linux-zen-desktop/drivers/infiniband/hw/bnxt_re/qplib_sp.c

825 lines
25 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/*
* Broadcom NetXtreme-E RoCE driver.
*
* Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term
* Broadcom refers to Broadcom Limited and/or its subsidiaries.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* BSD license below:
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
* OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
* IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Description: Slow Path Operators
*/
#define dev_fmt(fmt) "QPLIB: " fmt
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include "roce_hsi.h"
#include "qplib_res.h"
#include "qplib_rcfw.h"
#include "qplib_sp.h"
const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 } };
/* Device */
static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
{
u16 pcie_ctl2 = 0;
if (!bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx))
return false;
pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
}
static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
char *fw_ver)
{
struct cmdq_query_version req;
struct creq_query_version_resp resp;
u16 cmd_flags = 0;
int rc = 0;
RCFW_CMD_PREP(req, QUERY_VERSION, cmd_flags);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, 0);
if (rc)
return;
fw_ver[0] = resp.fw_maj;
fw_ver[1] = resp.fw_minor;
fw_ver[2] = resp.fw_bld;
fw_ver[3] = resp.fw_rsvd;
}
int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
struct bnxt_qplib_dev_attr *attr, bool vf)
{
struct cmdq_query_func req;
struct creq_query_func_resp resp;
struct bnxt_qplib_rcfw_sbuf *sbuf;
struct creq_query_func_resp_sb *sb;
u16 cmd_flags = 0;
u32 temp;
u8 *tqm_alloc;
int i, rc = 0;
RCFW_CMD_PREP(req, QUERY_FUNC, cmd_flags);
sbuf = bnxt_qplib_rcfw_alloc_sbuf(rcfw, sizeof(*sb));
if (!sbuf) {
dev_err(&rcfw->pdev->dev,
"SP: QUERY_FUNC alloc side buffer failed\n");
return -ENOMEM;
}
sb = sbuf->sb;
req.resp_size = sizeof(*sb) / BNXT_QPLIB_CMDQE_UNITS;
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp,
(void *)sbuf, 0);
if (rc)
goto bail;
/* Extract the context from the side buffer */
attr->max_qp = le32_to_cpu(sb->max_qp);
/* max_qp value reported by FW for PF doesn't include the QP1 for PF */
if (!vf)
attr->max_qp += 1;
attr->max_qp_rd_atom =
sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
attr->max_qp_init_rd_atom =
sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
/*
* 128 WQEs needs to be reserved for the HW (8916). Prevent
* reporting the max number
*/
attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5(rcfw->res->cctx) ?
6 : sb->max_sge;
attr->max_cq = le32_to_cpu(sb->max_cq);
attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
attr->max_cq_sges = attr->max_qp_sges;
attr->max_mr = le32_to_cpu(sb->max_mr);
attr->max_mw = le32_to_cpu(sb->max_mw);
attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
attr->max_pd = 64 * 1024;
attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
attr->max_ah = le32_to_cpu(sb->max_ah);
attr->max_srq = le16_to_cpu(sb->max_srq);
attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
attr->max_srq_sges = sb->max_srq_sge;
attr->max_pkey = 1;
attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
attr->l2_db_size = (sb->l2_db_space_size + 1) *
(0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED;
attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
bnxt_qplib_query_version(rcfw, attr->fw_ver);
for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
tqm_alloc = (u8 *)&temp;
attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
}
attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
bail:
bnxt_qplib_rcfw_free_sbuf(rcfw, sbuf);
return rc;
}
int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
struct bnxt_qplib_rcfw *rcfw,
struct bnxt_qplib_ctx *ctx)
{
struct cmdq_set_func_resources req;
struct creq_set_func_resources_resp resp;
u16 cmd_flags = 0;
int rc = 0;
RCFW_CMD_PREP(req, SET_FUNC_RESOURCES, cmd_flags);
req.number_of_qp = cpu_to_le32(ctx->qpc_count);
req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
req.number_of_srq = cpu_to_le32(ctx->srqc_count);
req.number_of_cq = cpu_to_le32(ctx->cq_count);
req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp,
NULL, 0);
if (rc) {
dev_err(&res->pdev->dev, "Failed to set function resources\n");
}
return rc;
}
/* SGID */
int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
struct bnxt_qplib_gid *gid)
{
if (index >= sgid_tbl->max) {
dev_err(&res->pdev->dev,
"Index %d exceeded SGID table max (%d)\n",
index, sgid_tbl->max);
return -EINVAL;
}
memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
return 0;
}
int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
{
struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
struct bnxt_qplib_res,
sgid_tbl);
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
int index;
if (!sgid_tbl) {
dev_err(&res->pdev->dev, "SGID table not allocated\n");
return -EINVAL;
}
/* Do we need a sgid_lock here? */
if (!sgid_tbl->active) {
dev_err(&res->pdev->dev, "SGID table has no active entries\n");
return -ENOMEM;
}
for (index = 0; index < sgid_tbl->max; index++) {
if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
vlan_id == sgid_tbl->tbl[index].vlan_id)
break;
}
if (index == sgid_tbl->max) {
dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
return 0;
}
/* Remove GID from the SGID table */
if (update) {
struct cmdq_delete_gid req;
struct creq_delete_gid_resp resp;
u16 cmd_flags = 0;
int rc;
RCFW_CMD_PREP(req, DELETE_GID, cmd_flags);
if (sgid_tbl->hw_id[index] == 0xFFFF) {
dev_err(&res->pdev->dev,
"GID entry contains an invalid HW id\n");
return -EINVAL;
}
req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, 0);
if (rc)
return rc;
}
memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero));
sgid_tbl->tbl[index].vlan_id = 0xFFFF;
sgid_tbl->vlan[index] = 0;
sgid_tbl->active--;
dev_dbg(&res->pdev->dev,
"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
index, sgid_tbl->hw_id[index], sgid_tbl->active);
sgid_tbl->hw_id[index] = (u16)-1;
/* unlock */
return 0;
}
int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
struct bnxt_qplib_gid *gid, const u8 *smac,
u16 vlan_id, bool update, u32 *index)
{
struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
struct bnxt_qplib_res,
sgid_tbl);
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
int i, free_idx;
if (!sgid_tbl) {
dev_err(&res->pdev->dev, "SGID table not allocated\n");
return -EINVAL;
}
/* Do we need a sgid_lock here? */
if (sgid_tbl->active == sgid_tbl->max) {
dev_err(&res->pdev->dev, "SGID table is full\n");
return -ENOMEM;
}
free_idx = sgid_tbl->max;
for (i = 0; i < sgid_tbl->max; i++) {
if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
sgid_tbl->tbl[i].vlan_id == vlan_id) {
dev_dbg(&res->pdev->dev,
"SGID entry already exist in entry %d!\n", i);
*index = i;
return -EALREADY;
} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
sizeof(bnxt_qplib_gid_zero)) &&
free_idx == sgid_tbl->max) {
free_idx = i;
}
}
if (free_idx == sgid_tbl->max) {
dev_err(&res->pdev->dev,
"SGID table is FULL but count is not MAX??\n");
return -ENOMEM;
}
if (update) {
struct cmdq_add_gid req;
struct creq_add_gid_resp resp;
u16 cmd_flags = 0;
int rc;
RCFW_CMD_PREP(req, ADD_GID, cmd_flags);
req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
/*
* driver should ensure that all RoCE traffic is always VLAN
* tagged if RoCE traffic is running on non-zero VLAN ID or
* RoCE traffic is running on non-zero Priority.
*/
if ((vlan_id != 0xFFFF) || res->prio) {
if (vlan_id != 0xFFFF)
req.vlan = cpu_to_le16
(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
req.vlan |= cpu_to_le16
(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
CMDQ_ADD_GID_VLAN_VLAN_EN);
}
/* MAC in network format */
req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, 0);
if (rc)
return rc;
sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
}
/* Add GID to the sgid_tbl */
memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
sgid_tbl->active++;
if (vlan_id != 0xFFFF)
sgid_tbl->vlan[free_idx] = 1;
dev_dbg(&res->pdev->dev,
"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
*index = free_idx;
/* unlock */
return 0;
}
int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
struct bnxt_qplib_gid *gid, u16 gid_idx,
const u8 *smac)
{
struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
struct bnxt_qplib_res,
sgid_tbl);
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct creq_modify_gid_resp resp;
struct cmdq_modify_gid req;
int rc;
u16 cmd_flags = 0;
RCFW_CMD_PREP(req, MODIFY_GID, cmd_flags);
req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
if (res->prio) {
req.vlan |= cpu_to_le16
(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
CMDQ_ADD_GID_VLAN_VLAN_EN);
}
/* MAC in network format */
req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
req.gid_index = cpu_to_le16(gid_idx);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, 0);
return rc;
}
/* AH */
int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
bool block)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_create_ah req;
struct creq_create_ah_resp resp;
u16 cmd_flags = 0;
u32 temp32[4];
u16 temp16[3];
int rc;
RCFW_CMD_PREP(req, CREATE_AH, cmd_flags);
memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
req.dgid[0] = cpu_to_le32(temp32[0]);
req.dgid[1] = cpu_to_le32(temp32[1]);
req.dgid[2] = cpu_to_le32(temp32[2]);
req.dgid[3] = cpu_to_le32(temp32[3]);
req.type = ah->nw_type;
req.hop_limit = ah->hop_limit;
req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
req.pd_id = cpu_to_le32(ah->pd->id);
req.traffic_class = ah->traffic_class;
/* MAC in network format */
memcpy(temp16, ah->dmac, 6);
req.dest_mac[0] = cpu_to_le16(temp16[0]);
req.dest_mac[1] = cpu_to_le16(temp16[1]);
req.dest_mac[2] = cpu_to_le16(temp16[2]);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp,
NULL, block);
if (rc)
return rc;
ah->id = le32_to_cpu(resp.xid);
return 0;
}
void bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
bool block)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_destroy_ah req;
struct creq_destroy_ah_resp resp;
u16 cmd_flags = 0;
/* Clean up the AH table in the device */
RCFW_CMD_PREP(req, DESTROY_AH, cmd_flags);
req.ah_cid = cpu_to_le32(ah->id);
bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp, NULL,
block);
}
/* MRW */
int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_deallocate_key req;
struct creq_deallocate_key_resp resp;
u16 cmd_flags = 0;
int rc;
if (mrw->lkey == 0xFFFFFFFF) {
dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
return 0;
}
RCFW_CMD_PREP(req, DEALLOCATE_KEY, cmd_flags);
req.mrw_flags = mrw->type;
if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
(mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
(mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
req.key = cpu_to_le32(mrw->rkey);
else
req.key = cpu_to_le32(mrw->lkey);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp,
NULL, 0);
if (rc)
return rc;
/* Free the qplib's MRW memory */
if (mrw->hwq.max_elements)
bnxt_qplib_free_hwq(res, &mrw->hwq);
return 0;
}
int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_allocate_mrw req;
struct creq_allocate_mrw_resp resp;
u16 cmd_flags = 0;
unsigned long tmp;
int rc;
RCFW_CMD_PREP(req, ALLOCATE_MRW, cmd_flags);
req.pd_id = cpu_to_le32(mrw->pd->id);
req.mrw_flags = mrw->type;
if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
mrw->flags & BNXT_QPLIB_FR_PMR) ||
mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
tmp = (unsigned long)mrw;
req.mrw_handle = cpu_to_le64(tmp);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, 0);
if (rc)
return rc;
if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1) ||
(mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
(mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
mrw->rkey = le32_to_cpu(resp.xid);
else
mrw->lkey = le32_to_cpu(resp.xid);
return 0;
}
int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
bool block)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_deregister_mr req;
struct creq_deregister_mr_resp resp;
u16 cmd_flags = 0;
int rc;
RCFW_CMD_PREP(req, DEREGISTER_MR, cmd_flags);
req.lkey = cpu_to_le32(mrw->lkey);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, block);
if (rc)
return rc;
/* Free the qplib's MR memory */
if (mrw->hwq.max_elements) {
mrw->va = 0;
mrw->total_size = 0;
bnxt_qplib_free_hwq(res, &mrw->hwq);
}
return 0;
}
int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct bnxt_qplib_hwq_attr hwq_attr = {};
struct bnxt_qplib_sg_info sginfo = {};
struct creq_register_mr_resp resp;
struct cmdq_register_mr req;
u16 cmd_flags = 0, level;
int pages, rc;
u32 pg_size;
if (num_pbls) {
pages = roundup_pow_of_two(num_pbls);
/* Allocate memory for the non-leaf pages to store buf ptrs.
* Non-leaf pages always uses system PAGE_SIZE
*/
/* Free the hwq if it already exist, must be a rereg */
if (mr->hwq.max_elements)
bnxt_qplib_free_hwq(res, &mr->hwq);
hwq_attr.res = res;
hwq_attr.depth = pages;
hwq_attr.stride = sizeof(dma_addr_t);
hwq_attr.type = HWQ_TYPE_MR;
hwq_attr.sginfo = &sginfo;
hwq_attr.sginfo->umem = umem;
hwq_attr.sginfo->npages = pages;
hwq_attr.sginfo->pgsize = buf_pg_size;
hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
if (rc) {
dev_err(&res->pdev->dev,
"SP: Reg MR memory allocation failed\n");
return -ENOMEM;
}
}
RCFW_CMD_PREP(req, REGISTER_MR, cmd_flags);
/* Configure the request */
if (mr->hwq.level == PBL_LVL_MAX) {
/* No PBL provided, just use system PAGE_SIZE */
level = 0;
req.pbl = 0;
pg_size = PAGE_SIZE;
} else {
level = mr->hwq.level;
req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
}
pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
((ilog2(pg_size) <<
CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
req.access = (mr->flags & 0xFFFF);
req.va = cpu_to_le64(mr->va);
req.key = cpu_to_le32(mr->lkey);
req.mr_size = cpu_to_le64(mr->total_size);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, NULL, false);
if (rc)
goto fail;
return 0;
fail:
if (mr->hwq.max_elements)
bnxt_qplib_free_hwq(res, &mr->hwq);
return rc;
}
int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
struct bnxt_qplib_frpl *frpl,
int max_pg_ptrs)
{
struct bnxt_qplib_hwq_attr hwq_attr = {};
struct bnxt_qplib_sg_info sginfo = {};
int pg_ptrs, pages, rc;
/* Re-calculate the max to fit the HWQ allocation model */
pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
if (!pages)
pages++;
if (pages > MAX_PBL_LVL_1_PGS)
return -ENOMEM;
sginfo.pgsize = PAGE_SIZE;
sginfo.nopte = true;
hwq_attr.res = res;
hwq_attr.depth = pg_ptrs;
hwq_attr.stride = PAGE_SIZE;
hwq_attr.sginfo = &sginfo;
hwq_attr.type = HWQ_TYPE_CTX;
rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
if (!rc)
frpl->max_pg_ptrs = pg_ptrs;
return rc;
}
int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
struct bnxt_qplib_frpl *frpl)
{
bnxt_qplib_free_hwq(res, &frpl->hwq);
return 0;
}
int bnxt_qplib_map_tc2cos(struct bnxt_qplib_res *res, u16 *cids)
{
struct bnxt_qplib_rcfw *rcfw = res->rcfw;
struct cmdq_map_tc_to_cos req;
struct creq_map_tc_to_cos_resp resp;
u16 cmd_flags = 0;
RCFW_CMD_PREP(req, MAP_TC_TO_COS, cmd_flags);
req.cos0 = cpu_to_le16(cids[0]);
req.cos1 = cpu_to_le16(cids[1]);
return bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp,
NULL, 0);
}
int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
struct bnxt_qplib_roce_stats *stats)
{
struct cmdq_query_roce_stats req;
struct creq_query_roce_stats_resp resp;
struct bnxt_qplib_rcfw_sbuf *sbuf;
struct creq_query_roce_stats_resp_sb *sb;
u16 cmd_flags = 0;
int rc = 0;
RCFW_CMD_PREP(req, QUERY_ROCE_STATS, cmd_flags);
sbuf = bnxt_qplib_rcfw_alloc_sbuf(rcfw, sizeof(*sb));
if (!sbuf) {
dev_err(&rcfw->pdev->dev,
"SP: QUERY_ROCE_STATS alloc side buffer failed\n");
return -ENOMEM;
}
sb = sbuf->sb;
req.resp_size = sizeof(*sb) / BNXT_QPLIB_CMDQE_UNITS;
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req, (void *)&resp,
(void *)sbuf, 0);
if (rc)
goto bail;
/* Extract the context from the side buffer */
stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
stats->missing_resp = le64_to_cpu(sb->missing_resp);
stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
stats->dup_req = le64_to_cpu(sb->dup_req);
stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
if (!rcfw->init_oos_stats) {
rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
rcfw->init_oos_stats = 1;
} else {
stats->res_oos_drop_count +=
(le64_to_cpu(sb->res_oos_drop_count) -
rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
}
bail:
bnxt_qplib_rcfw_free_sbuf(rcfw, sbuf);
return rc;
}
int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
struct bnxt_qplib_ext_stat *estat)
{
struct creq_query_roce_stats_ext_resp resp = {};
struct creq_query_roce_stats_ext_resp_sb *sb;
struct cmdq_query_roce_stats_ext req = {};
struct bnxt_qplib_rcfw_sbuf *sbuf;
u16 cmd_flags = 0;
int rc;
sbuf = bnxt_qplib_rcfw_alloc_sbuf(rcfw, sizeof(*sb));
if (!sbuf) {
dev_err(&rcfw->pdev->dev,
"SP: QUERY_ROCE_STATS_EXT alloc sb failed");
return -ENOMEM;
}
RCFW_CMD_PREP(req, QUERY_ROCE_STATS_EXT, cmd_flags);
req.resp_size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
req.resp_addr = cpu_to_le64(sbuf->dma_addr);
req.function_id = cpu_to_le32(fid);
req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
rc = bnxt_qplib_rcfw_send_message(rcfw, (void *)&req,
(void *)&resp, (void *)sbuf, 0);
if (rc)
goto bail;
sb = sbuf->sb;
estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
bail:
bnxt_qplib_rcfw_free_sbuf(rcfw, sbuf);
return rc;
}