linux-zen-desktop/drivers/gpu/drm/msm/dsi/phy/dsi_phy_7nm.c

1284 lines
38 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/*
* SPDX-License-Identifier: GPL-2.0
* Copyright (c) 2018, The Linux Foundation
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/iopoll.h>
#include "dsi_phy.h"
#include "dsi.xml.h"
#include "dsi_phy_7nm.xml.h"
/*
* DSI PLL 7nm - clock diagram (eg: DSI0): TODO: updated CPHY diagram
*
* dsi0_pll_out_div_clk dsi0_pll_bit_clk
* | |
* | |
* +---------+ | +----------+ | +----+
* dsi0vco_clk ---| out_div |--o--| divl_3_0 |--o--| /8 |-- dsi0_phy_pll_out_byteclk
* +---------+ | +----------+ | +----+
* | |
* | | dsi0_pll_by_2_bit_clk
* | | |
* | | +----+ | |\ dsi0_pclk_mux
* | |--| /2 |--o--| \ |
* | | +----+ | \ | +---------+
* | --------------| |--o--| div_7_4 |-- dsi0_phy_pll_out_dsiclk
* |------------------------------| / +---------+
* | +-----+ | /
* -----------| /4? |--o----------|/
* +-----+ | |
* | |dsiclk_sel
* |
* dsi0_pll_post_out_div_clk
*/
#define VCO_REF_CLK_RATE 19200000
#define FRAC_BITS 18
/* Hardware is pre V4.1 */
#define DSI_PHY_7NM_QUIRK_PRE_V4_1 BIT(0)
/* Hardware is V4.1 */
#define DSI_PHY_7NM_QUIRK_V4_1 BIT(1)
/* Hardware is V4.2 */
#define DSI_PHY_7NM_QUIRK_V4_2 BIT(2)
/* Hardware is V4.3 */
#define DSI_PHY_7NM_QUIRK_V4_3 BIT(3)
/* Hardware is V5.2 */
#define DSI_PHY_7NM_QUIRK_V5_2 BIT(4)
struct dsi_pll_config {
bool enable_ssc;
bool ssc_center;
u32 ssc_freq;
u32 ssc_offset;
u32 ssc_adj_per;
/* out */
u32 decimal_div_start;
u32 frac_div_start;
u32 pll_clock_inverters;
u32 ssc_stepsize;
u32 ssc_div_per;
};
struct pll_7nm_cached_state {
unsigned long vco_rate;
u8 bit_clk_div;
u8 pix_clk_div;
u8 pll_out_div;
u8 pll_mux;
};
struct dsi_pll_7nm {
struct clk_hw clk_hw;
struct msm_dsi_phy *phy;
u64 vco_current_rate;
/* protects REG_DSI_7nm_PHY_CMN_CLK_CFG0 register */
spinlock_t postdiv_lock;
struct pll_7nm_cached_state cached_state;
struct dsi_pll_7nm *slave;
};
#define to_pll_7nm(x) container_of(x, struct dsi_pll_7nm, clk_hw)
/*
* Global list of private DSI PLL struct pointers. We need this for bonded DSI
* mode, where the master PLL's clk_ops needs access the slave's private data
*/
static struct dsi_pll_7nm *pll_7nm_list[DSI_MAX];
static void dsi_pll_setup_config(struct dsi_pll_config *config)
{
config->ssc_freq = 31500;
config->ssc_offset = 4800;
config->ssc_adj_per = 2;
/* TODO: ssc enable */
config->enable_ssc = false;
config->ssc_center = 0;
}
static void dsi_pll_calc_dec_frac(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
{
u64 fref = VCO_REF_CLK_RATE;
u64 pll_freq;
u64 divider;
u64 dec, dec_multiple;
u32 frac;
u64 multiplier;
pll_freq = pll->vco_current_rate;
divider = fref * 2;
multiplier = 1 << FRAC_BITS;
dec_multiple = div_u64(pll_freq * multiplier, divider);
dec = div_u64_rem(dec_multiple, multiplier, &frac);
if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)
config->pll_clock_inverters = 0x28;
else if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
if (pll_freq <= 1300000000ULL)
config->pll_clock_inverters = 0xa0;
else if (pll_freq <= 2500000000ULL)
config->pll_clock_inverters = 0x20;
else if (pll_freq <= 4000000000ULL)
config->pll_clock_inverters = 0x00;
else
config->pll_clock_inverters = 0x40;
} else {
if (pll_freq <= 1000000000ULL)
config->pll_clock_inverters = 0xa0;
else if (pll_freq <= 2500000000ULL)
config->pll_clock_inverters = 0x20;
else if (pll_freq <= 3020000000ULL)
config->pll_clock_inverters = 0x00;
else
config->pll_clock_inverters = 0x40;
}
config->decimal_div_start = dec;
config->frac_div_start = frac;
}
#define SSC_CENTER BIT(0)
#define SSC_EN BIT(1)
static void dsi_pll_calc_ssc(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
{
u32 ssc_per;
u32 ssc_mod;
u64 ssc_step_size;
u64 frac;
if (!config->enable_ssc) {
DBG("SSC not enabled\n");
return;
}
ssc_per = DIV_ROUND_CLOSEST(VCO_REF_CLK_RATE, config->ssc_freq) / 2 - 1;
ssc_mod = (ssc_per + 1) % (config->ssc_adj_per + 1);
ssc_per -= ssc_mod;
frac = config->frac_div_start;
ssc_step_size = config->decimal_div_start;
ssc_step_size *= (1 << FRAC_BITS);
ssc_step_size += frac;
ssc_step_size *= config->ssc_offset;
ssc_step_size *= (config->ssc_adj_per + 1);
ssc_step_size = div_u64(ssc_step_size, (ssc_per + 1));
ssc_step_size = DIV_ROUND_CLOSEST_ULL(ssc_step_size, 1000000);
config->ssc_div_per = ssc_per;
config->ssc_stepsize = ssc_step_size;
pr_debug("SCC: Dec:%d, frac:%llu, frac_bits:%d\n",
config->decimal_div_start, frac, FRAC_BITS);
pr_debug("SSC: div_per:0x%X, stepsize:0x%X, adjper:0x%X\n",
ssc_per, (u32)ssc_step_size, config->ssc_adj_per);
}
static void dsi_pll_ssc_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
{
void __iomem *base = pll->phy->pll_base;
if (config->enable_ssc) {
pr_debug("SSC is enabled\n");
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_LOW_1,
config->ssc_stepsize & 0xff);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_STEPSIZE_HIGH_1,
config->ssc_stepsize >> 8);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_LOW_1,
config->ssc_div_per & 0xff);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_DIV_PER_HIGH_1,
config->ssc_div_per >> 8);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_LOW_1,
config->ssc_adj_per & 0xff);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_ADJPER_HIGH_1,
config->ssc_adj_per >> 8);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_SSC_CONTROL,
SSC_EN | (config->ssc_center ? SSC_CENTER : 0));
}
}
static void dsi_pll_config_hzindep_reg(struct dsi_pll_7nm *pll)
{
void __iomem *base = pll->phy->pll_base;
u8 analog_controls_five_1 = 0x01, vco_config_1 = 0x00;
if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
if (pll->vco_current_rate >= 3100000000ULL)
analog_controls_five_1 = 0x03;
if (pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
if (pll->vco_current_rate < 1520000000ULL)
vco_config_1 = 0x08;
else if (pll->vco_current_rate < 2990000000ULL)
vco_config_1 = 0x01;
}
if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) ||
(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
if (pll->vco_current_rate < 1520000000ULL)
vco_config_1 = 0x08;
else if (pll->vco_current_rate >= 2990000000ULL)
vco_config_1 = 0x01;
}
if ((pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
if (pll->vco_current_rate < 1557000000ULL)
vco_config_1 = 0x08;
else
vco_config_1 = 0x01;
}
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE_1,
analog_controls_five_1);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_VCO_CONFIG_1, vco_config_1);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_FIVE, 0x01);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_TWO, 0x03);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_ANALOG_CONTROLS_THREE, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DSM_DIVIDER, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FEEDBACK_DIVIDER, 0x4e);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CALIBRATION_SETTINGS, 0x40);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_BAND_SEL_CAL_SETTINGS_THREE, 0xba);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FREQ_DETECT_SETTINGS_ONE, 0x0c);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_OUTDIV, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_OVERRIDE, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_DIGITAL_TIMERS_TWO, 0x08);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_PROP_GAIN_RATE_1, 0x0a);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_BAND_SEL_RATE_1, 0xc0);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x84);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_INT_GAIN_IFILT_BAND_1, 0x82);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_FL_INT_GAIN_PFILT_BAND_1, 0x4c);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_OVERRIDE, 0x80);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x29);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PFILT, 0x2f);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT, 0x2a);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_IFILT,
!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1) ? 0x3f : 0x22);
if (!(pll->phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1)) {
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
if (pll->slave)
dsi_phy_write(pll->slave->phy->pll_base + REG_DSI_7nm_PHY_PLL_PERF_OPTIMIZE, 0x22);
}
}
static void dsi_pll_commit(struct dsi_pll_7nm *pll, struct dsi_pll_config *config)
{
void __iomem *base = pll->phy->pll_base;
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CORE_INPUT_OVERRIDE, 0x12);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1,
config->decimal_div_start);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1,
config->frac_div_start & 0xff);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1,
(config->frac_div_start & 0xff00) >> 8);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1,
(config->frac_div_start & 0x30000) >> 16);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCKDET_RATE_1, 0x40);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_PLL_LOCK_DELAY, 0x06);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CMODE_1,
pll->phy->cphy_mode ? 0x00 : 0x10);
dsi_phy_write(base + REG_DSI_7nm_PHY_PLL_CLOCK_INVERTERS,
config->pll_clock_inverters);
}
static int dsi_pll_7nm_vco_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
struct dsi_pll_config config;
DBG("DSI PLL%d rate=%lu, parent's=%lu", pll_7nm->phy->id, rate,
parent_rate);
pll_7nm->vco_current_rate = rate;
dsi_pll_setup_config(&config);
dsi_pll_calc_dec_frac(pll_7nm, &config);
dsi_pll_calc_ssc(pll_7nm, &config);
dsi_pll_commit(pll_7nm, &config);
dsi_pll_config_hzindep_reg(pll_7nm);
dsi_pll_ssc_commit(pll_7nm, &config);
/* flush, ensure all register writes are done*/
wmb();
return 0;
}
static int dsi_pll_7nm_lock_status(struct dsi_pll_7nm *pll)
{
int rc;
u32 status = 0;
u32 const delay_us = 100;
u32 const timeout_us = 5000;
rc = readl_poll_timeout_atomic(pll->phy->pll_base +
REG_DSI_7nm_PHY_PLL_COMMON_STATUS_ONE,
status,
((status & BIT(0)) > 0),
delay_us,
timeout_us);
if (rc)
pr_err("DSI PLL(%d) lock failed, status=0x%08x\n",
pll->phy->id, status);
return rc;
}
static void dsi_pll_disable_pll_bias(struct dsi_pll_7nm *pll)
{
u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0);
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data & ~BIT(5));
ndelay(250);
}
static void dsi_pll_enable_pll_bias(struct dsi_pll_7nm *pll)
{
u32 data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0);
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_0, data | BIT(5));
dsi_phy_write(pll->phy->pll_base + REG_DSI_7nm_PHY_PLL_SYSTEM_MUXES, 0xc0);
ndelay(250);
}
static void dsi_pll_disable_global_clk(struct dsi_pll_7nm *pll)
{
u32 data;
data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data & ~BIT(5));
}
static void dsi_pll_enable_global_clk(struct dsi_pll_7nm *pll)
{
u32 data;
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x04);
data = dsi_phy_read(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1,
data | BIT(5) | BIT(4));
}
static void dsi_pll_phy_dig_reset(struct dsi_pll_7nm *pll)
{
/*
* Reset the PHY digital domain. This would be needed when
* coming out of a CX or analog rail power collapse while
* ensuring that the pads maintain LP00 or LP11 state
*/
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, BIT(0));
wmb(); /* Ensure that the reset is deasserted */
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE4, 0x0);
wmb(); /* Ensure that the reset is deasserted */
}
static int dsi_pll_7nm_vco_prepare(struct clk_hw *hw)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
int rc;
dsi_pll_enable_pll_bias(pll_7nm);
if (pll_7nm->slave)
dsi_pll_enable_pll_bias(pll_7nm->slave);
/* Start PLL */
dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x01);
/*
* ensure all PLL configurations are written prior to checking
* for PLL lock.
*/
wmb();
/* Check for PLL lock */
rc = dsi_pll_7nm_lock_status(pll_7nm);
if (rc) {
pr_err("PLL(%d) lock failed\n", pll_7nm->phy->id);
goto error;
}
pll_7nm->phy->pll_on = true;
/*
* assert power on reset for PHY digital in case the PLL is
* enabled after CX of analog domain power collapse. This needs
* to be done before enabling the global clk.
*/
dsi_pll_phy_dig_reset(pll_7nm);
if (pll_7nm->slave)
dsi_pll_phy_dig_reset(pll_7nm->slave);
dsi_pll_enable_global_clk(pll_7nm);
if (pll_7nm->slave)
dsi_pll_enable_global_clk(pll_7nm->slave);
error:
return rc;
}
static void dsi_pll_disable_sub(struct dsi_pll_7nm *pll)
{
dsi_phy_write(pll->phy->base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0);
dsi_pll_disable_pll_bias(pll);
}
static void dsi_pll_7nm_vco_unprepare(struct clk_hw *hw)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
/*
* To avoid any stray glitches while abruptly powering down the PLL
* make sure to gate the clock using the clock enable bit before
* powering down the PLL
*/
dsi_pll_disable_global_clk(pll_7nm);
dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0);
dsi_pll_disable_sub(pll_7nm);
if (pll_7nm->slave) {
dsi_pll_disable_global_clk(pll_7nm->slave);
dsi_pll_disable_sub(pll_7nm->slave);
}
/* flush, ensure all register writes are done */
wmb();
pll_7nm->phy->pll_on = false;
}
static unsigned long dsi_pll_7nm_vco_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
void __iomem *base = pll_7nm->phy->pll_base;
u64 ref_clk = VCO_REF_CLK_RATE;
u64 vco_rate = 0x0;
u64 multiplier;
u32 frac;
u32 dec;
u64 pll_freq, tmp64;
dec = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_DECIMAL_DIV_START_1);
dec &= 0xff;
frac = dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_LOW_1);
frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_MID_1) &
0xff) << 8);
frac |= ((dsi_phy_read(base + REG_DSI_7nm_PHY_PLL_FRAC_DIV_START_HIGH_1) &
0x3) << 16);
/*
* TODO:
* 1. Assumes prescaler is disabled
*/
multiplier = 1 << FRAC_BITS;
pll_freq = dec * (ref_clk * 2);
tmp64 = (ref_clk * 2 * frac);
pll_freq += div_u64(tmp64, multiplier);
vco_rate = pll_freq;
pll_7nm->vco_current_rate = vco_rate;
DBG("DSI PLL%d returning vco rate = %lu, dec = %x, frac = %x",
pll_7nm->phy->id, (unsigned long)vco_rate, dec, frac);
return (unsigned long)vco_rate;
}
static long dsi_pll_7nm_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *parent_rate)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(hw);
if (rate < pll_7nm->phy->cfg->min_pll_rate)
return pll_7nm->phy->cfg->min_pll_rate;
else if (rate > pll_7nm->phy->cfg->max_pll_rate)
return pll_7nm->phy->cfg->max_pll_rate;
else
return rate;
}
static const struct clk_ops clk_ops_dsi_pll_7nm_vco = {
.round_rate = dsi_pll_7nm_clk_round_rate,
.set_rate = dsi_pll_7nm_vco_set_rate,
.recalc_rate = dsi_pll_7nm_vco_recalc_rate,
.prepare = dsi_pll_7nm_vco_prepare,
.unprepare = dsi_pll_7nm_vco_unprepare,
};
/*
* PLL Callbacks
*/
static void dsi_7nm_pll_save_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
void __iomem *phy_base = pll_7nm->phy->base;
u32 cmn_clk_cfg0, cmn_clk_cfg1;
cached->pll_out_div = dsi_phy_read(pll_7nm->phy->pll_base +
REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
cached->pll_out_div &= 0x3;
cmn_clk_cfg0 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0);
cached->bit_clk_div = cmn_clk_cfg0 & 0xf;
cached->pix_clk_div = (cmn_clk_cfg0 & 0xf0) >> 4;
cmn_clk_cfg1 = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
cached->pll_mux = cmn_clk_cfg1 & 0x3;
DBG("DSI PLL%d outdiv %x bit_clk_div %x pix_clk_div %x pll_mux %x",
pll_7nm->phy->id, cached->pll_out_div, cached->bit_clk_div,
cached->pix_clk_div, cached->pll_mux);
}
static int dsi_7nm_pll_restore_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
struct pll_7nm_cached_state *cached = &pll_7nm->cached_state;
void __iomem *phy_base = pll_7nm->phy->base;
u32 val;
int ret;
val = dsi_phy_read(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE);
val &= ~0x3;
val |= cached->pll_out_div;
dsi_phy_write(pll_7nm->phy->pll_base + REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE, val);
dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
cached->bit_clk_div | (cached->pix_clk_div << 4));
val = dsi_phy_read(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
val &= ~0x3;
val |= cached->pll_mux;
dsi_phy_write(phy_base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, val);
ret = dsi_pll_7nm_vco_set_rate(phy->vco_hw,
pll_7nm->vco_current_rate,
VCO_REF_CLK_RATE);
if (ret) {
DRM_DEV_ERROR(&pll_7nm->phy->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
DBG("DSI PLL%d", pll_7nm->phy->id);
return 0;
}
static int dsi_7nm_set_usecase(struct msm_dsi_phy *phy)
{
struct dsi_pll_7nm *pll_7nm = to_pll_7nm(phy->vco_hw);
void __iomem *base = phy->base;
u32 data = 0x0; /* internal PLL */
DBG("DSI PLL%d", pll_7nm->phy->id);
switch (phy->usecase) {
case MSM_DSI_PHY_STANDALONE:
break;
case MSM_DSI_PHY_MASTER:
pll_7nm->slave = pll_7nm_list[(pll_7nm->phy->id + 1) % DSI_MAX];
break;
case MSM_DSI_PHY_SLAVE:
data = 0x1; /* external PLL */
break;
default:
return -EINVAL;
}
/* set PLL src */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, (data << 2));
return 0;
}
/*
* The post dividers and mux clocks are created using the standard divider and
* mux API. Unlike the 14nm PHY, the slave PLL doesn't need its dividers/mux
* state to follow the master PLL's divider/mux state. Therefore, we don't
* require special clock ops that also configure the slave PLL registers
*/
static int pll_7nm_register(struct dsi_pll_7nm *pll_7nm, struct clk_hw **provided_clocks)
{
char clk_name[32];
struct clk_init_data vco_init = {
.parent_data = &(const struct clk_parent_data) {
.fw_name = "ref",
},
.num_parents = 1,
.name = clk_name,
.flags = CLK_IGNORE_UNUSED,
.ops = &clk_ops_dsi_pll_7nm_vco,
};
struct device *dev = &pll_7nm->phy->pdev->dev;
struct clk_hw *hw, *pll_out_div, *pll_bit, *pll_by_2_bit;
struct clk_hw *pll_post_out_div, *phy_pll_out_dsi_parent;
int ret;
DBG("DSI%d", pll_7nm->phy->id);
snprintf(clk_name, sizeof(clk_name), "dsi%dvco_clk", pll_7nm->phy->id);
pll_7nm->clk_hw.init = &vco_init;
ret = devm_clk_hw_register(dev, &pll_7nm->clk_hw);
if (ret)
return ret;
snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_out_div_clk", pll_7nm->phy->id);
pll_out_div = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
&pll_7nm->clk_hw, CLK_SET_RATE_PARENT,
pll_7nm->phy->pll_base +
REG_DSI_7nm_PHY_PLL_PLL_OUTDIV_RATE,
0, 2, CLK_DIVIDER_POWER_OF_TWO, NULL);
if (IS_ERR(pll_out_div)) {
ret = PTR_ERR(pll_out_div);
goto fail;
}
snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_bit_clk", pll_7nm->phy->id);
/* BIT CLK: DIV_CTRL_3_0 */
pll_bit = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
pll_out_div, CLK_SET_RATE_PARENT,
pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
0, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
if (IS_ERR(pll_bit)) {
ret = PTR_ERR(pll_bit);
goto fail;
}
snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_byteclk", pll_7nm->phy->id);
/* DSI Byte clock = VCO_CLK / OUT_DIV / BIT_DIV / 8 */
hw = devm_clk_hw_register_fixed_factor_parent_hw(dev, clk_name,
pll_bit, CLK_SET_RATE_PARENT, 1,
pll_7nm->phy->cphy_mode ? 7 : 8);
if (IS_ERR(hw)) {
ret = PTR_ERR(hw);
goto fail;
}
provided_clocks[DSI_BYTE_PLL_CLK] = hw;
snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_by_2_bit_clk", pll_7nm->phy->id);
pll_by_2_bit = devm_clk_hw_register_fixed_factor_parent_hw(dev,
clk_name, pll_bit, 0, 1, 2);
if (IS_ERR(pll_by_2_bit)) {
ret = PTR_ERR(pll_by_2_bit);
goto fail;
}
snprintf(clk_name, sizeof(clk_name), "dsi%d_pll_post_out_div_clk", pll_7nm->phy->id);
if (pll_7nm->phy->cphy_mode)
pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
dev, clk_name, pll_out_div, 0, 2, 7);
else
pll_post_out_div = devm_clk_hw_register_fixed_factor_parent_hw(
dev, clk_name, pll_out_div, 0, 1, 4);
if (IS_ERR(pll_post_out_div)) {
ret = PTR_ERR(pll_post_out_div);
goto fail;
}
/* in CPHY mode, pclk_mux will always have post_out_div as parent
* don't register a pclk_mux clock and just use post_out_div instead
*/
if (pll_7nm->phy->cphy_mode) {
u32 data;
data = dsi_phy_read(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1);
dsi_phy_write(pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG1, data | 3);
phy_pll_out_dsi_parent = pll_post_out_div;
} else {
snprintf(clk_name, sizeof(clk_name), "dsi%d_pclk_mux", pll_7nm->phy->id);
hw = devm_clk_hw_register_mux_parent_hws(dev, clk_name,
((const struct clk_hw *[]){
pll_bit,
pll_by_2_bit,
}), 2, 0, pll_7nm->phy->base +
REG_DSI_7nm_PHY_CMN_CLK_CFG1,
0, 1, 0, NULL);
if (IS_ERR(hw)) {
ret = PTR_ERR(hw);
goto fail;
}
phy_pll_out_dsi_parent = hw;
}
snprintf(clk_name, sizeof(clk_name), "dsi%d_phy_pll_out_dsiclk", pll_7nm->phy->id);
/* PIX CLK DIV : DIV_CTRL_7_4*/
hw = devm_clk_hw_register_divider_parent_hw(dev, clk_name,
phy_pll_out_dsi_parent, 0,
pll_7nm->phy->base + REG_DSI_7nm_PHY_CMN_CLK_CFG0,
4, 4, CLK_DIVIDER_ONE_BASED, &pll_7nm->postdiv_lock);
if (IS_ERR(hw)) {
ret = PTR_ERR(hw);
goto fail;
}
provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
return 0;
fail:
return ret;
}
static int dsi_pll_7nm_init(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
struct dsi_pll_7nm *pll_7nm;
int ret;
pll_7nm = devm_kzalloc(&pdev->dev, sizeof(*pll_7nm), GFP_KERNEL);
if (!pll_7nm)
return -ENOMEM;
DBG("DSI PLL%d", phy->id);
pll_7nm_list[phy->id] = pll_7nm;
spin_lock_init(&pll_7nm->postdiv_lock);
pll_7nm->phy = phy;
ret = pll_7nm_register(pll_7nm, phy->provided_clocks->hws);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
return ret;
}
phy->vco_hw = &pll_7nm->clk_hw;
/* TODO: Remove this when we have proper display handover support */
msm_dsi_phy_pll_save_state(phy);
return 0;
}
static int dsi_phy_hw_v4_0_is_pll_on(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->base;
u32 data = 0;
data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL);
mb(); /* make sure read happened */
return (data & BIT(0));
}
static void dsi_phy_hw_v4_0_config_lpcdrx(struct msm_dsi_phy *phy, bool enable)
{
void __iomem *lane_base = phy->lane_base;
int phy_lane_0 = 0; /* TODO: Support all lane swap configs */
/*
* LPRX and CDRX need to enabled only for physical data lane
* corresponding to the logical data lane 0
*/
if (enable)
dsi_phy_write(lane_base +
REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0x3);
else
dsi_phy_write(lane_base +
REG_DSI_7nm_PHY_LN_LPRX_CTRL(phy_lane_0), 0);
}
static void dsi_phy_hw_v4_0_lane_settings(struct msm_dsi_phy *phy)
{
int i;
const u8 tx_dctrl_0[] = { 0x00, 0x00, 0x00, 0x04, 0x01 };
const u8 tx_dctrl_1[] = { 0x40, 0x40, 0x40, 0x46, 0x41 };
const u8 *tx_dctrl = tx_dctrl_0;
void __iomem *lane_base = phy->lane_base;
if (!(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_PRE_V4_1))
tx_dctrl = tx_dctrl_1;
/* Strength ctrl settings */
for (i = 0; i < 5; i++) {
/*
* Disable LPRX and CDRX for all lanes. And later on, it will
* be only enabled for the physical data lane corresponding
* to the logical data lane 0
*/
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_LPRX_CTRL(i), 0);
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_PIN_SWAP(i), 0x0);
}
dsi_phy_hw_v4_0_config_lpcdrx(phy, true);
/* other settings */
for (i = 0; i < 5; i++) {
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG0(i), 0x0);
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG1(i), 0x0);
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_CFG2(i), i == 4 ? 0x8a : 0xa);
dsi_phy_write(lane_base + REG_DSI_7nm_PHY_LN_TX_DCTRL(i), tx_dctrl[i]);
}
}
static int dsi_7nm_phy_enable(struct msm_dsi_phy *phy,
struct msm_dsi_phy_clk_request *clk_req)
{
int ret;
u32 status;
u32 const delay_us = 5;
u32 const timeout_us = 1000;
struct msm_dsi_dphy_timing *timing = &phy->timing;
void __iomem *base = phy->base;
bool less_than_1500_mhz;
u32 vreg_ctrl_0, vreg_ctrl_1, lane_ctrl0;
u32 glbl_pemph_ctrl_0;
u32 glbl_str_swi_cal_sel_ctrl, glbl_hstx_str_ctrl_0;
u32 glbl_rescode_top_ctrl, glbl_rescode_bot_ctrl;
u32 data;
DBG("");
if (phy->cphy_mode)
ret = msm_dsi_cphy_timing_calc_v4(timing, clk_req);
else
ret = msm_dsi_dphy_timing_calc_v4(timing, clk_req);
if (ret) {
DRM_DEV_ERROR(&phy->pdev->dev,
"%s: PHY timing calculation failed\n", __func__);
return -EINVAL;
}
if (dsi_phy_hw_v4_0_is_pll_on(phy))
pr_warn("PLL turned on before configuring PHY\n");
/* Request for REFGEN READY */
if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
dsi_phy_write(phy->base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x1);
udelay(500);
}
/* wait for REFGEN READY */
ret = readl_poll_timeout_atomic(base + REG_DSI_7nm_PHY_CMN_PHY_STATUS,
status, (status & BIT(0)),
delay_us, timeout_us);
if (ret) {
pr_err("Ref gen not ready. Aborting\n");
return -EINVAL;
}
/* TODO: CPHY enable path (this is for DPHY only) */
/* Alter PHY configurations if data rate less than 1.5GHZ*/
less_than_1500_mhz = (clk_req->bitclk_rate <= 1500000000);
glbl_str_swi_cal_sel_ctrl = 0x00;
if (phy->cphy_mode) {
vreg_ctrl_0 = 0x51;
vreg_ctrl_1 = 0x55;
glbl_hstx_str_ctrl_0 = 0x00;
glbl_pemph_ctrl_0 = 0x11;
lane_ctrl0 = 0x17;
} else {
vreg_ctrl_0 = less_than_1500_mhz ? 0x53 : 0x52;
vreg_ctrl_1 = 0x5c;
glbl_hstx_str_ctrl_0 = 0x88;
glbl_pemph_ctrl_0 = 0x00;
lane_ctrl0 = 0x1f;
}
if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
if (phy->cphy_mode) {
vreg_ctrl_0 = 0x45;
vreg_ctrl_1 = 0x45;
glbl_rescode_top_ctrl = 0x00;
glbl_rescode_bot_ctrl = 0x00;
} else {
vreg_ctrl_0 = 0x44;
vreg_ctrl_1 = 0x19;
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x03;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3c;
}
} else if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3)) {
if (phy->cphy_mode) {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
} else {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
}
} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_2) {
if (phy->cphy_mode) {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x01;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x3b;
} else {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3c : 0x00;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x38 : 0x39;
}
} else if (phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_1) {
if (phy->cphy_mode) {
glbl_hstx_str_ctrl_0 = 0x88;
glbl_rescode_top_ctrl = 0x00;
glbl_rescode_bot_ctrl = 0x3c;
} else {
glbl_rescode_top_ctrl = less_than_1500_mhz ? 0x3d : 0x00;
glbl_rescode_bot_ctrl = less_than_1500_mhz ? 0x39 : 0x3c;
}
} else {
if (phy->cphy_mode) {
glbl_str_swi_cal_sel_ctrl = 0x03;
glbl_hstx_str_ctrl_0 = 0x66;
} else {
vreg_ctrl_0 = less_than_1500_mhz ? 0x5B : 0x59;
glbl_str_swi_cal_sel_ctrl = less_than_1500_mhz ? 0x03 : 0x00;
glbl_hstx_str_ctrl_0 = less_than_1500_mhz ? 0x66 : 0x88;
}
glbl_rescode_top_ctrl = 0x03;
glbl_rescode_bot_ctrl = 0x3c;
}
/* de-assert digital and pll power down */
data = BIT(6) | BIT(5);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
/* Assert PLL core reset */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_PLL_CNTRL, 0x00);
/* turn off resync FIFO */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_RBUF_CTRL, 0x00);
/* program CMN_CTRL_4 for minor_ver 2 chipsets*/
if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2) ||
(dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_REVISION_ID0) & (0xf0)) == 0x20)
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_4, 0x04);
/* Configure PHY lane swap (TODO: we need to calculate this) */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG0, 0x21);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CFG1, 0x84);
if (phy->cphy_mode)
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_CTRL, BIT(6));
/* Enable LDO */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_0, vreg_ctrl_0);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_VREG_CTRL_1, vreg_ctrl_1);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_3, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_STR_SWI_CAL_SEL_CTRL,
glbl_str_swi_cal_sel_ctrl);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_HSTX_STR_CTRL_0,
glbl_hstx_str_ctrl_0);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_0,
glbl_pemph_ctrl_0);
if (phy->cphy_mode)
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_PEMPH_CTRL_1, 0x01);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_TOP_CTRL,
glbl_rescode_top_ctrl);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_RESCODE_OFFSET_BOT_CTRL,
glbl_rescode_bot_ctrl);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_LPTX_STR_CTRL, 0x55);
/* Remove power down from all blocks */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x7f);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, lane_ctrl0);
/* Select full-rate mode */
if (!phy->cphy_mode)
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_2, 0x40);
ret = dsi_7nm_set_usecase(phy);
if (ret) {
DRM_DEV_ERROR(&phy->pdev->dev, "%s: set pll usecase failed, %d\n",
__func__, ret);
return ret;
}
/* DSI PHY timings */
if (phy->cphy_mode) {
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5,
timing->shared_timings.clk_pre);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->clk_prepare);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7,
timing->shared_timings.clk_post);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
} else {
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_0, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_1, timing->clk_zero);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_2, timing->clk_prepare);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_3, timing->clk_trail);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_4, timing->hs_exit);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_5, timing->hs_zero);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_6, timing->hs_prepare);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_7, timing->hs_trail);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_8, timing->hs_rqst);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_9, 0x02);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_10, 0x04);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_11, 0x00);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_12,
timing->shared_timings.clk_pre);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_TIMING_CTRL_13,
timing->shared_timings.clk_post);
}
/* DSI lane settings */
dsi_phy_hw_v4_0_lane_settings(phy);
DBG("DSI%d PHY enabled", phy->id);
return 0;
}
static bool dsi_7nm_set_continuous_clock(struct msm_dsi_phy *phy, bool enable)
{
void __iomem *base = phy->base;
u32 data;
data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1);
if (enable)
data |= BIT(5) | BIT(6);
else
data &= ~(BIT(5) | BIT(6));
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL1, data);
return enable;
}
static void dsi_7nm_phy_disable(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->base;
u32 data;
DBG("");
if (dsi_phy_hw_v4_0_is_pll_on(phy))
pr_warn("Turning OFF PHY while PLL is on\n");
dsi_phy_hw_v4_0_config_lpcdrx(phy, false);
/* Turn off REFGEN Vote */
if ((phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V4_3) ||
(phy->cfg->quirks & DSI_PHY_7NM_QUIRK_V5_2)) {
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_GLBL_DIGTOP_SPARE10, 0x0);
wmb();
/* Delay to ensure HW removes vote before PHY shut down */
udelay(2);
}
data = dsi_phy_read(base + REG_DSI_7nm_PHY_CMN_CTRL_0);
/* disable all lanes */
data &= ~0x1F;
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, data);
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_LANE_CTRL0, 0);
/* Turn off all PHY blocks */
dsi_phy_write(base + REG_DSI_7nm_PHY_CMN_CTRL_0, 0x00);
/* make sure phy is turned off */
wmb();
DBG("DSI%d PHY disabled", phy->id);
}
static const struct regulator_bulk_data dsi_phy_7nm_36mA_regulators[] = {
{ .supply = "vdds", .init_load_uA = 36000 },
};
static const struct regulator_bulk_data dsi_phy_7nm_37750uA_regulators[] = {
{ .supply = "vdds", .init_load_uA = 37550 },
};
static const struct regulator_bulk_data dsi_phy_7nm_97800uA_regulators[] = {
{ .supply = "vdds", .init_load_uA = 97800 },
};
static const struct regulator_bulk_data dsi_phy_7nm_98400uA_regulators[] = {
{ .supply = "vdds", .init_load_uA = 98400 },
};
const struct msm_dsi_phy_cfg dsi_phy_7nm_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_36mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
.set_continuous_clock = dsi_7nm_set_continuous_clock,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000UL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0xae94400, 0xae96400 },
.num_dsi_phy = 2,
.quirks = DSI_PHY_7NM_QUIRK_V4_1,
};
const struct msm_dsi_phy_cfg dsi_phy_7nm_6375_cfgs = {
.has_phy_lane = true,
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000ULL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0x5e94400 },
.num_dsi_phy = 1,
.quirks = DSI_PHY_7NM_QUIRK_V4_1,
};
const struct msm_dsi_phy_cfg dsi_phy_7nm_8150_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_36mA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_36mA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
.set_continuous_clock = dsi_7nm_set_continuous_clock,
},
.min_pll_rate = 1000000000UL,
.max_pll_rate = 3500000000UL,
.io_start = { 0xae94400, 0xae96400 },
.num_dsi_phy = 2,
.quirks = DSI_PHY_7NM_QUIRK_PRE_V4_1,
};
const struct msm_dsi_phy_cfg dsi_phy_7nm_7280_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_37750uA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000ULL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0xae94400 },
.num_dsi_phy = 1,
.quirks = DSI_PHY_7NM_QUIRK_V4_1,
};
const struct msm_dsi_phy_cfg dsi_phy_5nm_8350_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_37750uA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_37750uA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
.set_continuous_clock = dsi_7nm_set_continuous_clock,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000UL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0xae94400, 0xae96400 },
.num_dsi_phy = 2,
.quirks = DSI_PHY_7NM_QUIRK_V4_2,
};
const struct msm_dsi_phy_cfg dsi_phy_5nm_8450_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_97800uA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_97800uA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
.set_continuous_clock = dsi_7nm_set_continuous_clock,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000UL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0xae94400, 0xae96400 },
.num_dsi_phy = 2,
.quirks = DSI_PHY_7NM_QUIRK_V4_3,
};
const struct msm_dsi_phy_cfg dsi_phy_4nm_8550_cfgs = {
.has_phy_lane = true,
.regulator_data = dsi_phy_7nm_98400uA_regulators,
.num_regulators = ARRAY_SIZE(dsi_phy_7nm_98400uA_regulators),
.ops = {
.enable = dsi_7nm_phy_enable,
.disable = dsi_7nm_phy_disable,
.pll_init = dsi_pll_7nm_init,
.save_pll_state = dsi_7nm_pll_save_state,
.restore_pll_state = dsi_7nm_pll_restore_state,
.set_continuous_clock = dsi_7nm_set_continuous_clock,
},
.min_pll_rate = 600000000UL,
#ifdef CONFIG_64BIT
.max_pll_rate = 5000000000UL,
#else
.max_pll_rate = ULONG_MAX,
#endif
.io_start = { 0xae95000, 0xae97000 },
.num_dsi_phy = 2,
.quirks = DSI_PHY_7NM_QUIRK_V5_2,
};