is
|
||
|
* not required while entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_control = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (c->x86_vendor == X86_VENDOR_ZHAOXIN) {
|
||
|
/*
|
||
|
* All Zhaoxin CPUs that support C3 share cache.
|
||
|
* And caches should not be flushed by software while
|
||
|
* entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_check = 1;
|
||
|
/*
|
||
|
* On all recent Zhaoxin platforms, ARB_DISABLE is a nop.
|
||
|
* So, set bm_control to zero to indicate that ARB_DISABLE
|
||
|
* is not required while entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_control = 0;
|
||
|
}
|
||
|
if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) {
|
||
|
/*
|
||
|
* For all AMD Zen or newer CPUs that support C3, caches
|
||
|
* should not be flushed by software while entering C3
|
||
|
* type state. Set bm->check to 1 so that kernel doesn't
|
||
|
* need to execute cache flush operation.
|
||
|
*/
|
||
|
flags->bm_check = 1;
|
||
|
/*
|
||
|
* In current AMD C state implementation ARB_DIS is no longer
|
||
|
* used. So set bm_control to zero to indicate ARB_DIS is not
|
||
|
* required while entering C3 type state.
|
||
|
*/
|
||
|
flags->bm_control = 0;
|
||
|
}
|
||
|
}
|
||
|
EXPORT_SYMBOL(acpi_processor_power_init_bm_check);
|
||
|
|
||
|
/* The code below handles cstate entry with monitor-mwait pair on Intel*/
|
||
|
|
||
|
struct cstate_entry {
|
||
|
struct {
|
||
|
unsigned int eax;
|
||
|
unsigned int ecx;
|
||
|
} states[ACPI_PROCESSOR_MAX_POWER];
|
||
|
};
|
||
|
static struct cstate_entry __percpu *cpu_cstate_entry; /* per CPU ptr */
|
||
|
|
||
|
static short mwait_supported[ACPI_PROCESSOR_MAX_POWER];
|
||
|
|
||
|
#define NATIVE_CSTATE_BEYOND_HALT (2)
|
||
|
|
||
|
static long acpi_processor_ffh_cstate_probe_cpu(void *_cx)
|
||
|
{
|
||
|
struct acpi_processor_cx *cx = _cx;
|
||
|
long retval;
|
||
|
unsigned int eax, ebx, ecx, edx;
|
||
|
unsigned int edx_part;
|
||
|
unsigned int cstate_type; /* C-state type and not ACPI C-state type */
|
||
|
unsigned int num_cstate_subtype;
|
||
|
|
||
|
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
|
||
|
|
||
|
/* Check whether this particular cx_type (in CST) is supported or not */
|
||
|
cstate_type = ((cx->address >> MWAIT_SUBSTATE_SIZE) &
|
||
|
MWAIT_CSTATE_MASK) + 1;
|
||
|
edx_part = edx >> (cstate_type * MWAIT_SUBSTATE_SIZE);
|
||
|
num_cstate_subtype = edx_part & MWAIT_SUBSTATE_MASK;
|
||
|
|
||
|
retval = 0;
|
||
|
/* If the HW does not support any sub-states in this C-state */
|
||
|
if (num_cstate_subtype == 0) {
|
||
|
pr_warn(FW_BUG "ACPI MWAIT C-state 0x%x not supported by HW (0x%x)\n",
|
||
|
cx->address, edx_part);
|
||
|
retval = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
/* mwait ecx extensions INTERRUPT_BREAK should be supported for C2/C3 */
|
||
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
|
||
|
!(ecx & CPUID5_ECX_INTERRUPT_BREAK)) {
|
||
|
retval = -1;
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (!mwait_supported[cstate_type]) {
|
||
|
mwait_supported[cstate_type] = 1;
|
||
|
printk(KERN_DEBUG
|
||
|
"Monitor-Mwait will be used to enter C-%d state\n",
|
||
|
cx->type);
|
||
|
}
|
||
|
snprintf(cx->desc,
|
||
|
ACPI_CX_DESC_LEN, "ACPI FFH MWAIT 0x%x",
|
||
|
cx->address);
|
||
|
out:
|
||
|
return retval;
|
||
|
}
|
||
|
|
||
|
int acpi_processor_ffh_cstate_probe(unsigned int cpu,
|
||
|
struct acpi_processor_cx *cx, struct acpi_power_register *reg)
|
||
|
{
|
||
|
struct cstate_entry *percpu_entry;
|
||
|
struct cpuinfo_x86 *c = &cpu_data(cpu);
|
||
|
long retval;
|
||
|
|
||
|
if (!cpu_cstate_entry || c->cpuid_level < CPUID_MWAIT_LEAF)
|
||
|
return -1;
|
||
|
|
||
|
if (reg->bit_offset != NATIVE_CSTATE_BEYOND_HALT)
|
||
|
return -1;
|
||
|
|
||
|
percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
|
||
|
percpu_entry->states[cx->index].eax = 0;
|
||
|
percpu_entry->states[cx->index].ecx = 0;
|
||
|
|
||
|
/* Make sure we are running on right CPU */
|
||
|
|
||
|
retval = call_on_cpu(cpu, acpi_processor_ffh_cstate_probe_cpu, cx,
|
||
|
false);
|
||
|
if (retval == 0) {
|
||
|
/* Use the hint in CST */
|
||
|
percpu_entry->states[cx->index].eax = cx->address;
|
||
|
percpu_entry->states[cx->index].ecx = MWAIT_ECX_INTERRUPT_BREAK;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* For _CST FFH on Intel, if GAS.access_size bit 1 is cleared,
|
||
|
* then we should skip checking BM_STS for this C-state.
|
||
|
* ref: "Intel Processor Vendor-Specific ACPI Interface Specification"
|
||
|
*/
|
||
|
if ((c->x86_vendor == X86_VENDOR_INTEL) && !(reg->access_size & 0x2))
|
||
|
cx->bm_sts_skip = 1;
|
||
|
|
||
|
return retval;
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_probe);
|
||
|
|
||
|
void __cpuidle acpi_processor_ffh_cstate_enter(struct acpi_processor_cx *cx)
|
||
|
{
|
||
|
unsigned int cpu = smp_processor_id();
|
||
|
struct cstate_entry *percpu_entry;
|
||
|
|
||
|
percpu_entry = per_cpu_ptr(cpu_cstate_entry, cpu);
|
||
|
mwait_idle_with_hints(percpu_entry->states[cx->index].eax,
|
||
|
percpu_entry->states[cx->index].ecx);
|
||
|
}
|
||
|
EXPORT_SYMBOL_GPL(acpi_processor_ffh_cstate_enter);
|
||
|
|
||
|
static int __init ffh_cstate_init(void)
|
||
|
{
|
||
|
struct cpuinfo_x86 *c = &boot_cpu_data;
|
||
|
|
||
|
if (c->x86_vendor != X86_VENDOR_INTEL &&
|
||
|
c->x86_vendor != X86_VENDOR_AMD &&
|
||
|
c->x86_vendor != X86_VENDOR_HYGON)
|
||
|
return -1;
|
||
|
|
||
|
cpu_cstate_entry = alloc_percpu(struct cstate_entry);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void __exit ffh_cstate_exit(void)
|
||
|
{
|
||
|
free_percpu(cpu_cstate_entry);
|
||
|
cpu_cstate_entry = NULL;
|
||
|
}
|
||
|
|
||
|
arch_initcall(ffh_cstate_init);
|
||
|
__exitcall(ffh_cstate_exit);
|