546 lines
15 KiB
C
546 lines
15 KiB
C
|
// SPDX-License-Identifier: MIT
|
||
|
/*
|
||
|
* Copyright © 2016-2019 Intel Corporation
|
||
|
*/
|
||
|
|
||
|
#include <linux/types.h>
|
||
|
|
||
|
#include "gt/intel_gt.h"
|
||
|
#include "intel_guc_reg.h"
|
||
|
#include "intel_huc.h"
|
||
|
#include "i915_drv.h"
|
||
|
|
||
|
#include <linux/device/bus.h>
|
||
|
#include <linux/mei_aux.h>
|
||
|
|
||
|
/**
|
||
|
* DOC: HuC
|
||
|
*
|
||
|
* The HuC is a dedicated microcontroller for usage in media HEVC (High
|
||
|
* Efficiency Video Coding) operations. Userspace can directly use the firmware
|
||
|
* capabilities by adding HuC specific commands to batch buffers.
|
||
|
*
|
||
|
* The kernel driver is only responsible for loading the HuC firmware and
|
||
|
* triggering its security authentication, which is performed by the GuC on
|
||
|
* older platforms and by the GSC on newer ones. For the GuC to correctly
|
||
|
* perform the authentication, the HuC binary must be loaded before the GuC one.
|
||
|
* Loading the HuC is optional; however, not using the HuC might negatively
|
||
|
* impact power usage and/or performance of media workloads, depending on the
|
||
|
* use-cases.
|
||
|
* HuC must be reloaded on events that cause the WOPCM to lose its contents
|
||
|
* (S3/S4, FLR); GuC-authenticated HuC must also be reloaded on GuC/GT reset,
|
||
|
* while GSC-managed HuC will survive that.
|
||
|
*
|
||
|
* See https://github.com/intel/media-driver for the latest details on HuC
|
||
|
* functionality.
|
||
|
*/
|
||
|
|
||
|
/**
|
||
|
* DOC: HuC Memory Management
|
||
|
*
|
||
|
* Similarly to the GuC, the HuC can't do any memory allocations on its own,
|
||
|
* with the difference being that the allocations for HuC usage are handled by
|
||
|
* the userspace driver instead of the kernel one. The HuC accesses the memory
|
||
|
* via the PPGTT belonging to the context loaded on the VCS executing the
|
||
|
* HuC-specific commands.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* MEI-GSC load is an async process. The probing of the exposed aux device
|
||
|
* (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
|
||
|
* on when the kernel schedules it. Unless something goes terribly wrong, we're
|
||
|
* guaranteed for this to happen during boot, so the big timeout is a safety net
|
||
|
* that we never expect to need.
|
||
|
* MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
|
||
|
* and/or reset, this can take longer. Note that the kernel might schedule
|
||
|
* other work between the i915 init/resume and the MEI one, which can add to
|
||
|
* the delay.
|
||
|
*/
|
||
|
#define GSC_INIT_TIMEOUT_MS 10000
|
||
|
#define PXP_INIT_TIMEOUT_MS 5000
|
||
|
|
||
|
static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
|
||
|
enum i915_sw_fence_notify state)
|
||
|
{
|
||
|
return NOTIFY_DONE;
|
||
|
}
|
||
|
|
||
|
static void __delayed_huc_load_complete(struct intel_huc *huc)
|
||
|
{
|
||
|
if (!i915_sw_fence_done(&huc->delayed_load.fence))
|
||
|
i915_sw_fence_complete(&huc->delayed_load.fence);
|
||
|
}
|
||
|
|
||
|
static void delayed_huc_load_complete(struct intel_huc *huc)
|
||
|
{
|
||
|
hrtimer_cancel(&huc->delayed_load.timer);
|
||
|
__delayed_huc_load_complete(huc);
|
||
|
}
|
||
|
|
||
|
static void __gsc_init_error(struct intel_huc *huc)
|
||
|
{
|
||
|
huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
|
||
|
__delayed_huc_load_complete(huc);
|
||
|
}
|
||
|
|
||
|
static void gsc_init_error(struct intel_huc *huc)
|
||
|
{
|
||
|
hrtimer_cancel(&huc->delayed_load.timer);
|
||
|
__gsc_init_error(huc);
|
||
|
}
|
||
|
|
||
|
static void gsc_init_done(struct intel_huc *huc)
|
||
|
{
|
||
|
hrtimer_cancel(&huc->delayed_load.timer);
|
||
|
|
||
|
/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
|
||
|
huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
|
||
|
if (!i915_sw_fence_done(&huc->delayed_load.fence))
|
||
|
hrtimer_start(&huc->delayed_load.timer,
|
||
|
ms_to_ktime(PXP_INIT_TIMEOUT_MS),
|
||
|
HRTIMER_MODE_REL);
|
||
|
}
|
||
|
|
||
|
static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
|
||
|
{
|
||
|
struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);
|
||
|
|
||
|
if (!intel_huc_is_authenticated(huc)) {
|
||
|
if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
|
||
|
drm_notice(&huc_to_gt(huc)->i915->drm,
|
||
|
"timed out waiting for MEI GSC init to load HuC\n");
|
||
|
else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
|
||
|
drm_notice(&huc_to_gt(huc)->i915->drm,
|
||
|
"timed out waiting for MEI PXP init to load HuC\n");
|
||
|
else
|
||
|
MISSING_CASE(huc->delayed_load.status);
|
||
|
|
||
|
__gsc_init_error(huc);
|
||
|
}
|
||
|
|
||
|
return HRTIMER_NORESTART;
|
||
|
}
|
||
|
|
||
|
static void huc_delayed_load_start(struct intel_huc *huc)
|
||
|
{
|
||
|
ktime_t delay;
|
||
|
|
||
|
GEM_BUG_ON(intel_huc_is_authenticated(huc));
|
||
|
|
||
|
/*
|
||
|
* On resume we don't have to wait for MEI-GSC to be re-probed, but we
|
||
|
* do need to wait for MEI-PXP to reset & re-bind
|
||
|
*/
|
||
|
switch (huc->delayed_load.status) {
|
||
|
case INTEL_HUC_WAITING_ON_GSC:
|
||
|
delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
|
||
|
break;
|
||
|
case INTEL_HUC_WAITING_ON_PXP:
|
||
|
delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
|
||
|
break;
|
||
|
default:
|
||
|
gsc_init_error(huc);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This fence is always complete unless we're waiting for the
|
||
|
* GSC device to come up to load the HuC. We arm the fence here
|
||
|
* and complete it when we confirm that the HuC is loaded from
|
||
|
* the PXP bind callback.
|
||
|
*/
|
||
|
GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
|
||
|
i915_sw_fence_fini(&huc->delayed_load.fence);
|
||
|
i915_sw_fence_reinit(&huc->delayed_load.fence);
|
||
|
i915_sw_fence_await(&huc->delayed_load.fence);
|
||
|
i915_sw_fence_commit(&huc->delayed_load.fence);
|
||
|
|
||
|
hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
|
||
|
}
|
||
|
|
||
|
static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
|
||
|
{
|
||
|
struct device *dev = data;
|
||
|
struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
|
||
|
struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];
|
||
|
|
||
|
if (!intf->adev || &intf->adev->aux_dev.dev != dev)
|
||
|
return 0;
|
||
|
|
||
|
switch (action) {
|
||
|
case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
|
||
|
gsc_init_done(huc);
|
||
|
break;
|
||
|
|
||
|
case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
|
||
|
case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
|
||
|
drm_info(&huc_to_gt(huc)->i915->drm,
|
||
|
"mei driver not bound, disabling HuC load\n");
|
||
|
gsc_init_error(huc);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void intel_huc_register_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
|
||
|
{
|
||
|
int ret;
|
||
|
|
||
|
if (!intel_huc_is_loaded_by_gsc(huc))
|
||
|
return;
|
||
|
|
||
|
huc->delayed_load.nb.notifier_call = gsc_notifier;
|
||
|
ret = bus_register_notifier(bus, &huc->delayed_load.nb);
|
||
|
if (ret) {
|
||
|
drm_err(&huc_to_gt(huc)->i915->drm,
|
||
|
"failed to register GSC notifier\n");
|
||
|
huc->delayed_load.nb.notifier_call = NULL;
|
||
|
gsc_init_error(huc);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, struct bus_type *bus)
|
||
|
{
|
||
|
if (!huc->delayed_load.nb.notifier_call)
|
||
|
return;
|
||
|
|
||
|
delayed_huc_load_complete(huc);
|
||
|
|
||
|
bus_unregister_notifier(bus, &huc->delayed_load.nb);
|
||
|
huc->delayed_load.nb.notifier_call = NULL;
|
||
|
}
|
||
|
|
||
|
static void delayed_huc_load_init(struct intel_huc *huc)
|
||
|
{
|
||
|
/*
|
||
|
* Initialize fence to be complete as this is expected to be complete
|
||
|
* unless there is a delayed HuC load in progress.
|
||
|
*/
|
||
|
i915_sw_fence_init(&huc->delayed_load.fence,
|
||
|
sw_fence_dummy_notify);
|
||
|
i915_sw_fence_commit(&huc->delayed_load.fence);
|
||
|
|
||
|
hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
||
|
huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
|
||
|
}
|
||
|
|
||
|
static void delayed_huc_load_fini(struct intel_huc *huc)
|
||
|
{
|
||
|
/*
|
||
|
* the fence is initialized in init_early, so we need to clean it up
|
||
|
* even if HuC loading is off.
|
||
|
*/
|
||
|
delayed_huc_load_complete(huc);
|
||
|
i915_sw_fence_fini(&huc->delayed_load.fence);
|
||
|
}
|
||
|
|
||
|
int intel_huc_sanitize(struct intel_huc *huc)
|
||
|
{
|
||
|
delayed_huc_load_complete(huc);
|
||
|
intel_uc_fw_sanitize(&huc->fw);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static bool vcs_supported(struct intel_gt *gt)
|
||
|
{
|
||
|
intel_engine_mask_t mask = gt->info.engine_mask;
|
||
|
|
||
|
/*
|
||
|
* We reach here from i915_driver_early_probe for the primary GT before
|
||
|
* its engine mask is set, so we use the device info engine mask for it;
|
||
|
* this means we're not taking VCS fusing into account, but if the
|
||
|
* primary GT supports VCS engines we expect at least one of them to
|
||
|
* remain unfused so we're fine.
|
||
|
* For other GTs we expect the GT-specific mask to be set before we
|
||
|
* call this function.
|
||
|
*/
|
||
|
GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);
|
||
|
|
||
|
if (gt_is_root(gt))
|
||
|
mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
|
||
|
else
|
||
|
mask = gt->info.engine_mask;
|
||
|
|
||
|
return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
|
||
|
}
|
||
|
|
||
|
void intel_huc_init_early(struct intel_huc *huc)
|
||
|
{
|
||
|
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
|
||
|
intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC);
|
||
|
|
||
|
/*
|
||
|
* we always init the fence as already completed, even if HuC is not
|
||
|
* supported. This way we don't have to distinguish between HuC not
|
||
|
* supported/disabled or already loaded, and can focus on if the load
|
||
|
* is currently in progress (fence not complete) or not, which is what
|
||
|
* we care about for stalling userspace submissions.
|
||
|
*/
|
||
|
delayed_huc_load_init(huc);
|
||
|
|
||
|
if (!vcs_supported(gt)) {
|
||
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (GRAPHICS_VER(i915) >= 11) {
|
||
|
huc->status.reg = GEN11_HUC_KERNEL_LOAD_INFO;
|
||
|
huc->status.mask = HUC_LOAD_SUCCESSFUL;
|
||
|
huc->status.value = HUC_LOAD_SUCCESSFUL;
|
||
|
} else {
|
||
|
huc->status.reg = HUC_STATUS2;
|
||
|
huc->status.mask = HUC_FW_VERIFIED;
|
||
|
huc->status.value = HUC_FW_VERIFIED;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
|
||
|
static int check_huc_loading_mode(struct intel_huc *huc)
|
||
|
{
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
bool fw_needs_gsc = intel_huc_is_loaded_by_gsc(huc);
|
||
|
bool hw_uses_gsc = false;
|
||
|
|
||
|
/*
|
||
|
* The fuse for HuC load via GSC is only valid on platforms that have
|
||
|
* GuC deprivilege.
|
||
|
*/
|
||
|
if (HAS_GUC_DEPRIVILEGE(gt->i915))
|
||
|
hw_uses_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
|
||
|
GSC_LOADS_HUC;
|
||
|
|
||
|
if (fw_needs_gsc != hw_uses_gsc) {
|
||
|
drm_err(>->i915->drm,
|
||
|
"mismatch between HuC FW (%s) and HW (%s) load modes\n",
|
||
|
HUC_LOAD_MODE_STRING(fw_needs_gsc),
|
||
|
HUC_LOAD_MODE_STRING(hw_uses_gsc));
|
||
|
return -ENOEXEC;
|
||
|
}
|
||
|
|
||
|
/* make sure we can access the GSC via the mei driver if we need it */
|
||
|
if (!(IS_ENABLED(CONFIG_INTEL_MEI_PXP) && IS_ENABLED(CONFIG_INTEL_MEI_GSC)) &&
|
||
|
fw_needs_gsc) {
|
||
|
drm_info(>->i915->drm,
|
||
|
"Can't load HuC due to missing MEI modules\n");
|
||
|
return -EIO;
|
||
|
}
|
||
|
|
||
|
drm_dbg(>->i915->drm, "GSC loads huc=%s\n", str_yes_no(fw_needs_gsc));
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int intel_huc_init(struct intel_huc *huc)
|
||
|
{
|
||
|
struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
|
||
|
int err;
|
||
|
|
||
|
err = check_huc_loading_mode(huc);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
|
||
|
err = intel_uc_fw_init(&huc->fw);
|
||
|
if (err)
|
||
|
goto out;
|
||
|
|
||
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out:
|
||
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
|
||
|
drm_info(&i915->drm, "HuC init failed with %d\n", err);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void intel_huc_fini(struct intel_huc *huc)
|
||
|
{
|
||
|
/*
|
||
|
* the fence is initialized in init_early, so we need to clean it up
|
||
|
* even if HuC loading is off.
|
||
|
*/
|
||
|
delayed_huc_load_fini(huc);
|
||
|
|
||
|
if (intel_uc_fw_is_loadable(&huc->fw))
|
||
|
intel_uc_fw_fini(&huc->fw);
|
||
|
}
|
||
|
|
||
|
void intel_huc_suspend(struct intel_huc *huc)
|
||
|
{
|
||
|
if (!intel_uc_fw_is_loadable(&huc->fw))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* in the unlikely case that we're suspending before the GSC has
|
||
|
* completed its loading sequence, just stop waiting. We'll restart
|
||
|
* on resume.
|
||
|
*/
|
||
|
delayed_huc_load_complete(huc);
|
||
|
}
|
||
|
|
||
|
int intel_huc_wait_for_auth_complete(struct intel_huc *huc)
|
||
|
{
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
int ret;
|
||
|
|
||
|
ret = __intel_wait_for_register(gt->uncore,
|
||
|
huc->status.reg,
|
||
|
huc->status.mask,
|
||
|
huc->status.value,
|
||
|
2, 50, NULL);
|
||
|
|
||
|
/* mark the load process as complete even if the wait failed */
|
||
|
delayed_huc_load_complete(huc);
|
||
|
|
||
|
if (ret) {
|
||
|
drm_err(>->i915->drm, "HuC: Firmware not verified %d\n", ret);
|
||
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
|
||
|
drm_info(>->i915->drm, "HuC authenticated\n");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_huc_auth() - Authenticate HuC uCode
|
||
|
* @huc: intel_huc structure
|
||
|
*
|
||
|
* Called after HuC and GuC firmware loading during intel_uc_init_hw().
|
||
|
*
|
||
|
* This function invokes the GuC action to authenticate the HuC firmware,
|
||
|
* passing the offset of the RSA signature to intel_guc_auth_huc(). It then
|
||
|
* waits for up to 50ms for firmware verification ACK.
|
||
|
*/
|
||
|
int intel_huc_auth(struct intel_huc *huc)
|
||
|
{
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
struct intel_guc *guc = >->uc.guc;
|
||
|
int ret;
|
||
|
|
||
|
if (!intel_uc_fw_is_loaded(&huc->fw))
|
||
|
return -ENOEXEC;
|
||
|
|
||
|
/* GSC will do the auth */
|
||
|
if (intel_huc_is_loaded_by_gsc(huc))
|
||
|
return -ENODEV;
|
||
|
|
||
|
ret = i915_inject_probe_error(gt->i915, -ENXIO);
|
||
|
if (ret)
|
||
|
goto fail;
|
||
|
|
||
|
GEM_BUG_ON(intel_uc_fw_is_running(&huc->fw));
|
||
|
|
||
|
ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
|
||
|
if (ret) {
|
||
|
DRM_ERROR("HuC: GuC did not ack Auth request %d\n", ret);
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check authentication status, it should be done by now */
|
||
|
ret = intel_huc_wait_for_auth_complete(huc);
|
||
|
if (ret)
|
||
|
goto fail;
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
i915_probe_error(gt->i915, "HuC: Authentication failed %d\n", ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
bool intel_huc_is_authenticated(struct intel_huc *huc)
|
||
|
{
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
intel_wakeref_t wakeref;
|
||
|
u32 status = 0;
|
||
|
|
||
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
||
|
status = intel_uncore_read(gt->uncore, huc->status.reg);
|
||
|
|
||
|
return (status & huc->status.mask) == huc->status.value;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_huc_check_status() - check HuC status
|
||
|
* @huc: intel_huc structure
|
||
|
*
|
||
|
* This function reads status register to verify if HuC
|
||
|
* firmware was successfully loaded.
|
||
|
*
|
||
|
* The return values match what is expected for the I915_PARAM_HUC_STATUS
|
||
|
* getparam.
|
||
|
*/
|
||
|
int intel_huc_check_status(struct intel_huc *huc)
|
||
|
{
|
||
|
switch (__intel_uc_fw_status(&huc->fw)) {
|
||
|
case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
|
||
|
return -ENODEV;
|
||
|
case INTEL_UC_FIRMWARE_DISABLED:
|
||
|
return -EOPNOTSUPP;
|
||
|
case INTEL_UC_FIRMWARE_MISSING:
|
||
|
return -ENOPKG;
|
||
|
case INTEL_UC_FIRMWARE_ERROR:
|
||
|
return -ENOEXEC;
|
||
|
case INTEL_UC_FIRMWARE_INIT_FAIL:
|
||
|
return -ENOMEM;
|
||
|
case INTEL_UC_FIRMWARE_LOAD_FAIL:
|
||
|
return -EIO;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
return intel_huc_is_authenticated(huc);
|
||
|
}
|
||
|
|
||
|
static bool huc_has_delayed_load(struct intel_huc *huc)
|
||
|
{
|
||
|
return intel_huc_is_loaded_by_gsc(huc) &&
|
||
|
(huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
|
||
|
}
|
||
|
|
||
|
void intel_huc_update_auth_status(struct intel_huc *huc)
|
||
|
{
|
||
|
if (!intel_uc_fw_is_loadable(&huc->fw))
|
||
|
return;
|
||
|
|
||
|
if (intel_huc_is_authenticated(huc))
|
||
|
intel_uc_fw_change_status(&huc->fw,
|
||
|
INTEL_UC_FIRMWARE_RUNNING);
|
||
|
else if (huc_has_delayed_load(huc))
|
||
|
huc_delayed_load_start(huc);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* intel_huc_load_status - dump information about HuC load status
|
||
|
* @huc: the HuC
|
||
|
* @p: the &drm_printer
|
||
|
*
|
||
|
* Pretty printer for HuC load status.
|
||
|
*/
|
||
|
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
|
||
|
{
|
||
|
struct intel_gt *gt = huc_to_gt(huc);
|
||
|
intel_wakeref_t wakeref;
|
||
|
|
||
|
if (!intel_huc_is_supported(huc)) {
|
||
|
drm_printf(p, "HuC not supported\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!intel_huc_is_wanted(huc)) {
|
||
|
drm_printf(p, "HuC disabled\n");
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
intel_uc_fw_dump(&huc->fw, p);
|
||
|
|
||
|
with_intel_runtime_pm(gt->uncore->rpm, wakeref)
|
||
|
drm_printf(p, "HuC status: 0x%08x\n",
|
||
|
intel_uncore_read(gt->uncore, huc->status.reg));
|
||
|
}
|