linux-zen-desktop/drivers/gpu/drm/amd/amdkfd/kfd_doorbell.c

323 lines
9.4 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include "kfd_priv.h"
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/slab.h>
#include <linux/io.h>
#include <linux/idr.h>
/*
* This extension supports a kernel level doorbells management for the
* kernel queues using the first doorbell page reserved for the kernel.
*/
/*
* Each device exposes a doorbell aperture, a PCI MMIO aperture that
* receives 32-bit writes that are passed to queues as wptr values.
* The doorbells are intended to be written by applications as part
* of queueing work on user-mode queues.
* We assign doorbells to applications in PAGE_SIZE-sized and aligned chunks.
* We map the doorbell address space into user-mode when a process creates
* its first queue on each device.
* Although the mapping is done by KFD, it is equivalent to an mmap of
* the /dev/kfd with the particular device encoded in the mmap offset.
* There will be other uses for mmap of /dev/kfd, so only a range of
* offsets (KFD_MMAP_DOORBELL_START-END) is used for doorbells.
*/
/* # of doorbell bytes allocated for each process. */
size_t kfd_doorbell_process_slice(struct kfd_dev *kfd)
{
if (!kfd->shared_resources.enable_mes)
return roundup(kfd->device_info.doorbell_size *
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
PAGE_SIZE);
else
return amdgpu_mes_doorbell_process_slice(
(struct amdgpu_device *)kfd->adev);
}
/* Doorbell calculations for device init. */
int kfd_doorbell_init(struct kfd_dev *kfd)
{
size_t doorbell_start_offset;
size_t doorbell_aperture_size;
size_t doorbell_process_limit;
/*
* With MES enabled, just set the doorbell base as it is needed
* to calculate doorbell physical address.
*/
if (kfd->shared_resources.enable_mes) {
kfd->doorbell_base =
kfd->shared_resources.doorbell_physical_address;
return 0;
}
/*
* We start with calculations in bytes because the input data might
* only be byte-aligned.
* Only after we have done the rounding can we assume any alignment.
*/
doorbell_start_offset =
roundup(kfd->shared_resources.doorbell_start_offset,
kfd_doorbell_process_slice(kfd));
doorbell_aperture_size =
rounddown(kfd->shared_resources.doorbell_aperture_size,
kfd_doorbell_process_slice(kfd));
if (doorbell_aperture_size > doorbell_start_offset)
doorbell_process_limit =
(doorbell_aperture_size - doorbell_start_offset) /
kfd_doorbell_process_slice(kfd);
else
return -ENOSPC;
if (!kfd->max_doorbell_slices ||
doorbell_process_limit < kfd->max_doorbell_slices)
kfd->max_doorbell_slices = doorbell_process_limit;
kfd->doorbell_base = kfd->shared_resources.doorbell_physical_address +
doorbell_start_offset;
kfd->doorbell_base_dw_offset = doorbell_start_offset / sizeof(u32);
kfd->doorbell_kernel_ptr = ioremap(kfd->doorbell_base,
kfd_doorbell_process_slice(kfd));
if (!kfd->doorbell_kernel_ptr)
return -ENOMEM;
pr_debug("Doorbell initialization:\n");
pr_debug("doorbell base == 0x%08lX\n",
(uintptr_t)kfd->doorbell_base);
pr_debug("doorbell_base_dw_offset == 0x%08lX\n",
kfd->doorbell_base_dw_offset);
pr_debug("doorbell_process_limit == 0x%08lX\n",
doorbell_process_limit);
pr_debug("doorbell_kernel_offset == 0x%08lX\n",
(uintptr_t)kfd->doorbell_base);
pr_debug("doorbell aperture size == 0x%08lX\n",
kfd->shared_resources.doorbell_aperture_size);
pr_debug("doorbell kernel address == %p\n", kfd->doorbell_kernel_ptr);
return 0;
}
void kfd_doorbell_fini(struct kfd_dev *kfd)
{
if (kfd->doorbell_kernel_ptr)
iounmap(kfd->doorbell_kernel_ptr);
}
int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
struct vm_area_struct *vma)
{
phys_addr_t address;
struct kfd_process_device *pdd;
/*
* For simplicitly we only allow mapping of the entire doorbell
* allocation of a single device & process.
*/
if (vma->vm_end - vma->vm_start != kfd_doorbell_process_slice(dev))
return -EINVAL;
pdd = kfd_get_process_device_data(dev, process);
if (!pdd)
return -EINVAL;
/* Calculate physical address of doorbell */
address = kfd_get_process_doorbells(pdd);
if (!address)
return -ENOMEM;
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
VM_DONTDUMP | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
pr_debug("Mapping doorbell page\n"
" target user address == 0x%08llX\n"
" physical address == 0x%08llX\n"
" vm_flags == 0x%04lX\n"
" size == 0x%04lX\n",
(unsigned long long) vma->vm_start, address, vma->vm_flags,
kfd_doorbell_process_slice(dev));
return io_remap_pfn_range(vma,
vma->vm_start,
address >> PAGE_SHIFT,
kfd_doorbell_process_slice(dev),
vma->vm_page_prot);
}
/* get kernel iomem pointer for a doorbell */
void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
unsigned int *doorbell_off)
{
u32 inx;
mutex_lock(&kfd->doorbell_mutex);
inx = find_first_zero_bit(kfd->doorbell_available_index,
KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
__set_bit(inx, kfd->doorbell_available_index);
mutex_unlock(&kfd->doorbell_mutex);
if (inx >= KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
return NULL;
inx *= kfd->device_info.doorbell_size / sizeof(u32);
/*
* Calculating the kernel doorbell offset using the first
* doorbell page.
*/
*doorbell_off = kfd->doorbell_base_dw_offset + inx;
pr_debug("Get kernel queue doorbell\n"
" doorbell offset == 0x%08X\n"
" doorbell index == 0x%x\n",
*doorbell_off, inx);
return kfd->doorbell_kernel_ptr + inx;
}
void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr)
{
unsigned int inx;
inx = (unsigned int)(db_addr - kfd->doorbell_kernel_ptr)
* sizeof(u32) / kfd->device_info.doorbell_size;
mutex_lock(&kfd->doorbell_mutex);
__clear_bit(inx, kfd->doorbell_available_index);
mutex_unlock(&kfd->doorbell_mutex);
}
void write_kernel_doorbell(void __iomem *db, u32 value)
{
if (db) {
writel(value, db);
pr_debug("Writing %d to doorbell address %p\n", value, db);
}
}
void write_kernel_doorbell64(void __iomem *db, u64 value)
{
if (db) {
WARN(((unsigned long)db & 7) != 0,
"Unaligned 64-bit doorbell");
writeq(value, (u64 __iomem *)db);
pr_debug("writing %llu to doorbell address %p\n", value, db);
}
}
unsigned int kfd_get_doorbell_dw_offset_in_bar(struct kfd_dev *kfd,
struct kfd_process_device *pdd,
unsigned int doorbell_id)
{
/*
* doorbell_base_dw_offset accounts for doorbells taken by KGD.
* index * kfd_doorbell_process_slice/sizeof(u32) adjusts to
* the process's doorbells. The offset returned is in dword
* units regardless of the ASIC-dependent doorbell size.
*/
if (!kfd->shared_resources.enable_mes)
return kfd->doorbell_base_dw_offset +
pdd->doorbell_index
* kfd_doorbell_process_slice(kfd) / sizeof(u32) +
doorbell_id *
kfd->device_info.doorbell_size / sizeof(u32);
else
return amdgpu_mes_get_doorbell_dw_offset_in_bar(
(struct amdgpu_device *)kfd->adev,
pdd->doorbell_index, doorbell_id);
}
uint64_t kfd_get_number_elems(struct kfd_dev *kfd)
{
uint64_t num_of_elems = (kfd->shared_resources.doorbell_aperture_size -
kfd->shared_resources.doorbell_start_offset) /
kfd_doorbell_process_slice(kfd) + 1;
return num_of_elems;
}
phys_addr_t kfd_get_process_doorbells(struct kfd_process_device *pdd)
{
if (!pdd->doorbell_index) {
int r = kfd_alloc_process_doorbells(pdd->dev,
&pdd->doorbell_index);
if (r < 0)
return 0;
}
return pdd->dev->doorbell_base +
pdd->doorbell_index * kfd_doorbell_process_slice(pdd->dev);
}
int kfd_alloc_process_doorbells(struct kfd_dev *kfd, unsigned int *doorbell_index)
{
int r = 0;
if (!kfd->shared_resources.enable_mes)
r = ida_simple_get(&kfd->doorbell_ida, 1,
kfd->max_doorbell_slices, GFP_KERNEL);
else
r = amdgpu_mes_alloc_process_doorbells(
(struct amdgpu_device *)kfd->adev,
doorbell_index);
if (r > 0)
*doorbell_index = r;
if (r < 0)
pr_err("Failed to allocate process doorbells\n");
return r;
}
void kfd_free_process_doorbells(struct kfd_dev *kfd, unsigned int doorbell_index)
{
if (doorbell_index) {
if (!kfd->shared_resources.enable_mes)
ida_simple_remove(&kfd->doorbell_ida, doorbell_index);
else
amdgpu_mes_free_process_doorbells(
(struct amdgpu_device *)kfd->adev,
doorbell_index);
}
}