linux-zen-desktop/drivers/gpu/drm/i915/gt/intel_gt_irq.c

539 lines
16 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: MIT
/*
* Copyright © 2019 Intel Corporation
*/
#include <linux/sched/clock.h>
#include "i915_drv.h"
#include "i915_irq.h"
#include "intel_breadcrumbs.h"
#include "intel_gt.h"
#include "intel_gt_irq.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
#include "intel_uncore.h"
#include "intel_rps.h"
#include "pxp/intel_pxp_irq.h"
static void guc_irq_handler(struct intel_guc *guc, u16 iir)
{
if (unlikely(!guc->interrupts.enabled))
return;
if (iir & GUC_INTR_GUC2HOST)
intel_guc_to_host_event_handler(guc);
}
static u32
gen11_gt_engine_identity(struct intel_gt *gt,
const unsigned int bank, const unsigned int bit)
{
void __iomem * const regs = gt->uncore->regs;
u32 timeout_ts;
u32 ident;
lockdep_assert_held(gt->irq_lock);
raw_reg_write(regs, GEN11_IIR_REG_SELECTOR(bank), BIT(bit));
/*
* NB: Specs do not specify how long to spin wait,
* so we do ~100us as an educated guess.
*/
timeout_ts = (local_clock() >> 10) + 100;
do {
ident = raw_reg_read(regs, GEN11_INTR_IDENTITY_REG(bank));
} while (!(ident & GEN11_INTR_DATA_VALID) &&
!time_after32(local_clock() >> 10, timeout_ts));
if (unlikely(!(ident & GEN11_INTR_DATA_VALID))) {
gt_err(gt, "INTR_IDENTITY_REG%u:%u 0x%08x not valid!\n",
bank, bit, ident);
return 0;
}
raw_reg_write(regs, GEN11_INTR_IDENTITY_REG(bank),
GEN11_INTR_DATA_VALID);
return ident;
}
static void
gen11_other_irq_handler(struct intel_gt *gt, const u8 instance,
const u16 iir)
{
struct intel_gt *media_gt = gt->i915->media_gt;
if (instance == OTHER_GUC_INSTANCE)
return guc_irq_handler(&gt->uc.guc, iir);
if (instance == OTHER_MEDIA_GUC_INSTANCE && media_gt)
return guc_irq_handler(&media_gt->uc.guc, iir);
if (instance == OTHER_GTPM_INSTANCE)
return gen11_rps_irq_handler(&gt->rps, iir);
if (instance == OTHER_MEDIA_GTPM_INSTANCE && media_gt)
return gen11_rps_irq_handler(&media_gt->rps, iir);
if (instance == OTHER_KCR_INSTANCE)
return intel_pxp_irq_handler(gt->i915->pxp, iir);
if (instance == OTHER_GSC_INSTANCE)
return intel_gsc_irq_handler(gt, iir);
WARN_ONCE(1, "unhandled other interrupt instance=0x%x, iir=0x%x\n",
instance, iir);
}
static struct intel_gt *pick_gt(struct intel_gt *gt, u8 class, u8 instance)
{
struct intel_gt *media_gt = gt->i915->media_gt;
/* we expect the non-media gt to be passed in */
GEM_BUG_ON(gt == media_gt);
if (!media_gt)
return gt;
switch (class) {
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
return media_gt;
case OTHER_CLASS:
if (instance == OTHER_GSC_INSTANCE && HAS_ENGINE(media_gt, GSC0))
return media_gt;
fallthrough;
default:
return gt;
}
}
static void
gen11_gt_identity_handler(struct intel_gt *gt, const u32 identity)
{
const u8 class = GEN11_INTR_ENGINE_CLASS(identity);
const u8 instance = GEN11_INTR_ENGINE_INSTANCE(identity);
const u16 intr = GEN11_INTR_ENGINE_INTR(identity);
if (unlikely(!intr))
return;
/*
* Platforms with standalone media have the media and GSC engines in
* another GT.
*/
gt = pick_gt(gt, class, instance);
if (class <= MAX_ENGINE_CLASS && instance <= MAX_ENGINE_INSTANCE) {
struct intel_engine_cs *engine = gt->engine_class[class][instance];
if (engine)
return intel_engine_cs_irq(engine, intr);
}
if (class == OTHER_CLASS)
return gen11_other_irq_handler(gt, instance, intr);
WARN_ONCE(1, "unknown interrupt class=0x%x, instance=0x%x, intr=0x%x\n",
class, instance, intr);
}
static void
gen11_gt_bank_handler(struct intel_gt *gt, const unsigned int bank)
{
void __iomem * const regs = gt->uncore->regs;
unsigned long intr_dw;
unsigned int bit;
lockdep_assert_held(gt->irq_lock);
intr_dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
for_each_set_bit(bit, &intr_dw, 32) {
const u32 ident = gen11_gt_engine_identity(gt, bank, bit);
gen11_gt_identity_handler(gt, ident);
}
/* Clear must be after shared has been served for engine */
raw_reg_write(regs, GEN11_GT_INTR_DW(bank), intr_dw);
}
void gen11_gt_irq_handler(struct intel_gt *gt, const u32 master_ctl)
{
unsigned int bank;
spin_lock(gt->irq_lock);
for (bank = 0; bank < 2; bank++) {
if (master_ctl & GEN11_GT_DW_IRQ(bank))
gen11_gt_bank_handler(gt, bank);
}
spin_unlock(gt->irq_lock);
}
bool gen11_gt_reset_one_iir(struct intel_gt *gt,
const unsigned int bank, const unsigned int bit)
{
void __iomem * const regs = gt->uncore->regs;
u32 dw;
lockdep_assert_held(gt->irq_lock);
dw = raw_reg_read(regs, GEN11_GT_INTR_DW(bank));
if (dw & BIT(bit)) {
/*
* According to the BSpec, DW_IIR bits cannot be cleared without
* first servicing the Selector & Shared IIR registers.
*/
gen11_gt_engine_identity(gt, bank, bit);
/*
* We locked GT INT DW by reading it. If we want to (try
* to) recover from this successfully, we need to clear
* our bit, otherwise we are locking the register for
* everybody.
*/
raw_reg_write(regs, GEN11_GT_INTR_DW(bank), BIT(bit));
return true;
}
return false;
}
void gen11_gt_irq_reset(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
/* Disable RCS, BCS, VCS and VECS class engines. */
intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, 0);
intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, 0);
if (CCS_MASK(gt))
intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, 0);
if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0))
intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, 0);
/* Restore masks irqs on RCS, BCS, VCS and VECS engines. */
intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~0);
if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2))
intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~0);
if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4))
intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~0);
if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6))
intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~0);
if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8))
intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~0);
if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5))
intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~0);
if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7))
intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~0);
if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3))
intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~0);
if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1))
intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~0);
if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3))
intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~0);
if (HAS_HECI_GSC(gt->i915) || HAS_ENGINE(gt, GSC0))
intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
intel_uncore_write(uncore, GEN11_GUC_SG_INTR_MASK, ~0);
intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_ENABLE, 0);
intel_uncore_write(uncore, GEN11_CRYPTO_RSVD_INTR_MASK, ~0);
}
void gen11_gt_irq_postinstall(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
u32 irqs = GT_RENDER_USER_INTERRUPT;
u32 guc_mask = intel_uc_wants_guc(&gt->uc) ? GUC_INTR_GUC2HOST : 0;
u32 gsc_mask = 0;
u32 dmask;
u32 smask;
if (!intel_uc_wants_guc_submission(&gt->uc))
irqs |= GT_CS_MASTER_ERROR_INTERRUPT |
GT_CONTEXT_SWITCH_INTERRUPT |
GT_WAIT_SEMAPHORE_INTERRUPT;
dmask = irqs << 16 | irqs;
smask = irqs << 16;
if (HAS_ENGINE(gt, GSC0))
gsc_mask = irqs;
else if (HAS_HECI_GSC(gt->i915))
gsc_mask = GSC_IRQ_INTF(0) | GSC_IRQ_INTF(1);
BUILD_BUG_ON(irqs & 0xffff0000);
/* Enable RCS, BCS, VCS and VECS class interrupts. */
intel_uncore_write(uncore, GEN11_RENDER_COPY_INTR_ENABLE, dmask);
intel_uncore_write(uncore, GEN11_VCS_VECS_INTR_ENABLE, dmask);
if (CCS_MASK(gt))
intel_uncore_write(uncore, GEN12_CCS_RSVD_INTR_ENABLE, smask);
if (gsc_mask)
intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_ENABLE, gsc_mask);
/* Unmask irqs on RCS, BCS, VCS and VECS engines. */
intel_uncore_write(uncore, GEN11_RCS0_RSVD_INTR_MASK, ~smask);
intel_uncore_write(uncore, GEN11_BCS_RSVD_INTR_MASK, ~smask);
if (HAS_ENGINE(gt, BCS1) || HAS_ENGINE(gt, BCS2))
intel_uncore_write(uncore, XEHPC_BCS1_BCS2_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, BCS3) || HAS_ENGINE(gt, BCS4))
intel_uncore_write(uncore, XEHPC_BCS3_BCS4_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, BCS5) || HAS_ENGINE(gt, BCS6))
intel_uncore_write(uncore, XEHPC_BCS5_BCS6_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, BCS7) || HAS_ENGINE(gt, BCS8))
intel_uncore_write(uncore, XEHPC_BCS7_BCS8_INTR_MASK, ~dmask);
intel_uncore_write(uncore, GEN11_VCS0_VCS1_INTR_MASK, ~dmask);
intel_uncore_write(uncore, GEN11_VCS2_VCS3_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, VCS4) || HAS_ENGINE(gt, VCS5))
intel_uncore_write(uncore, GEN12_VCS4_VCS5_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, VCS6) || HAS_ENGINE(gt, VCS7))
intel_uncore_write(uncore, GEN12_VCS6_VCS7_INTR_MASK, ~dmask);
intel_uncore_write(uncore, GEN11_VECS0_VECS1_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, VECS2) || HAS_ENGINE(gt, VECS3))
intel_uncore_write(uncore, GEN12_VECS2_VECS3_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, CCS0) || HAS_ENGINE(gt, CCS1))
intel_uncore_write(uncore, GEN12_CCS0_CCS1_INTR_MASK, ~dmask);
if (HAS_ENGINE(gt, CCS2) || HAS_ENGINE(gt, CCS3))
intel_uncore_write(uncore, GEN12_CCS2_CCS3_INTR_MASK, ~dmask);
if (gsc_mask)
intel_uncore_write(uncore, GEN11_GUNIT_CSME_INTR_MASK, ~gsc_mask);
if (guc_mask) {
/* the enable bit is common for both GTs but the masks are separate */
u32 mask = gt->type == GT_MEDIA ?
REG_FIELD_PREP(ENGINE0_MASK, guc_mask) :
REG_FIELD_PREP(ENGINE1_MASK, guc_mask);
intel_uncore_write(uncore, GEN11_GUC_SG_INTR_ENABLE,
REG_FIELD_PREP(ENGINE1_MASK, guc_mask));
/* we might not be the first GT to write this reg */
intel_uncore_rmw(uncore, MTL_GUC_MGUC_INTR_MASK, mask, 0);
}
/*
* RPS interrupts will get enabled/disabled on demand when RPS itself
* is enabled/disabled.
*/
gt->pm_ier = 0x0;
gt->pm_imr = ~gt->pm_ier;
intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_ENABLE, 0);
intel_uncore_write(uncore, GEN11_GPM_WGBOXPERF_INTR_MASK, ~0);
}
void gen5_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0],
gt_iir);
if (gt_iir & ILK_BSD_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0],
gt_iir);
}
static void gen7_parity_error_irq_handler(struct intel_gt *gt, u32 iir)
{
if (!HAS_L3_DPF(gt->i915))
return;
spin_lock(gt->irq_lock);
gen5_gt_disable_irq(gt, GT_PARITY_ERROR(gt->i915));
spin_unlock(gt->irq_lock);
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
gt->i915->l3_parity.which_slice |= 1 << 1;
if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
gt->i915->l3_parity.which_slice |= 1 << 0;
schedule_work(&gt->i915->l3_parity.error_work);
}
void gen6_gt_irq_handler(struct intel_gt *gt, u32 gt_iir)
{
if (gt_iir & GT_RENDER_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0],
gt_iir);
if (gt_iir & GT_BSD_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0],
gt_iir >> 12);
if (gt_iir & GT_BLT_USER_INTERRUPT)
intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0],
gt_iir >> 22);
if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
GT_BSD_CS_ERROR_INTERRUPT |
GT_CS_MASTER_ERROR_INTERRUPT))
gt_dbg(gt, "Command parser error, gt_iir 0x%08x\n", gt_iir);
if (gt_iir & GT_PARITY_ERROR(gt->i915))
gen7_parity_error_irq_handler(gt, gt_iir);
}
void gen8_gt_irq_handler(struct intel_gt *gt, u32 master_ctl)
{
void __iomem * const regs = gt->uncore->regs;
u32 iir;
if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
iir = raw_reg_read(regs, GEN8_GT_IIR(0));
if (likely(iir)) {
intel_engine_cs_irq(gt->engine_class[RENDER_CLASS][0],
iir >> GEN8_RCS_IRQ_SHIFT);
intel_engine_cs_irq(gt->engine_class[COPY_ENGINE_CLASS][0],
iir >> GEN8_BCS_IRQ_SHIFT);
raw_reg_write(regs, GEN8_GT_IIR(0), iir);
}
}
if (master_ctl & (GEN8_GT_VCS0_IRQ | GEN8_GT_VCS1_IRQ)) {
iir = raw_reg_read(regs, GEN8_GT_IIR(1));
if (likely(iir)) {
intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][0],
iir >> GEN8_VCS0_IRQ_SHIFT);
intel_engine_cs_irq(gt->engine_class[VIDEO_DECODE_CLASS][1],
iir >> GEN8_VCS1_IRQ_SHIFT);
raw_reg_write(regs, GEN8_GT_IIR(1), iir);
}
}
if (master_ctl & GEN8_GT_VECS_IRQ) {
iir = raw_reg_read(regs, GEN8_GT_IIR(3));
if (likely(iir)) {
intel_engine_cs_irq(gt->engine_class[VIDEO_ENHANCEMENT_CLASS][0],
iir >> GEN8_VECS_IRQ_SHIFT);
raw_reg_write(regs, GEN8_GT_IIR(3), iir);
}
}
if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
iir = raw_reg_read(regs, GEN8_GT_IIR(2));
if (likely(iir)) {
gen6_rps_irq_handler(&gt->rps, iir);
guc_irq_handler(&gt->uc.guc, iir >> 16);
raw_reg_write(regs, GEN8_GT_IIR(2), iir);
}
}
}
void gen8_gt_irq_reset(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
GEN8_IRQ_RESET_NDX(uncore, GT, 0);
GEN8_IRQ_RESET_NDX(uncore, GT, 1);
GEN8_IRQ_RESET_NDX(uncore, GT, 2);
GEN8_IRQ_RESET_NDX(uncore, GT, 3);
}
void gen8_gt_irq_postinstall(struct intel_gt *gt)
{
/* These are interrupts we'll toggle with the ring mask register */
const u32 irqs =
GT_CS_MASTER_ERROR_INTERRUPT |
GT_RENDER_USER_INTERRUPT |
GT_CONTEXT_SWITCH_INTERRUPT |
GT_WAIT_SEMAPHORE_INTERRUPT;
const u32 gt_interrupts[] = {
irqs << GEN8_RCS_IRQ_SHIFT | irqs << GEN8_BCS_IRQ_SHIFT,
irqs << GEN8_VCS0_IRQ_SHIFT | irqs << GEN8_VCS1_IRQ_SHIFT,
0,
irqs << GEN8_VECS_IRQ_SHIFT,
};
struct intel_uncore *uncore = gt->uncore;
gt->pm_ier = 0x0;
gt->pm_imr = ~gt->pm_ier;
GEN8_IRQ_INIT_NDX(uncore, GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
GEN8_IRQ_INIT_NDX(uncore, GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
/*
* RPS interrupts will get enabled/disabled on demand when RPS itself
* is enabled/disabled. Same wil be the case for GuC interrupts.
*/
GEN8_IRQ_INIT_NDX(uncore, GT, 2, gt->pm_imr, gt->pm_ier);
GEN8_IRQ_INIT_NDX(uncore, GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
}
static void gen5_gt_update_irq(struct intel_gt *gt,
u32 interrupt_mask,
u32 enabled_irq_mask)
{
lockdep_assert_held(gt->irq_lock);
GEM_BUG_ON(enabled_irq_mask & ~interrupt_mask);
gt->gt_imr &= ~interrupt_mask;
gt->gt_imr |= (~enabled_irq_mask & interrupt_mask);
intel_uncore_write(gt->uncore, GTIMR, gt->gt_imr);
}
void gen5_gt_enable_irq(struct intel_gt *gt, u32 mask)
{
gen5_gt_update_irq(gt, mask, mask);
intel_uncore_posting_read_fw(gt->uncore, GTIMR);
}
void gen5_gt_disable_irq(struct intel_gt *gt, u32 mask)
{
gen5_gt_update_irq(gt, mask, 0);
}
void gen5_gt_irq_reset(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
GEN3_IRQ_RESET(uncore, GT);
if (GRAPHICS_VER(gt->i915) >= 6)
GEN3_IRQ_RESET(uncore, GEN6_PM);
}
void gen5_gt_irq_postinstall(struct intel_gt *gt)
{
struct intel_uncore *uncore = gt->uncore;
u32 pm_irqs = 0;
u32 gt_irqs = 0;
gt->gt_imr = ~0;
if (HAS_L3_DPF(gt->i915)) {
/* L3 parity interrupt is always unmasked. */
gt->gt_imr = ~GT_PARITY_ERROR(gt->i915);
gt_irqs |= GT_PARITY_ERROR(gt->i915);
}
gt_irqs |= GT_RENDER_USER_INTERRUPT;
if (GRAPHICS_VER(gt->i915) == 5)
gt_irqs |= ILK_BSD_USER_INTERRUPT;
else
gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
GEN3_IRQ_INIT(uncore, GT, gt->gt_imr, gt_irqs);
if (GRAPHICS_VER(gt->i915) >= 6) {
/*
* RPS interrupts will get enabled/disabled on demand when RPS
* itself is enabled/disabled.
*/
if (HAS_ENGINE(gt, VECS0)) {
pm_irqs |= PM_VEBOX_USER_INTERRUPT;
gt->pm_ier |= PM_VEBOX_USER_INTERRUPT;
}
gt->pm_imr = 0xffffffff;
GEN3_IRQ_INIT(uncore, GEN6_PM, gt->pm_imr, pm_irqs);
}
}