linux-zen-desktop/drivers/iio/adc/at91-sama5d2_adc.c

2647 lines
73 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/*
* Atmel ADC driver for SAMA5D2 devices and compatible.
*
* Copyright (C) 2015 Atmel,
* 2015 Ludovic Desroches <ludovic.desroches@atmel.com>
* 2021 Microchip Technology, Inc. and its subsidiaries
* 2021 Eugen Hristev <eugen.hristev@microchip.com>
*/
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/sched.h>
#include <linux/units.h>
#include <linux/wait.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/nvmem-consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <dt-bindings/iio/adc/at91-sama5d2_adc.h>
struct at91_adc_reg_layout {
/* Control Register */
u16 CR;
/* Software Reset */
#define AT91_SAMA5D2_CR_SWRST BIT(0)
/* Start Conversion */
#define AT91_SAMA5D2_CR_START BIT(1)
/* Touchscreen Calibration */
#define AT91_SAMA5D2_CR_TSCALIB BIT(2)
/* Comparison Restart */
#define AT91_SAMA5D2_CR_CMPRST BIT(4)
/* Mode Register */
u16 MR;
/* Trigger Selection */
#define AT91_SAMA5D2_MR_TRGSEL(v) ((v) << 1)
/* ADTRG */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG0 0
/* TIOA0 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG1 1
/* TIOA1 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG2 2
/* TIOA2 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG3 3
/* PWM event line 0 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG4 4
/* PWM event line 1 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG5 5
/* TIOA3 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG6 6
/* RTCOUT0 */
#define AT91_SAMA5D2_MR_TRGSEL_TRIG7 7
/* Sleep Mode */
#define AT91_SAMA5D2_MR_SLEEP BIT(5)
/* Fast Wake Up */
#define AT91_SAMA5D2_MR_FWUP BIT(6)
/* Prescaler Rate Selection */
#define AT91_SAMA5D2_MR_PRESCAL(v) ((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET)
#define AT91_SAMA5D2_MR_PRESCAL_OFFSET 8
#define AT91_SAMA5D2_MR_PRESCAL_MAX 0xff
#define AT91_SAMA5D2_MR_PRESCAL_MASK GENMASK(15, 8)
/* Startup Time */
#define AT91_SAMA5D2_MR_STARTUP(v) ((v) << 16)
#define AT91_SAMA5D2_MR_STARTUP_MASK GENMASK(19, 16)
/* Minimum startup time for temperature sensor */
#define AT91_SAMA5D2_MR_STARTUP_TS_MIN (50)
/* Analog Change */
#define AT91_SAMA5D2_MR_ANACH BIT(23)
/* Tracking Time */
#define AT91_SAMA5D2_MR_TRACKTIM(v) ((v) << 24)
#define AT91_SAMA5D2_MR_TRACKTIM_TS 6
#define AT91_SAMA5D2_MR_TRACKTIM_MAX 0xf
/* Transfer Time */
#define AT91_SAMA5D2_MR_TRANSFER(v) ((v) << 28)
#define AT91_SAMA5D2_MR_TRANSFER_MAX 0x3
/* Use Sequence Enable */
#define AT91_SAMA5D2_MR_USEQ BIT(31)
/* Channel Sequence Register 1 */
u16 SEQR1;
/* Channel Sequence Register 2 */
u16 SEQR2;
/* Channel Enable Register */
u16 CHER;
/* Channel Disable Register */
u16 CHDR;
/* Channel Status Register */
u16 CHSR;
/* Last Converted Data Register */
u16 LCDR;
/* Interrupt Enable Register */
u16 IER;
/* Interrupt Enable Register - TS X measurement ready */
#define AT91_SAMA5D2_IER_XRDY BIT(20)
/* Interrupt Enable Register - TS Y measurement ready */
#define AT91_SAMA5D2_IER_YRDY BIT(21)
/* Interrupt Enable Register - TS pressure measurement ready */
#define AT91_SAMA5D2_IER_PRDY BIT(22)
/* Interrupt Enable Register - Data ready */
#define AT91_SAMA5D2_IER_DRDY BIT(24)
/* Interrupt Enable Register - general overrun error */
#define AT91_SAMA5D2_IER_GOVRE BIT(25)
/* Interrupt Enable Register - Pen detect */
#define AT91_SAMA5D2_IER_PEN BIT(29)
/* Interrupt Enable Register - No pen detect */
#define AT91_SAMA5D2_IER_NOPEN BIT(30)
/* Interrupt Disable Register */
u16 IDR;
/* Interrupt Mask Register */
u16 IMR;
/* Interrupt Status Register */
u16 ISR;
/* End of Conversion Interrupt Enable Register */
u16 EOC_IER;
/* End of Conversion Interrupt Disable Register */
u16 EOC_IDR;
/* End of Conversion Interrupt Mask Register */
u16 EOC_IMR;
/* End of Conversion Interrupt Status Register */
u16 EOC_ISR;
/* Interrupt Status Register - Pen touching sense status */
#define AT91_SAMA5D2_ISR_PENS BIT(31)
/* Last Channel Trigger Mode Register */
u16 LCTMR;
/* Last Channel Compare Window Register */
u16 LCCWR;
/* Overrun Status Register */
u16 OVER;
/* Extended Mode Register */
u16 EMR;
/* Extended Mode Register - Oversampling rate */
#define AT91_SAMA5D2_EMR_OSR(V, M) (((V) << 16) & (M))
#define AT91_SAMA5D2_EMR_OSR_1SAMPLES 0
#define AT91_SAMA5D2_EMR_OSR_4SAMPLES 1
#define AT91_SAMA5D2_EMR_OSR_16SAMPLES 2
#define AT91_SAMA5D2_EMR_OSR_64SAMPLES 3
#define AT91_SAMA5D2_EMR_OSR_256SAMPLES 4
/* Extended Mode Register - TRACKX */
#define AT91_SAMA5D2_TRACKX_MASK GENMASK(23, 22)
#define AT91_SAMA5D2_TRACKX(x) (((x) << 22) & \
AT91_SAMA5D2_TRACKX_MASK)
/* TRACKX for temperature sensor. */
#define AT91_SAMA5D2_TRACKX_TS (1)
/* Extended Mode Register - Averaging on single trigger event */
#define AT91_SAMA5D2_EMR_ASTE(V) ((V) << 20)
/* Compare Window Register */
u16 CWR;
/* Channel Gain Register */
u16 CGR;
/* Channel Offset Register */
u16 COR;
/* Channel Offset Register differential offset - constant, not a register */
u16 COR_diff_offset;
/* Analog Control Register */
u16 ACR;
/* Analog Control Register - Pen detect sensitivity mask */
#define AT91_SAMA5D2_ACR_PENDETSENS_MASK GENMASK(1, 0)
/* Analog Control Register - Source last channel */
#define AT91_SAMA5D2_ACR_SRCLCH BIT(16)
/* Touchscreen Mode Register */
u16 TSMR;
/* Touchscreen Mode Register - No touch mode */
#define AT91_SAMA5D2_TSMR_TSMODE_NONE 0
/* Touchscreen Mode Register - 4 wire screen, no pressure measurement */
#define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1
/* Touchscreen Mode Register - 4 wire screen, pressure measurement */
#define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS 2
/* Touchscreen Mode Register - 5 wire screen */
#define AT91_SAMA5D2_TSMR_TSMODE_5WIRE 3
/* Touchscreen Mode Register - Average samples mask */
#define AT91_SAMA5D2_TSMR_TSAV_MASK GENMASK(5, 4)
/* Touchscreen Mode Register - Average samples */
#define AT91_SAMA5D2_TSMR_TSAV(x) ((x) << 4)
/* Touchscreen Mode Register - Touch/trigger frequency ratio mask */
#define AT91_SAMA5D2_TSMR_TSFREQ_MASK GENMASK(11, 8)
/* Touchscreen Mode Register - Touch/trigger frequency ratio */
#define AT91_SAMA5D2_TSMR_TSFREQ(x) ((x) << 8)
/* Touchscreen Mode Register - Pen Debounce Time mask */
#define AT91_SAMA5D2_TSMR_PENDBC_MASK GENMASK(31, 28)
/* Touchscreen Mode Register - Pen Debounce Time */
#define AT91_SAMA5D2_TSMR_PENDBC(x) ((x) << 28)
/* Touchscreen Mode Register - No DMA for touch measurements */
#define AT91_SAMA5D2_TSMR_NOTSDMA BIT(22)
/* Touchscreen Mode Register - Disable pen detection */
#define AT91_SAMA5D2_TSMR_PENDET_DIS (0 << 24)
/* Touchscreen Mode Register - Enable pen detection */
#define AT91_SAMA5D2_TSMR_PENDET_ENA BIT(24)
/* Touchscreen X Position Register */
u16 XPOSR;
/* Touchscreen Y Position Register */
u16 YPOSR;
/* Touchscreen Pressure Register */
u16 PRESSR;
/* Trigger Register */
u16 TRGR;
/* Mask for TRGMOD field of TRGR register */
#define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0)
/* No trigger, only software trigger can start conversions */
#define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0
/* Trigger Mode external trigger rising edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1
/* Trigger Mode external trigger falling edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2
/* Trigger Mode external trigger any edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3
/* Trigger Mode internal periodic */
#define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5
/* Trigger Mode - trigger period mask */
#define AT91_SAMA5D2_TRGR_TRGPER_MASK GENMASK(31, 16)
/* Trigger Mode - trigger period */
#define AT91_SAMA5D2_TRGR_TRGPER(x) ((x) << 16)
/* Correction Select Register */
u16 COSR;
/* Correction Value Register */
u16 CVR;
/* Channel Error Correction Register */
u16 CECR;
/* Write Protection Mode Register */
u16 WPMR;
/* Write Protection Status Register */
u16 WPSR;
/* Version Register */
u16 VERSION;
/* Temperature Sensor Mode Register */
u16 TEMPMR;
/* Temperature Sensor Mode - Temperature sensor on */
#define AT91_SAMA5D2_TEMPMR_TEMPON BIT(0)
};
static const struct at91_adc_reg_layout sama5d2_layout = {
.CR = 0x00,
.MR = 0x04,
.SEQR1 = 0x08,
.SEQR2 = 0x0c,
.CHER = 0x10,
.CHDR = 0x14,
.CHSR = 0x18,
.LCDR = 0x20,
.IER = 0x24,
.IDR = 0x28,
.IMR = 0x2c,
.ISR = 0x30,
.LCTMR = 0x34,
.LCCWR = 0x38,
.OVER = 0x3c,
.EMR = 0x40,
.CWR = 0x44,
.CGR = 0x48,
.COR = 0x4c,
.COR_diff_offset = 16,
.ACR = 0x94,
.TSMR = 0xb0,
.XPOSR = 0xb4,
.YPOSR = 0xb8,
.PRESSR = 0xbc,
.TRGR = 0xc0,
.COSR = 0xd0,
.CVR = 0xd4,
.CECR = 0xd8,
.WPMR = 0xe4,
.WPSR = 0xe8,
.VERSION = 0xfc,
};
static const struct at91_adc_reg_layout sama7g5_layout = {
.CR = 0x00,
.MR = 0x04,
.SEQR1 = 0x08,
.SEQR2 = 0x0c,
.CHER = 0x10,
.CHDR = 0x14,
.CHSR = 0x18,
.LCDR = 0x20,
.IER = 0x24,
.IDR = 0x28,
.IMR = 0x2c,
.ISR = 0x30,
.EOC_IER = 0x34,
.EOC_IDR = 0x38,
.EOC_IMR = 0x3c,
.EOC_ISR = 0x40,
.TEMPMR = 0x44,
.OVER = 0x4c,
.EMR = 0x50,
.CWR = 0x54,
.COR = 0x5c,
.COR_diff_offset = 0,
.ACR = 0xe0,
.TRGR = 0x100,
.COSR = 0x104,
.CVR = 0x108,
.CECR = 0x10c,
.WPMR = 0x118,
.WPSR = 0x11c,
.VERSION = 0x130,
};
#define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US 2000 /* 2ms */
#define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US 200
#define AT91_SAMA5D2_XYZ_MASK GENMASK(11, 0)
#define AT91_SAMA5D2_MAX_POS_BITS 12
#define AT91_HWFIFO_MAX_SIZE_STR "128"
#define AT91_HWFIFO_MAX_SIZE 128
#define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr) \
{ \
.type = IIO_VOLTAGE, \
.channel = num, \
.address = addr, \
.scan_index = index, \
.scan_type = { \
.sign = 'u', \
.realbits = 14, \
.storagebits = 16, \
}, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.datasheet_name = "CH"#num, \
.indexed = 1, \
}
#define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr) \
{ \
.type = IIO_VOLTAGE, \
.differential = 1, \
.channel = num, \
.channel2 = num2, \
.address = addr, \
.scan_index = index, \
.scan_type = { \
.sign = 's', \
.realbits = 14, \
.storagebits = 16, \
}, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.datasheet_name = "CH"#num"-CH"#num2, \
.indexed = 1, \
}
#define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod) \
{ \
.type = IIO_POSITIONRELATIVE, \
.modified = 1, \
.channel = num, \
.channel2 = mod, \
.scan_index = num, \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.datasheet_name = name, \
}
#define AT91_SAMA5D2_CHAN_PRESSURE(num, name) \
{ \
.type = IIO_PRESSURE, \
.channel = num, \
.scan_index = num, \
.scan_type = { \
.sign = 'u', \
.realbits = 12, \
.storagebits = 16, \
}, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.datasheet_name = name, \
}
#define AT91_SAMA5D2_CHAN_TEMP(num, name, addr) \
{ \
.type = IIO_TEMP, \
.channel = num, \
.address = addr, \
.scan_index = num, \
.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
.info_mask_shared_by_all = \
BIT(IIO_CHAN_INFO_PROCESSED) | \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.info_mask_shared_by_all_available = \
BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO), \
.datasheet_name = name, \
}
#define at91_adc_readl(st, reg) \
readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg)
#define at91_adc_read_chan(st, reg) \
readl_relaxed((st)->base + reg)
#define at91_adc_writel(st, reg, val) \
writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg)
/**
* struct at91_adc_platform - at91-sama5d2 platform information struct
* @layout: pointer to the reg layout struct
* @adc_channels: pointer to an array of channels for registering in
* the iio subsystem
* @nr_channels: number of physical channels available
* @touch_chan_x: index of the touchscreen X channel
* @touch_chan_y: index of the touchscreen Y channel
* @touch_chan_p: index of the touchscreen P channel
* @max_channels: number of total channels
* @max_index: highest channel index (highest index may be higher
* than the total channel number)
* @hw_trig_cnt: number of possible hardware triggers
* @osr_mask: oversampling ratio bitmask on EMR register
* @oversampling_avail: available oversampling values
* @oversampling_avail_no: number of available oversampling values
* @chan_realbits: realbits for registered channels
* @temp_chan: temperature channel index
* @temp_sensor: temperature sensor supported
*/
struct at91_adc_platform {
const struct at91_adc_reg_layout *layout;
const struct iio_chan_spec (*adc_channels)[];
unsigned int nr_channels;
unsigned int touch_chan_x;
unsigned int touch_chan_y;
unsigned int touch_chan_p;
unsigned int max_channels;
unsigned int max_index;
unsigned int hw_trig_cnt;
unsigned int osr_mask;
unsigned int oversampling_avail[5];
unsigned int oversampling_avail_no;
unsigned int chan_realbits;
unsigned int temp_chan;
bool temp_sensor;
};
/**
* struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor
* calibration data structure
* @p1: P1 calibration temperature
* @p4: P4 calibration voltage
* @p6: P6 calibration voltage
*/
struct at91_adc_temp_sensor_clb {
u32 p1;
u32 p4;
u32 p6;
};
/**
* enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer
* @AT91_ADC_TS_CLB_IDX_P1: index for P1
* @AT91_ADC_TS_CLB_IDX_P4: index for P4
* @AT91_ADC_TS_CLB_IDX_P6: index for P6
* @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP
*/
enum at91_adc_ts_clb_idx {
AT91_ADC_TS_CLB_IDX_P1 = 2,
AT91_ADC_TS_CLB_IDX_P4 = 5,
AT91_ADC_TS_CLB_IDX_P6 = 7,
AT91_ADC_TS_CLB_IDX_MAX = 19,
};
/* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */
#define AT91_ADC_TS_VTEMP_DT (2080U)
/**
* struct at91_adc_soc_info - at91-sama5d2 soc information struct
* @startup_time: device startup time
* @min_sample_rate: minimum sample rate in Hz
* @max_sample_rate: maximum sample rate in Hz
* @platform: pointer to the platform structure
* @temp_sensor_clb: temperature sensor calibration data structure
*/
struct at91_adc_soc_info {
unsigned startup_time;
unsigned min_sample_rate;
unsigned max_sample_rate;
const struct at91_adc_platform *platform;
struct at91_adc_temp_sensor_clb temp_sensor_clb;
};
struct at91_adc_trigger {
char *name;
unsigned int trgmod_value;
unsigned int edge_type;
bool hw_trig;
};
/**
* struct at91_adc_dma - at91-sama5d2 dma information struct
* @dma_chan: the dma channel acquired
* @rx_buf: dma coherent allocated area
* @rx_dma_buf: dma handler for the buffer
* @phys_addr: physical address of the ADC base register
* @buf_idx: index inside the dma buffer where reading was last done
* @rx_buf_sz: size of buffer used by DMA operation
* @watermark: number of conversions to copy before DMA triggers irq
* @dma_ts: hold the start timestamp of dma operation
*/
struct at91_adc_dma {
struct dma_chan *dma_chan;
u8 *rx_buf;
dma_addr_t rx_dma_buf;
phys_addr_t phys_addr;
int buf_idx;
int rx_buf_sz;
int watermark;
s64 dma_ts;
};
/**
* struct at91_adc_touch - at91-sama5d2 touchscreen information struct
* @sample_period_val: the value for periodic trigger interval
* @touching: is the pen touching the screen or not
* @x_pos: temporary placeholder for pressure computation
* @channels_bitmask: bitmask with the touchscreen channels enabled
* @workq: workqueue for buffer data pushing
*/
struct at91_adc_touch {
u16 sample_period_val;
bool touching;
u16 x_pos;
unsigned long channels_bitmask;
struct work_struct workq;
};
/**
* struct at91_adc_temp - at91-sama5d2 temperature information structure
* @sample_period_val: sample period value
* @saved_sample_rate: saved sample rate
* @saved_oversampling: saved oversampling
*/
struct at91_adc_temp {
u16 sample_period_val;
u16 saved_sample_rate;
u16 saved_oversampling;
};
/*
* Buffer size requirements:
* No channels * bytes_per_channel(2) + timestamp bytes (8)
* Divided by 2 because we need half words.
* We assume 32 channels for now, has to be increased if needed.
* Nobody minds a buffer being too big.
*/
#define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2)
struct at91_adc_state {
void __iomem *base;
int irq;
struct clk *per_clk;
struct regulator *reg;
struct regulator *vref;
int vref_uv;
unsigned int current_sample_rate;
struct iio_trigger *trig;
const struct at91_adc_trigger *selected_trig;
const struct iio_chan_spec *chan;
bool conversion_done;
u32 conversion_value;
unsigned int oversampling_ratio;
struct at91_adc_soc_info soc_info;
wait_queue_head_t wq_data_available;
struct at91_adc_dma dma_st;
struct at91_adc_touch touch_st;
struct at91_adc_temp temp_st;
struct iio_dev *indio_dev;
struct device *dev;
/* Ensure naturally aligned timestamp */
u16 buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8);
/*
* lock to prevent concurrent 'single conversion' requests through
* sysfs.
*/
struct mutex lock;
};
static const struct at91_adc_trigger at91_adc_trigger_list[] = {
{
.name = "external_rising",
.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE,
.edge_type = IRQ_TYPE_EDGE_RISING,
.hw_trig = true,
},
{
.name = "external_falling",
.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL,
.edge_type = IRQ_TYPE_EDGE_FALLING,
.hw_trig = true,
},
{
.name = "external_any",
.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY,
.edge_type = IRQ_TYPE_EDGE_BOTH,
.hw_trig = true,
},
{
.name = "software",
.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER,
.edge_type = IRQ_TYPE_NONE,
.hw_trig = false,
},
};
static const struct iio_chan_spec at91_sama5d2_adc_channels[] = {
AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50),
AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54),
AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58),
AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c),
AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60),
AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64),
AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68),
AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c),
AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70),
AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74),
AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78),
AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c),
/* original ABI has the differential channels with a gap in between */
AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50),
AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58),
AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60),
AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68),
AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70),
AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78),
IIO_CHAN_SOFT_TIMESTAMP(23),
AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X),
AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y),
AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"),
};
static const struct iio_chan_spec at91_sama7g5_adc_channels[] = {
AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x60),
AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x64),
AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x68),
AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x6c),
AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x70),
AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x74),
AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x78),
AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x7c),
AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x80),
AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x84),
AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x88),
AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x8c),
AT91_SAMA5D2_CHAN_SINGLE(12, 12, 0x90),
AT91_SAMA5D2_CHAN_SINGLE(13, 13, 0x94),
AT91_SAMA5D2_CHAN_SINGLE(14, 14, 0x98),
AT91_SAMA5D2_CHAN_SINGLE(15, 15, 0x9c),
AT91_SAMA5D2_CHAN_DIFF(16, 0, 1, 0x60),
AT91_SAMA5D2_CHAN_DIFF(17, 2, 3, 0x68),
AT91_SAMA5D2_CHAN_DIFF(18, 4, 5, 0x70),
AT91_SAMA5D2_CHAN_DIFF(19, 6, 7, 0x78),
AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x80),
AT91_SAMA5D2_CHAN_DIFF(21, 10, 11, 0x88),
AT91_SAMA5D2_CHAN_DIFF(22, 12, 13, 0x90),
AT91_SAMA5D2_CHAN_DIFF(23, 14, 15, 0x98),
IIO_CHAN_SOFT_TIMESTAMP(24),
AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc),
};
static const struct at91_adc_platform sama5d2_platform = {
.layout = &sama5d2_layout,
.adc_channels = &at91_sama5d2_adc_channels,
#define AT91_SAMA5D2_SINGLE_CHAN_CNT 12
#define AT91_SAMA5D2_DIFF_CHAN_CNT 6
.nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT +
AT91_SAMA5D2_DIFF_CHAN_CNT,
#define AT91_SAMA5D2_TOUCH_X_CHAN_IDX (AT91_SAMA5D2_SINGLE_CHAN_CNT + \
AT91_SAMA5D2_DIFF_CHAN_CNT * 2)
.touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX,
#define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX (AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1)
.touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX,
#define AT91_SAMA5D2_TOUCH_P_CHAN_IDX (AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1)
.touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX,
#define AT91_SAMA5D2_MAX_CHAN_IDX AT91_SAMA5D2_TOUCH_P_CHAN_IDX
.max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels),
.max_index = AT91_SAMA5D2_MAX_CHAN_IDX,
#define AT91_SAMA5D2_HW_TRIG_CNT 3
.hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT,
.osr_mask = GENMASK(17, 16),
.oversampling_avail = { 1, 4, 16, },
.oversampling_avail_no = 3,
.chan_realbits = 14,
};
static const struct at91_adc_platform sama7g5_platform = {
.layout = &sama7g5_layout,
.adc_channels = &at91_sama7g5_adc_channels,
#define AT91_SAMA7G5_SINGLE_CHAN_CNT 16
#define AT91_SAMA7G5_DIFF_CHAN_CNT 8
#define AT91_SAMA7G5_TEMP_CHAN_CNT 1
.nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT +
AT91_SAMA7G5_DIFF_CHAN_CNT +
AT91_SAMA7G5_TEMP_CHAN_CNT,
#define AT91_SAMA7G5_MAX_CHAN_IDX (AT91_SAMA7G5_SINGLE_CHAN_CNT + \
AT91_SAMA7G5_DIFF_CHAN_CNT + \
AT91_SAMA7G5_TEMP_CHAN_CNT)
.max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels),
.max_index = AT91_SAMA7G5_MAX_CHAN_IDX,
#define AT91_SAMA7G5_HW_TRIG_CNT 3
.hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT,
.osr_mask = GENMASK(18, 16),
.oversampling_avail = { 1, 4, 16, 64, 256, },
.oversampling_avail_no = 5,
.chan_realbits = 16,
.temp_sensor = true,
.temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL,
};
static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan)
{
int i;
for (i = 0; i < indio_dev->num_channels; i++) {
if (indio_dev->channels[i].scan_index == chan)
return i;
}
return -EINVAL;
}
static inline struct iio_chan_spec const *
at91_adc_chan_get(struct iio_dev *indio_dev, int chan)
{
int index = at91_adc_chan_xlate(indio_dev, chan);
if (index < 0)
return NULL;
return indio_dev->channels + index;
}
static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev,
const struct fwnode_reference_args *iiospec)
{
return at91_adc_chan_xlate(indio_dev, iiospec->args[0]);
}
static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev)
{
u32 mask = 0;
u8 bit;
struct at91_adc_state *st = iio_priv(indio_dev);
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->num_channels) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
mask |= BIT(chan->channel);
}
return mask & GENMASK(st->soc_info.platform->nr_channels, 0);
}
static void at91_adc_cor(struct at91_adc_state *st,
struct iio_chan_spec const *chan)
{
u32 cor, cur_cor;
cor = BIT(chan->channel) | BIT(chan->channel2);
cur_cor = at91_adc_readl(st, COR);
cor <<= st->soc_info.platform->layout->COR_diff_offset;
if (chan->differential)
at91_adc_writel(st, COR, cur_cor | cor);
else
at91_adc_writel(st, COR, cur_cor & ~cor);
}
static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status,
u32 *eoc)
{
*status = at91_adc_readl(st, ISR);
if (st->soc_info.platform->layout->EOC_ISR)
*eoc = at91_adc_readl(st, EOC_ISR);
else
*eoc = *status;
}
static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc)
{
*status = at91_adc_readl(st, IMR);
if (st->soc_info.platform->layout->EOC_IMR)
*eoc = at91_adc_readl(st, EOC_IMR);
else
*eoc = *status;
}
static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel)
{
/*
* On some products having the EOC bits in a separate register,
* errata recommends not writing this register (EOC_IDR).
* On products having the EOC bits in the IDR register, it's fine to write it.
*/
if (!st->soc_info.platform->layout->EOC_IDR)
at91_adc_writel(st, IDR, BIT(channel));
}
static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel)
{
if (!st->soc_info.platform->layout->EOC_IDR)
at91_adc_writel(st, IER, BIT(channel));
else
at91_adc_writel(st, EOC_IER, BIT(channel));
}
static int at91_adc_config_emr(struct at91_adc_state *st,
u32 oversampling_ratio, u32 trackx)
{
/* configure the extended mode register */
unsigned int emr, osr;
unsigned int osr_mask = st->soc_info.platform->osr_mask;
int i, ret;
/* Check against supported oversampling values. */
for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) {
if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i])
break;
}
if (i == st->soc_info.platform->oversampling_avail_no)
return -EINVAL;
/* select oversampling ratio from configuration */
switch (oversampling_ratio) {
case 1:
osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES,
osr_mask);
break;
case 4:
osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES,
osr_mask);
break;
case 16:
osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES,
osr_mask);
break;
case 64:
osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES,
osr_mask);
break;
case 256:
osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES,
osr_mask);
break;
}
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
emr = at91_adc_readl(st, EMR);
/* select oversampling per single trigger event */
emr |= AT91_SAMA5D2_EMR_ASTE(1);
/* delete leftover content if it's the case */
emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK);
/* Update osr and trackx. */
emr |= osr | AT91_SAMA5D2_TRACKX(trackx);
at91_adc_writel(st, EMR, emr);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
st->oversampling_ratio = oversampling_ratio;
return 0;
}
static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val)
{
int nbits, diff;
if (st->oversampling_ratio == 1)
nbits = 12;
else if (st->oversampling_ratio == 4)
nbits = 13;
else if (st->oversampling_ratio == 16)
nbits = 14;
else if (st->oversampling_ratio == 64)
nbits = 15;
else if (st->oversampling_ratio == 256)
nbits = 16;
else
/* Should not happen. */
return -EINVAL;
/*
* We have nbits of real data and channel is registered as
* st->soc_info.platform->chan_realbits, so shift left diff bits.
*/
diff = st->soc_info.platform->chan_realbits - nbits;
*val <<= diff;
return IIO_VAL_INT;
}
static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf,
int len)
{
int i = 0, val;
u16 *buf_u16 = (u16 *) buf;
/*
* We are converting each two bytes (each sample).
* First convert the byte based array to u16, and convert each sample
* separately.
* Each value is two bytes in an array of chars, so to not shift
* more than we need, save the value separately.
* len is in bytes, so divide by two to get number of samples.
*/
while (i < len / 2) {
val = buf_u16[i];
at91_adc_adjust_val_osr(st, &val);
buf_u16[i] = val;
i++;
}
}
static int at91_adc_configure_touch(struct at91_adc_state *st, bool state)
{
u32 clk_khz = st->current_sample_rate / 1000;
int i = 0, ret;
u16 pendbc;
u32 tsmr, acr;
if (state) {
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
} else {
/* disabling touch IRQs and setting mode to no touch enabled */
at91_adc_writel(st, IDR,
AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN);
at91_adc_writel(st, TSMR, 0);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return 0;
}
/*
* debounce time is in microseconds, we need it in milliseconds to
* multiply with kilohertz, so, divide by 1000, but after the multiply.
* round up to make sure pendbc is at least 1
*/
pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US *
clk_khz / 1000, 1);
/* get the required exponent */
while (pendbc >> i++)
;
pendbc = i;
tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS;
tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK;
tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) &
AT91_SAMA5D2_TSMR_PENDBC_MASK;
tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA;
tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA;
tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK;
at91_adc_writel(st, TSMR, tsmr);
acr = at91_adc_readl(st, ACR);
acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK;
acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK;
at91_adc_writel(st, ACR, acr);
/* Sample Period Time = (TRGPER + 1) / ADCClock */
st->touch_st.sample_period_val =
round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US *
clk_khz / 1000) - 1, 1);
/* enable pen detect IRQ */
at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
return 0;
}
static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg)
{
u32 val = 0;
u32 scale, result, pos;
/*
* to obtain the actual position we must divide by scale
* and multiply with max, where
* max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1
*/
/* first half of register is the x or y, second half is the scale */
if (reg == st->soc_info.platform->layout->XPOSR)
val = at91_adc_readl(st, XPOSR);
else if (reg == st->soc_info.platform->layout->YPOSR)
val = at91_adc_readl(st, YPOSR);
if (!val)
dev_dbg(&st->indio_dev->dev, "pos is 0\n");
pos = val & AT91_SAMA5D2_XYZ_MASK;
result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos;
scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
if (scale == 0) {
dev_err(&st->indio_dev->dev, "scale is 0\n");
return 0;
}
result /= scale;
return result;
}
static u16 at91_adc_touch_x_pos(struct at91_adc_state *st)
{
st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR);
return st->touch_st.x_pos;
}
static u16 at91_adc_touch_y_pos(struct at91_adc_state *st)
{
return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR);
}
static u16 at91_adc_touch_pressure(struct at91_adc_state *st)
{
u32 val;
u32 z1, z2;
u32 pres;
u32 rxp = 1;
u32 factor = 1000;
/* calculate the pressure */
val = at91_adc_readl(st, PRESSR);
z1 = val & AT91_SAMA5D2_XYZ_MASK;
z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
if (z1 != 0)
pres = rxp * (st->touch_st.x_pos * factor / 1024) *
(z2 * factor / z1 - factor) /
factor;
else
pres = 0xFFFF; /* no pen contact */
/*
* The pressure from device grows down, minimum is 0xFFFF, maximum 0x0.
* We compute it this way, but let's return it in the expected way,
* growing from 0 to 0xFFFF.
*/
return 0xFFFF - pres;
}
static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val)
{
*val = 0;
if (!st->touch_st.touching)
return -ENODATA;
if (chan == st->soc_info.platform->touch_chan_x)
*val = at91_adc_touch_x_pos(st);
else if (chan == st->soc_info.platform->touch_chan_y)
*val = at91_adc_touch_y_pos(st);
else
return -ENODATA;
return IIO_VAL_INT;
}
static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val)
{
*val = 0;
if (!st->touch_st.touching)
return -ENODATA;
if (chan == st->soc_info.platform->touch_chan_p)
*val = at91_adc_touch_pressure(st);
else
return -ENODATA;
return IIO_VAL_INT;
}
static void at91_adc_configure_trigger_registers(struct at91_adc_state *st,
bool state)
{
u32 status = at91_adc_readl(st, TRGR);
/* clear TRGMOD */
status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK;
if (state)
status |= st->selected_trig->trgmod_value;
/* set/unset hw trigger */
at91_adc_writel(st, TRGR, status);
}
static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state)
{
struct iio_dev *indio = iio_trigger_get_drvdata(trig);
struct at91_adc_state *st = iio_priv(indio);
int ret;
if (state) {
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
}
at91_adc_configure_trigger_registers(st, state);
if (!state) {
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
}
return 0;
}
static void at91_adc_reenable_trigger(struct iio_trigger *trig)
{
struct iio_dev *indio = iio_trigger_get_drvdata(trig);
struct at91_adc_state *st = iio_priv(indio);
/* if we are using DMA, we must not reenable irq after each trigger */
if (st->dma_st.dma_chan)
return;
enable_irq(st->irq);
/* Needed to ACK the DRDY interruption */
at91_adc_readl(st, LCDR);
}
static const struct iio_trigger_ops at91_adc_trigger_ops = {
.set_trigger_state = &at91_adc_configure_trigger,
.reenable = &at91_adc_reenable_trigger,
.validate_device = iio_trigger_validate_own_device,
};
static int at91_adc_dma_size_done(struct at91_adc_state *st)
{
struct dma_tx_state state;
enum dma_status status;
int i, size;
status = dmaengine_tx_status(st->dma_st.dma_chan,
st->dma_st.dma_chan->cookie,
&state);
if (status != DMA_IN_PROGRESS)
return 0;
/* Transferred length is size in bytes from end of buffer */
i = st->dma_st.rx_buf_sz - state.residue;
/* Return available bytes */
if (i >= st->dma_st.buf_idx)
size = i - st->dma_st.buf_idx;
else
size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx;
return size;
}
static void at91_dma_buffer_done(void *data)
{
struct iio_dev *indio_dev = data;
iio_trigger_poll_chained(indio_dev->trig);
}
static int at91_adc_dma_start(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
struct dma_async_tx_descriptor *desc;
dma_cookie_t cookie;
int ret;
u8 bit;
if (!st->dma_st.dma_chan)
return 0;
/* we start a new DMA, so set buffer index to start */
st->dma_st.buf_idx = 0;
/*
* compute buffer size w.r.t. watermark and enabled channels.
* scan_bytes is aligned so we need an exact size for DMA
*/
st->dma_st.rx_buf_sz = 0;
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->num_channels) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
if (!chan)
continue;
st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8;
}
st->dma_st.rx_buf_sz *= st->dma_st.watermark;
/* Prepare a DMA cyclic transaction */
desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan,
st->dma_st.rx_dma_buf,
st->dma_st.rx_buf_sz,
st->dma_st.rx_buf_sz / 2,
DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
if (!desc) {
dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n");
return -EBUSY;
}
desc->callback = at91_dma_buffer_done;
desc->callback_param = indio_dev;
cookie = dmaengine_submit(desc);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n");
dmaengine_terminate_async(st->dma_st.dma_chan);
return ret;
}
/* enable general overrun error signaling */
at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE);
/* Issue pending DMA requests */
dma_async_issue_pending(st->dma_st.dma_chan);
/* consider current time as DMA start time for timestamps */
st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
dev_dbg(&indio_dev->dev, "DMA cyclic started\n");
return 0;
}
static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio,
struct at91_adc_state *st)
{
/* if using DMA, we do not use our own IRQ (we use DMA-controller) */
if (st->dma_st.dma_chan)
return false;
/* if the trigger is not ours, then it has its own IRQ */
if (iio_trigger_validate_own_device(indio->trig, indio))
return false;
return true;
}
static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
return !!bitmap_subset(indio_dev->active_scan_mask,
&st->touch_st.channels_bitmask,
st->soc_info.platform->max_index + 1);
}
static int at91_adc_buffer_prepare(struct iio_dev *indio_dev)
{
int ret;
u8 bit;
struct at91_adc_state *st = iio_priv(indio_dev);
/* check if we are enabling triggered buffer or the touchscreen */
if (at91_adc_current_chan_is_touch(indio_dev))
return at91_adc_configure_touch(st, true);
/* if we are not in triggered mode, we cannot enable the buffer. */
if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
return -EINVAL;
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
/* we continue with the triggered buffer */
ret = at91_adc_dma_start(indio_dev);
if (ret) {
dev_err(&indio_dev->dev, "buffer prepare failed\n");
goto pm_runtime_put;
}
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->num_channels) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
if (!chan)
continue;
/* these channel types cannot be handled by this trigger */
if (chan->type == IIO_POSITIONRELATIVE ||
chan->type == IIO_PRESSURE ||
chan->type == IIO_TEMP)
continue;
at91_adc_cor(st, chan);
at91_adc_writel(st, CHER, BIT(chan->channel));
}
if (at91_adc_buffer_check_use_irq(indio_dev, st))
at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY);
pm_runtime_put:
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return ret;
}
static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
u8 bit;
/* check if we are disabling triggered buffer or the touchscreen */
if (at91_adc_current_chan_is_touch(indio_dev))
return at91_adc_configure_touch(st, false);
/* if we are not in triggered mode, nothing to do here */
if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
return -EINVAL;
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
/*
* For each enable channel we must disable it in hardware.
* In the case of DMA, we must read the last converted value
* to clear EOC status and not get a possible interrupt later.
* This value is being read by DMA from LCDR anyway, so it's not lost.
*/
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->num_channels) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
if (!chan)
continue;
/* these channel types are virtual, no need to do anything */
if (chan->type == IIO_POSITIONRELATIVE ||
chan->type == IIO_PRESSURE ||
chan->type == IIO_TEMP)
continue;
at91_adc_writel(st, CHDR, BIT(chan->channel));
if (st->dma_st.dma_chan)
at91_adc_read_chan(st, chan->address);
}
if (at91_adc_buffer_check_use_irq(indio_dev, st))
at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY);
/* read overflow register to clear possible overflow status */
at91_adc_readl(st, OVER);
/* if we are using DMA we must clear registers and end DMA */
if (st->dma_st.dma_chan)
dmaengine_terminate_sync(st->dma_st.dma_chan);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return 0;
}
static const struct iio_buffer_setup_ops at91_buffer_setup_ops = {
.postdisable = &at91_adc_buffer_postdisable,
};
static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio,
char *trigger_name)
{
struct iio_trigger *trig;
int ret;
trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name,
iio_device_id(indio), trigger_name);
if (!trig)
return ERR_PTR(-ENOMEM);
trig->dev.parent = indio->dev.parent;
iio_trigger_set_drvdata(trig, indio);
trig->ops = &at91_adc_trigger_ops;
ret = devm_iio_trigger_register(&indio->dev, trig);
if (ret)
return ERR_PTR(ret);
return trig;
}
static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev,
struct iio_poll_func *pf)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int i = 0;
int val;
u8 bit;
u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev);
unsigned int timeout = 50;
u32 status, imr, eoc = 0, eoc_imr;
/*
* Check if the conversion is ready. If not, wait a little bit, and
* in case of timeout exit with an error.
*/
while (((eoc & mask) != mask) && timeout) {
at91_adc_irq_status(st, &status, &eoc);
at91_adc_irq_mask(st, &imr, &eoc_imr);
usleep_range(50, 100);
timeout--;
}
/* Cannot read data, not ready. Continue without reporting data */
if (!timeout)
return;
for_each_set_bit(bit, indio_dev->active_scan_mask,
indio_dev->num_channels) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
if (!chan)
continue;
/*
* Our external trigger only supports the voltage channels.
* In case someone requested a different type of channel
* just put zeroes to buffer.
* This should not happen because we check the scan mode
* and scan mask when we enable the buffer, and we don't allow
* the buffer to start with a mixed mask (voltage and something
* else).
* Thus, emit a warning.
*/
if (chan->type == IIO_VOLTAGE) {
val = at91_adc_read_chan(st, chan->address);
at91_adc_adjust_val_osr(st, &val);
st->buffer[i] = val;
} else {
st->buffer[i] = 0;
WARN(true, "This trigger cannot handle this type of channel");
}
i++;
}
iio_push_to_buffers_with_timestamp(indio_dev, st->buffer,
pf->timestamp);
}
static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int transferred_len = at91_adc_dma_size_done(st);
s64 ns = iio_get_time_ns(indio_dev);
s64 interval;
int sample_index = 0, sample_count, sample_size;
u32 status = at91_adc_readl(st, ISR);
/* if we reached this point, we cannot sample faster */
if (status & AT91_SAMA5D2_IER_GOVRE)
pr_info_ratelimited("%s: conversion overrun detected\n",
indio_dev->name);
sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark);
sample_count = div_s64(transferred_len, sample_size);
/*
* interval between samples is total time since last transfer handling
* divided by the number of samples (total size divided by sample size)
*/
interval = div_s64((ns - st->dma_st.dma_ts), sample_count);
while (transferred_len >= sample_size) {
/*
* for all the values in the current sample,
* adjust the values inside the buffer for oversampling
*/
at91_adc_adjust_val_osr_array(st,
&st->dma_st.rx_buf[st->dma_st.buf_idx],
sample_size);
iio_push_to_buffers_with_timestamp(indio_dev,
(st->dma_st.rx_buf + st->dma_st.buf_idx),
(st->dma_st.dma_ts + interval * sample_index));
/* adjust remaining length */
transferred_len -= sample_size;
/* adjust buffer index */
st->dma_st.buf_idx += sample_size;
/* in case of reaching end of buffer, reset index */
if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz)
st->dma_st.buf_idx = 0;
sample_index++;
}
/* adjust saved time for next transfer handling */
st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
}
static irqreturn_t at91_adc_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
struct at91_adc_state *st = iio_priv(indio_dev);
/*
* If it's not our trigger, start a conversion now, as we are
* actually polling the trigger now.
*/
if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
if (st->dma_st.dma_chan)
at91_adc_trigger_handler_dma(indio_dev);
else
at91_adc_trigger_handler_nodma(indio_dev, pf);
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
static unsigned at91_adc_startup_time(unsigned startup_time_min,
unsigned adc_clk_khz)
{
static const unsigned int startup_lookup[] = {
0, 8, 16, 24,
64, 80, 96, 112,
512, 576, 640, 704,
768, 832, 896, 960
};
unsigned ticks_min, i;
/*
* Since the adc frequency is checked before, there is no reason
* to not meet the startup time constraint.
*/
ticks_min = startup_time_min * adc_clk_khz / 1000;
for (i = 0; i < ARRAY_SIZE(startup_lookup); i++)
if (startup_lookup[i] > ticks_min)
break;
return i;
}
static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq,
unsigned int startup_time,
unsigned int tracktim)
{
struct at91_adc_state *st = iio_priv(indio_dev);
unsigned f_per, prescal, startup, mr;
int ret;
f_per = clk_get_rate(st->per_clk);
prescal = (f_per / (2 * freq)) - 1;
startup = at91_adc_startup_time(startup_time, freq / 1000);
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return;
mr = at91_adc_readl(st, MR);
mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK);
mr |= AT91_SAMA5D2_MR_STARTUP(startup);
mr |= AT91_SAMA5D2_MR_PRESCAL(prescal);
mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim);
at91_adc_writel(st, MR, mr);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n",
freq, startup, prescal, tracktim);
st->current_sample_rate = freq;
}
static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st)
{
return st->current_sample_rate;
}
static void at91_adc_touch_data_handler(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
u8 bit;
u16 val;
int i = 0;
for_each_set_bit(bit, indio_dev->active_scan_mask,
st->soc_info.platform->max_index + 1) {
struct iio_chan_spec const *chan =
at91_adc_chan_get(indio_dev, bit);
if (chan->type == IIO_POSITIONRELATIVE)
at91_adc_read_position(st, chan->channel, &val);
else if (chan->type == IIO_PRESSURE)
at91_adc_read_pressure(st, chan->channel, &val);
else
continue;
st->buffer[i] = val;
i++;
}
/*
* Schedule work to push to buffers.
* This is intended to push to the callback buffer that another driver
* registered. We are still in a handler from our IRQ. If we push
* directly, it means the other driver has it's callback called
* from our IRQ context. Which is something we better avoid.
* Let's schedule it after our IRQ is completed.
*/
schedule_work(&st->touch_st.workq);
}
static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st)
{
at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN);
at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN |
AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
AT91_SAMA5D2_IER_PRDY);
at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC |
AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val));
st->touch_st.touching = true;
}
static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER);
at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN |
AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
AT91_SAMA5D2_IER_PRDY);
st->touch_st.touching = false;
at91_adc_touch_data_handler(indio_dev);
at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
}
static void at91_adc_workq_handler(struct work_struct *workq)
{
struct at91_adc_touch *touch_st = container_of(workq,
struct at91_adc_touch, workq);
struct at91_adc_state *st = container_of(touch_st,
struct at91_adc_state, touch_st);
struct iio_dev *indio_dev = st->indio_dev;
iio_push_to_buffers(indio_dev, st->buffer);
}
static irqreturn_t at91_adc_interrupt(int irq, void *private)
{
struct iio_dev *indio = private;
struct at91_adc_state *st = iio_priv(indio);
u32 status, eoc, imr, eoc_imr;
u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
AT91_SAMA5D2_IER_PRDY;
at91_adc_irq_status(st, &status, &eoc);
at91_adc_irq_mask(st, &imr, &eoc_imr);
if (!(status & imr) && !(eoc & eoc_imr))
return IRQ_NONE;
if (status & AT91_SAMA5D2_IER_PEN) {
/* pen detected IRQ */
at91_adc_pen_detect_interrupt(st);
} else if ((status & AT91_SAMA5D2_IER_NOPEN)) {
/* nopen detected IRQ */
at91_adc_no_pen_detect_interrupt(indio);
} else if ((status & AT91_SAMA5D2_ISR_PENS) &&
((status & rdy_mask) == rdy_mask)) {
/* periodic trigger IRQ - during pen sense */
at91_adc_touch_data_handler(indio);
} else if (status & AT91_SAMA5D2_ISR_PENS) {
/*
* touching, but the measurements are not ready yet.
* read and ignore.
*/
status = at91_adc_readl(st, XPOSR);
status = at91_adc_readl(st, YPOSR);
status = at91_adc_readl(st, PRESSR);
} else if (iio_buffer_enabled(indio) &&
(status & AT91_SAMA5D2_IER_DRDY)) {
/* triggered buffer without DMA */
disable_irq_nosync(irq);
iio_trigger_poll(indio->trig);
} else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) {
/* triggered buffer with DMA - should not happen */
disable_irq_nosync(irq);
WARN(true, "Unexpected irq occurred\n");
} else if (!iio_buffer_enabled(indio)) {
/* software requested conversion */
st->conversion_value = at91_adc_read_chan(st, st->chan->address);
st->conversion_done = true;
wake_up_interruptible(&st->wq_data_available);
}
return IRQ_HANDLED;
}
/* This needs to be called with direct mode claimed and st->lock locked. */
static int at91_adc_read_info_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct at91_adc_state *st = iio_priv(indio_dev);
u16 tmp_val;
int ret;
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
/*
* Keep in mind that we cannot use software trigger or touchscreen
* if external trigger is enabled
*/
if (chan->type == IIO_POSITIONRELATIVE) {
ret = at91_adc_read_position(st, chan->channel,
&tmp_val);
*val = tmp_val;
if (ret > 0)
ret = at91_adc_adjust_val_osr(st, val);
goto pm_runtime_put;
}
if (chan->type == IIO_PRESSURE) {
ret = at91_adc_read_pressure(st, chan->channel,
&tmp_val);
*val = tmp_val;
if (ret > 0)
ret = at91_adc_adjust_val_osr(st, val);
goto pm_runtime_put;
}
/* in this case we have a voltage or temperature channel */
st->chan = chan;
at91_adc_cor(st, chan);
at91_adc_writel(st, CHER, BIT(chan->channel));
/*
* TEMPMR.TEMPON needs to update after CHER otherwise if none
* of the channels are enabled and TEMPMR.TEMPON = 1 will
* trigger DRDY interruption while preparing for temperature read.
*/
if (chan->type == IIO_TEMP)
at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON);
at91_adc_eoc_ena(st, chan->channel);
at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);
ret = wait_event_interruptible_timeout(st->wq_data_available,
st->conversion_done,
msecs_to_jiffies(1000));
if (ret == 0)
ret = -ETIMEDOUT;
if (ret > 0) {
*val = st->conversion_value;
ret = at91_adc_adjust_val_osr(st, val);
if (chan->scan_type.sign == 's')
*val = sign_extend32(*val,
chan->scan_type.realbits - 1);
st->conversion_done = false;
}
at91_adc_eoc_dis(st, st->chan->channel);
if (chan->type == IIO_TEMP)
at91_adc_writel(st, TEMPMR, 0U);
at91_adc_writel(st, CHDR, BIT(chan->channel));
/* Needed to ACK the DRDY interruption */
at91_adc_readl(st, LCDR);
pm_runtime_put:
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return ret;
}
static int at91_adc_read_info_locked(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = at91_adc_read_info_raw(indio_dev, chan, val);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret;
}
static void at91_adc_temp_sensor_configure(struct at91_adc_state *st,
bool start)
{
u32 sample_rate, oversampling_ratio;
u32 startup_time, tracktim, trackx;
if (start) {
/*
* Configure the sensor for best accuracy: 10MHz frequency,
* oversampling rate of 256, tracktim=0xf and trackx=1.
*/
sample_rate = 10 * MEGA;
oversampling_ratio = 256;
startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN;
tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS;
trackx = AT91_SAMA5D2_TRACKX_TS;
st->temp_st.saved_sample_rate = st->current_sample_rate;
st->temp_st.saved_oversampling = st->oversampling_ratio;
} else {
/* Go back to previous settings. */
sample_rate = st->temp_st.saved_sample_rate;
oversampling_ratio = st->temp_st.saved_oversampling;
startup_time = st->soc_info.startup_time;
tracktim = 0;
trackx = 0;
}
at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time,
tracktim);
at91_adc_config_emr(st, oversampling_ratio, trackx);
}
static int at91_adc_read_temp(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan, int *val)
{
struct at91_adc_state *st = iio_priv(indio_dev);
struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
u64 div1, div2;
u32 tmp;
int ret, vbg, vtemp;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
goto unlock;
at91_adc_temp_sensor_configure(st, true);
/* Read VBG. */
tmp = at91_adc_readl(st, ACR);
tmp |= AT91_SAMA5D2_ACR_SRCLCH;
at91_adc_writel(st, ACR, tmp);
ret = at91_adc_read_info_raw(indio_dev, chan, &vbg);
if (ret < 0)
goto restore_config;
/* Read VTEMP. */
tmp &= ~AT91_SAMA5D2_ACR_SRCLCH;
at91_adc_writel(st, ACR, tmp);
ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp);
restore_config:
/* Revert previous settings. */
at91_adc_temp_sensor_configure(st, false);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
unlock:
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
if (ret < 0)
return ret;
/*
* Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/
* (vbg * AT91_ADC_TS_VTEMP_DT)
*/
div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg);
div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT);
div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT);
div2 *= 1000;
*val = clb->p1 + (int)div1 - (int)div2;
return ret;
}
static int at91_adc_read_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int *val, int *val2, long mask)
{
struct at91_adc_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_RAW:
return at91_adc_read_info_locked(indio_dev, chan, val);
case IIO_CHAN_INFO_SCALE:
*val = st->vref_uv / 1000;
if (chan->differential)
*val *= 2;
*val2 = chan->scan_type.realbits;
return IIO_VAL_FRACTIONAL_LOG2;
case IIO_CHAN_INFO_PROCESSED:
if (chan->type != IIO_TEMP)
return -EINVAL;
return at91_adc_read_temp(indio_dev, chan, val);
case IIO_CHAN_INFO_SAMP_FREQ:
*val = at91_adc_get_sample_freq(st);
return IIO_VAL_INT;
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*val = st->oversampling_ratio;
return IIO_VAL_INT;
default:
return -EINVAL;
}
}
static int at91_adc_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
/* if no change, optimize out */
if (val == st->oversampling_ratio)
return 0;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
/* update ratio */
ret = at91_adc_config_emr(st, val, 0);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SAMP_FREQ:
if (val < st->soc_info.min_sample_rate ||
val > st->soc_info.max_sample_rate)
return -EINVAL;
ret = iio_device_claim_direct_mode(indio_dev);
if (ret)
return ret;
mutex_lock(&st->lock);
at91_adc_setup_samp_freq(indio_dev, val,
st->soc_info.startup_time, 0);
mutex_unlock(&st->lock);
iio_device_release_direct_mode(indio_dev);
return 0;
default:
return -EINVAL;
}
}
static int at91_adc_read_avail(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
const int **vals, int *type, int *length,
long mask)
{
struct at91_adc_state *st = iio_priv(indio_dev);
switch (mask) {
case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
*vals = (int *)st->soc_info.platform->oversampling_avail;
*type = IIO_VAL_INT;
*length = st->soc_info.platform->oversampling_avail_no;
return IIO_AVAIL_LIST;
default:
return -EINVAL;
}
}
static void at91_adc_dma_init(struct at91_adc_state *st)
{
struct device *dev = &st->indio_dev->dev;
struct dma_slave_config config = {0};
/* we have 2 bytes for each channel */
unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
/*
* We make the buffer double the size of the fifo,
* such that DMA uses one half of the buffer (full fifo size)
* and the software uses the other half to read/write.
*/
unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
sample_size * 2, PAGE_SIZE);
if (st->dma_st.dma_chan)
return;
st->dma_st.dma_chan = dma_request_chan(dev, "rx");
if (IS_ERR(st->dma_st.dma_chan)) {
dev_info(dev, "can't get DMA channel\n");
st->dma_st.dma_chan = NULL;
goto dma_exit;
}
st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev,
pages * PAGE_SIZE,
&st->dma_st.rx_dma_buf,
GFP_KERNEL);
if (!st->dma_st.rx_buf) {
dev_info(dev, "can't allocate coherent DMA area\n");
goto dma_chan_disable;
}
/* Configure DMA channel to read data register */
config.direction = DMA_DEV_TO_MEM;
config.src_addr = (phys_addr_t)(st->dma_st.phys_addr
+ st->soc_info.platform->layout->LCDR);
config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
config.src_maxburst = 1;
config.dst_maxburst = 1;
if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) {
dev_info(dev, "can't configure DMA slave\n");
goto dma_free_area;
}
dev_info(dev, "using %s for rx DMA transfers\n",
dma_chan_name(st->dma_st.dma_chan));
return;
dma_free_area:
dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
dma_chan_disable:
dma_release_channel(st->dma_st.dma_chan);
st->dma_st.dma_chan = NULL;
dma_exit:
dev_info(dev, "continuing without DMA support\n");
}
static void at91_adc_dma_disable(struct at91_adc_state *st)
{
struct device *dev = &st->indio_dev->dev;
/* we have 2 bytes for each channel */
unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
sample_size * 2, PAGE_SIZE);
/* if we are not using DMA, just return */
if (!st->dma_st.dma_chan)
return;
/* wait for all transactions to be terminated first*/
dmaengine_terminate_sync(st->dma_st.dma_chan);
dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
dma_release_channel(st->dma_st.dma_chan);
st->dma_st.dma_chan = NULL;
dev_info(dev, "continuing without DMA support\n");
}
static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
if (val > AT91_HWFIFO_MAX_SIZE)
val = AT91_HWFIFO_MAX_SIZE;
if (!st->selected_trig->hw_trig) {
dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n");
return 0;
}
dev_dbg(&indio_dev->dev, "new watermark is %u\n", val);
st->dma_st.watermark = val;
/*
* The logic here is: if we have watermark 1, it means we do
* each conversion with it's own IRQ, thus we don't need DMA.
* If the watermark is higher, we do DMA to do all the transfers in bulk
*/
if (val == 1)
at91_adc_dma_disable(st);
else if (val > 1)
at91_adc_dma_init(st);
/*
* We can start the DMA only after setting the watermark and
* having the DMA initialization completed
*/
ret = at91_adc_buffer_prepare(indio_dev);
if (ret)
at91_adc_dma_disable(st);
return ret;
}
static int at91_adc_update_scan_mode(struct iio_dev *indio_dev,
const unsigned long *scan_mask)
{
struct at91_adc_state *st = iio_priv(indio_dev);
if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask,
st->soc_info.platform->max_index + 1))
return 0;
/*
* if the new bitmap is a combination of touchscreen and regular
* channels, then we are not fine
*/
if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask,
st->soc_info.platform->max_index + 1))
return -EINVAL;
return 0;
}
static void at91_adc_hw_init(struct iio_dev *indio_dev)
{
struct at91_adc_state *st = iio_priv(indio_dev);
at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
if (st->soc_info.platform->layout->EOC_IDR)
at91_adc_writel(st, EOC_IDR, 0xffffffff);
at91_adc_writel(st, IDR, 0xffffffff);
/*
* Transfer field must be set to 2 according to the datasheet and
* allows different analog settings for each channel.
*/
at91_adc_writel(st, MR,
AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH);
at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate,
st->soc_info.startup_time, 0);
/* configure extended mode register */
at91_adc_config_emr(st, st->oversampling_ratio, 0);
}
static ssize_t at91_adc_get_fifo_state(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan);
}
static ssize_t at91_adc_get_watermark(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct iio_dev *indio_dev = dev_to_iio_dev(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
return sysfs_emit(buf, "%d\n", st->dma_st.watermark);
}
static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
at91_adc_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
at91_adc_get_watermark, NULL, 0);
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2");
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR);
static const struct iio_dev_attr *at91_adc_fifo_attributes[] = {
&iio_dev_attr_hwfifo_watermark_min,
&iio_dev_attr_hwfifo_watermark_max,
&iio_dev_attr_hwfifo_watermark,
&iio_dev_attr_hwfifo_enabled,
NULL,
};
static const struct iio_info at91_adc_info = {
.read_avail = &at91_adc_read_avail,
.read_raw = &at91_adc_read_raw,
.write_raw = &at91_adc_write_raw,
.update_scan_mode = &at91_adc_update_scan_mode,
.fwnode_xlate = &at91_adc_fwnode_xlate,
.hwfifo_set_watermark = &at91_adc_set_watermark,
};
static int at91_adc_buffer_and_trigger_init(struct device *dev,
struct iio_dev *indio)
{
struct at91_adc_state *st = iio_priv(indio);
const struct iio_dev_attr **fifo_attrs;
int ret;
if (st->selected_trig->hw_trig)
fifo_attrs = at91_adc_fifo_attributes;
else
fifo_attrs = NULL;
ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio,
&iio_pollfunc_store_time, &at91_adc_trigger_handler,
IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs);
if (ret < 0) {
dev_err(dev, "couldn't initialize the buffer.\n");
return ret;
}
if (!st->selected_trig->hw_trig)
return 0;
st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name);
if (IS_ERR(st->trig)) {
dev_err(dev, "could not allocate trigger\n");
return PTR_ERR(st->trig);
}
/*
* Initially the iio buffer has a length of 2 and
* a watermark of 1
*/
st->dma_st.watermark = 1;
return 0;
}
static int at91_adc_temp_sensor_init(struct at91_adc_state *st,
struct device *dev)
{
struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
struct nvmem_cell *temp_calib;
u32 *buf;
size_t len;
int ret = 0;
if (!st->soc_info.platform->temp_sensor)
return 0;
/* Get the calibration data from NVMEM. */
temp_calib = devm_nvmem_cell_get(dev, "temperature_calib");
if (IS_ERR(temp_calib)) {
ret = PTR_ERR(temp_calib);
if (ret != -ENOENT)
dev_err(dev, "Failed to get temperature_calib cell!\n");
return ret;
}
buf = nvmem_cell_read(temp_calib, &len);
if (IS_ERR(buf)) {
dev_err(dev, "Failed to read calibration data!\n");
return PTR_ERR(buf);
}
if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) {
dev_err(dev, "Invalid calibration data!\n");
ret = -EINVAL;
goto free_buf;
}
/* Store calibration data for later use. */
clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1];
clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4];
clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6];
/*
* We prepare here the conversion to milli to avoid doing it on hotpath.
*/
clb->p1 = clb->p1 * 1000;
free_buf:
kfree(buf);
return ret;
}
static int at91_adc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct iio_dev *indio_dev;
struct at91_adc_state *st;
struct resource *res;
int ret, i, num_channels;
u32 edge_type = IRQ_TYPE_NONE;
indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st));
if (!indio_dev)
return -ENOMEM;
st = iio_priv(indio_dev);
st->indio_dev = indio_dev;
st->soc_info.platform = device_get_match_data(dev);
ret = at91_adc_temp_sensor_init(st, &pdev->dev);
/* Don't register temperature channel if initialization failed. */
if (ret)
num_channels = st->soc_info.platform->max_channels - 1;
else
num_channels = st->soc_info.platform->max_channels;
indio_dev->name = dev_name(&pdev->dev);
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
indio_dev->info = &at91_adc_info;
indio_dev->channels = *st->soc_info.platform->adc_channels;
indio_dev->num_channels = num_channels;
bitmap_set(&st->touch_st.channels_bitmask,
st->soc_info.platform->touch_chan_x, 1);
bitmap_set(&st->touch_st.channels_bitmask,
st->soc_info.platform->touch_chan_y, 1);
bitmap_set(&st->touch_st.channels_bitmask,
st->soc_info.platform->touch_chan_p, 1);
st->oversampling_ratio = 1;
ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz",
&st->soc_info.min_sample_rate);
if (ret) {
dev_err(&pdev->dev,
"invalid or missing value for atmel,min-sample-rate-hz\n");
return ret;
}
ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz",
&st->soc_info.max_sample_rate);
if (ret) {
dev_err(&pdev->dev,
"invalid or missing value for atmel,max-sample-rate-hz\n");
return ret;
}
ret = device_property_read_u32(dev, "atmel,startup-time-ms",
&st->soc_info.startup_time);
if (ret) {
dev_err(&pdev->dev,
"invalid or missing value for atmel,startup-time-ms\n");
return ret;
}
ret = device_property_read_u32(dev, "atmel,trigger-edge-type",
&edge_type);
if (ret) {
dev_dbg(&pdev->dev,
"atmel,trigger-edge-type not specified, only software trigger available\n");
}
st->selected_trig = NULL;
/* find the right trigger, or no trigger at all */
for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++)
if (at91_adc_trigger_list[i].edge_type == edge_type) {
st->selected_trig = &at91_adc_trigger_list[i];
break;
}
if (!st->selected_trig) {
dev_err(&pdev->dev, "invalid external trigger edge value\n");
return -EINVAL;
}
init_waitqueue_head(&st->wq_data_available);
mutex_init(&st->lock);
INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler);
st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(st->base))
return PTR_ERR(st->base);
/* if we plan to use DMA, we need the physical address of the regs */
st->dma_st.phys_addr = res->start;
st->irq = platform_get_irq(pdev, 0);
if (st->irq <= 0) {
if (!st->irq)
st->irq = -ENXIO;
return st->irq;
}
st->per_clk = devm_clk_get(&pdev->dev, "adc_clk");
if (IS_ERR(st->per_clk))
return PTR_ERR(st->per_clk);
st->reg = devm_regulator_get(&pdev->dev, "vddana");
if (IS_ERR(st->reg))
return PTR_ERR(st->reg);
st->vref = devm_regulator_get(&pdev->dev, "vref");
if (IS_ERR(st->vref))
return PTR_ERR(st->vref);
ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0,
pdev->dev.driver->name, indio_dev);
if (ret)
return ret;
ret = regulator_enable(st->reg);
if (ret)
return ret;
ret = regulator_enable(st->vref);
if (ret)
goto reg_disable;
st->vref_uv = regulator_get_voltage(st->vref);
if (st->vref_uv <= 0) {
ret = -EINVAL;
goto vref_disable;
}
ret = clk_prepare_enable(st->per_clk);
if (ret)
goto vref_disable;
platform_set_drvdata(pdev, indio_dev);
st->dev = &pdev->dev;
pm_runtime_set_autosuspend_delay(st->dev, 500);
pm_runtime_use_autosuspend(st->dev);
pm_runtime_set_active(st->dev);
pm_runtime_enable(st->dev);
pm_runtime_get_noresume(st->dev);
at91_adc_hw_init(indio_dev);
ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev);
if (ret < 0)
goto err_pm_disable;
if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32)))
dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n");
ret = iio_device_register(indio_dev);
if (ret < 0)
goto dma_disable;
if (st->selected_trig->hw_trig)
dev_info(&pdev->dev, "setting up trigger as %s\n",
st->selected_trig->name);
dev_info(&pdev->dev, "version: %x\n",
readl_relaxed(st->base + st->soc_info.platform->layout->VERSION));
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return 0;
dma_disable:
at91_adc_dma_disable(st);
err_pm_disable:
pm_runtime_put_noidle(st->dev);
pm_runtime_disable(st->dev);
pm_runtime_set_suspended(st->dev);
pm_runtime_dont_use_autosuspend(st->dev);
clk_disable_unprepare(st->per_clk);
vref_disable:
regulator_disable(st->vref);
reg_disable:
regulator_disable(st->reg);
return ret;
}
static int at91_adc_remove(struct platform_device *pdev)
{
struct iio_dev *indio_dev = platform_get_drvdata(pdev);
struct at91_adc_state *st = iio_priv(indio_dev);
iio_device_unregister(indio_dev);
at91_adc_dma_disable(st);
pm_runtime_disable(st->dev);
pm_runtime_set_suspended(st->dev);
clk_disable_unprepare(st->per_clk);
regulator_disable(st->vref);
regulator_disable(st->reg);
return 0;
}
static int at91_adc_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
ret = pm_runtime_resume_and_get(st->dev);
if (ret < 0)
return ret;
if (iio_buffer_enabled(indio_dev))
at91_adc_buffer_postdisable(indio_dev);
/*
* Do a sofware reset of the ADC before we go to suspend.
* this will ensure that all pins are free from being muxed by the ADC
* and can be used by for other devices.
* Otherwise, ADC will hog them and we can't go to suspend mode.
*/
at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_noidle(st->dev);
clk_disable_unprepare(st->per_clk);
regulator_disable(st->vref);
regulator_disable(st->reg);
return pinctrl_pm_select_sleep_state(dev);
}
static int at91_adc_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
int ret;
ret = pinctrl_pm_select_default_state(dev);
if (ret)
goto resume_failed;
ret = regulator_enable(st->reg);
if (ret)
goto resume_failed;
ret = regulator_enable(st->vref);
if (ret)
goto reg_disable_resume;
ret = clk_prepare_enable(st->per_clk);
if (ret)
goto vref_disable_resume;
pm_runtime_get_noresume(st->dev);
at91_adc_hw_init(indio_dev);
/* reconfiguring trigger hardware state */
if (iio_buffer_enabled(indio_dev)) {
ret = at91_adc_buffer_prepare(indio_dev);
if (ret)
goto pm_runtime_put;
at91_adc_configure_trigger_registers(st, true);
}
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_autosuspend(st->dev);
return 0;
pm_runtime_put:
pm_runtime_mark_last_busy(st->dev);
pm_runtime_put_noidle(st->dev);
clk_disable_unprepare(st->per_clk);
vref_disable_resume:
regulator_disable(st->vref);
reg_disable_resume:
regulator_disable(st->reg);
resume_failed:
dev_err(&indio_dev->dev, "failed to resume\n");
return ret;
}
static int at91_adc_runtime_suspend(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
clk_disable(st->per_clk);
return 0;
}
static int at91_adc_runtime_resume(struct device *dev)
{
struct iio_dev *indio_dev = dev_get_drvdata(dev);
struct at91_adc_state *st = iio_priv(indio_dev);
return clk_enable(st->per_clk);
}
static const struct dev_pm_ops at91_adc_pm_ops = {
SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume)
RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume,
NULL)
};
static const struct of_device_id at91_adc_dt_match[] = {
{
.compatible = "atmel,sama5d2-adc",
.data = (const void *)&sama5d2_platform,
}, {
.compatible = "microchip,sama7g5-adc",
.data = (const void *)&sama7g5_platform,
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, at91_adc_dt_match);
static struct platform_driver at91_adc_driver = {
.probe = at91_adc_probe,
.remove = at91_adc_remove,
.driver = {
.name = "at91-sama5d2_adc",
.of_match_table = at91_adc_dt_match,
.pm = pm_ptr(&at91_adc_pm_ops),
},
};
module_platform_driver(at91_adc_driver)
MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>");
MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com");
MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC");
MODULE_LICENSE("GPL v2");