linux-zen-desktop/drivers/misc/bcm-vk/bcm_vk.h

550 lines
16 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
/* SPDX-License-Identifier: GPL-2.0 */
/*
* Copyright 2018-2020 Broadcom.
*/
#ifndef BCM_VK_H
#define BCM_VK_H
#include <linux/atomic.h>
#include <linux/firmware.h>
#include <linux/irq.h>
#include <linux/kref.h>
#include <linux/miscdevice.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/poll.h>
#include <linux/sched/signal.h>
#include <linux/tty.h>
#include <linux/uaccess.h>
#include <uapi/linux/misc/bcm_vk.h>
#include "bcm_vk_msg.h"
#define DRV_MODULE_NAME "bcm-vk"
/*
* Load Image is completed in two stages:
*
* 1) When the VK device boot-up, M7 CPU runs and executes the BootROM.
* The Secure Boot Loader (SBL) as part of the BootROM will run
* to open up ITCM for host to push BOOT1 image.
* SBL will authenticate the image before jumping to BOOT1 image.
*
* 2) Because BOOT1 image is a secured image, we also called it the
* Secure Boot Image (SBI). At second stage, SBI will initialize DDR
* and wait for host to push BOOT2 image to DDR.
* SBI will authenticate the image before jumping to BOOT2 image.
*
*/
/* Location of registers of interest in BAR0 */
/* Request register for Secure Boot Loader (SBL) download */
#define BAR_CODEPUSH_SBL 0x400
/* Start of ITCM */
#define CODEPUSH_BOOT1_ENTRY 0x00400000
#define CODEPUSH_MASK 0xfffff000
#define CODEPUSH_BOOTSTART BIT(0)
/* Boot Status register */
#define BAR_BOOT_STATUS 0x404
#define SRAM_OPEN BIT(16)
#define DDR_OPEN BIT(17)
/* Firmware loader progress status definitions */
#define FW_LOADER_ACK_SEND_MORE_DATA BIT(18)
#define FW_LOADER_ACK_IN_PROGRESS BIT(19)
#define FW_LOADER_ACK_RCVD_ALL_DATA BIT(20)
/* Boot1/2 is running in standalone mode */
#define BOOT_STDALONE_RUNNING BIT(21)
/* definitions for boot status register */
#define BOOT_STATE_MASK (0xffffffff & \
~(FW_LOADER_ACK_SEND_MORE_DATA | \
FW_LOADER_ACK_IN_PROGRESS | \
BOOT_STDALONE_RUNNING))
#define BOOT_ERR_SHIFT 4
#define BOOT_ERR_MASK (0xf << BOOT_ERR_SHIFT)
#define BOOT_PROG_MASK 0xf
#define BROM_STATUS_NOT_RUN 0x2
#define BROM_NOT_RUN (SRAM_OPEN | BROM_STATUS_NOT_RUN)
#define BROM_STATUS_COMPLETE 0x6
#define BROM_RUNNING (SRAM_OPEN | BROM_STATUS_COMPLETE)
#define BOOT1_STATUS_COMPLETE 0x6
#define BOOT1_RUNNING (DDR_OPEN | BOOT1_STATUS_COMPLETE)
#define BOOT2_STATUS_COMPLETE 0x6
#define BOOT2_RUNNING (FW_LOADER_ACK_RCVD_ALL_DATA | \
BOOT2_STATUS_COMPLETE)
/* Boot request for Secure Boot Image (SBI) */
#define BAR_CODEPUSH_SBI 0x408
/* 64M mapped to BAR2 */
#define CODEPUSH_BOOT2_ENTRY 0x60000000
#define BAR_CARD_STATUS 0x410
/* CARD_STATUS definitions */
#define CARD_STATUS_TTYVK0_READY BIT(0)
#define CARD_STATUS_TTYVK1_READY BIT(1)
#define BAR_BOOT1_STDALONE_PROGRESS 0x420
#define BOOT1_STDALONE_SUCCESS (BIT(13) | BIT(14))
#define BOOT1_STDALONE_PROGRESS_MASK BOOT1_STDALONE_SUCCESS
#define BAR_METADATA_VERSION 0x440
#define BAR_OS_UPTIME 0x444
#define BAR_CHIP_ID 0x448
#define MAJOR_SOC_REV(_chip_id) (((_chip_id) >> 20) & 0xf)
#define BAR_CARD_TEMPERATURE 0x45c
/* defines for all temperature sensor */
#define BCM_VK_TEMP_FIELD_MASK 0xff
#define BCM_VK_CPU_TEMP_SHIFT 0
#define BCM_VK_DDR0_TEMP_SHIFT 8
#define BCM_VK_DDR1_TEMP_SHIFT 16
#define BAR_CARD_VOLTAGE 0x460
/* defines for voltage rail conversion */
#define BCM_VK_VOLT_RAIL_MASK 0xffff
#define BCM_VK_3P3_VOLT_REG_SHIFT 16
#define BAR_CARD_ERR_LOG 0x464
/* Error log register bit definition - register for error alerts */
#define ERR_LOG_UECC BIT(0)
#define ERR_LOG_SSIM_BUSY BIT(1)
#define ERR_LOG_AFBC_BUSY BIT(2)
#define ERR_LOG_HIGH_TEMP_ERR BIT(3)
#define ERR_LOG_WDOG_TIMEOUT BIT(4)
#define ERR_LOG_SYS_FAULT BIT(5)
#define ERR_LOG_RAMDUMP BIT(6)
#define ERR_LOG_COP_WDOG_TIMEOUT BIT(7)
/* warnings */
#define ERR_LOG_MEM_ALLOC_FAIL BIT(8)
#define ERR_LOG_LOW_TEMP_WARN BIT(9)
#define ERR_LOG_ECC BIT(10)
#define ERR_LOG_IPC_DWN BIT(11)
/* Alert bit definitions detectd on host */
#define ERR_LOG_HOST_INTF_V_FAIL BIT(13)
#define ERR_LOG_HOST_HB_FAIL BIT(14)
#define ERR_LOG_HOST_PCIE_DWN BIT(15)
#define BAR_CARD_ERR_MEM 0x468
/* defines for mem err, all fields have same width */
#define BCM_VK_MEM_ERR_FIELD_MASK 0xff
#define BCM_VK_ECC_MEM_ERR_SHIFT 0
#define BCM_VK_UECC_MEM_ERR_SHIFT 8
/* threshold of event occurrence and logs start to come out */
#define BCM_VK_ECC_THRESHOLD 10
#define BCM_VK_UECC_THRESHOLD 1
#define BAR_CARD_PWR_AND_THRE 0x46c
/* defines for power and temp threshold, all fields have same width */
#define BCM_VK_PWR_AND_THRE_FIELD_MASK 0xff
#define BCM_VK_LOW_TEMP_THRE_SHIFT 0
#define BCM_VK_HIGH_TEMP_THRE_SHIFT 8
#define BCM_VK_PWR_STATE_SHIFT 16
#define BAR_CARD_STATIC_INFO 0x470
#define BAR_INTF_VER 0x47c
#define BAR_INTF_VER_MAJOR_SHIFT 16
#define BAR_INTF_VER_MASK 0xffff
/*
* major and minor semantic version numbers supported
* Please update as required on interface changes
*/
#define SEMANTIC_MAJOR 1
#define SEMANTIC_MINOR 0
/*
* first door bell reg, ie for queue = 0. Only need the first one, as
* we will use the queue number to derive the others
*/
#define VK_BAR0_REGSEG_DB_BASE 0x484
#define VK_BAR0_REGSEG_DB_REG_GAP 8 /*
* DB register gap,
* DB1 at 0x48c and DB2 at 0x494
*/
/* reset register and specific values */
#define VK_BAR0_RESET_DB_NUM 3
#define VK_BAR0_RESET_DB_SOFT 0xffffffff
#define VK_BAR0_RESET_DB_HARD 0xfffffffd
#define VK_BAR0_RESET_RAMPDUMP 0xa0000000
#define VK_BAR0_Q_DB_BASE(q_num) (VK_BAR0_REGSEG_DB_BASE + \
((q_num) * VK_BAR0_REGSEG_DB_REG_GAP))
#define VK_BAR0_RESET_DB_BASE (VK_BAR0_REGSEG_DB_BASE + \
(VK_BAR0_RESET_DB_NUM * VK_BAR0_REGSEG_DB_REG_GAP))
#define BAR_BOOTSRC_SELECT 0xc78
/* BOOTSRC definitions */
#define BOOTSRC_SOFT_ENABLE BIT(14)
/* Card OS Firmware version size */
#define BAR_FIRMWARE_TAG_SIZE 50
#define FIRMWARE_STATUS_PRE_INIT_DONE 0x1f
/* VK MSG_ID defines */
#define VK_MSG_ID_BITMAP_SIZE 4096
#define VK_MSG_ID_BITMAP_MASK (VK_MSG_ID_BITMAP_SIZE - 1)
#define VK_MSG_ID_OVERFLOW 0xffff
/*
* BAR1
*/
/* BAR1 message q definition */
/* indicate if msgq ctrl in BAR1 is populated */
#define VK_BAR1_MSGQ_DEF_RDY 0x60c0
/* ready marker value for the above location, normal boot2 */
#define VK_BAR1_MSGQ_RDY_MARKER 0xbeefcafe
/* ready marker value for the above location, normal boot2 */
#define VK_BAR1_DIAG_RDY_MARKER 0xdeadcafe
/* number of msgqs in BAR1 */
#define VK_BAR1_MSGQ_NR 0x60c4
/* BAR1 queue control structure offset */
#define VK_BAR1_MSGQ_CTRL_OFF 0x60c8
/* BAR1 ucode and boot1 version tag */
#define VK_BAR1_UCODE_VER_TAG 0x6170
#define VK_BAR1_BOOT1_VER_TAG 0x61b0
#define VK_BAR1_VER_TAG_SIZE 64
/* Memory to hold the DMA buffer memory address allocated for boot2 download */
#define VK_BAR1_DMA_BUF_OFF_HI 0x61e0
#define VK_BAR1_DMA_BUF_OFF_LO (VK_BAR1_DMA_BUF_OFF_HI + 4)
#define VK_BAR1_DMA_BUF_SZ (VK_BAR1_DMA_BUF_OFF_HI + 8)
/* Scratch memory allocated on host for VK */
#define VK_BAR1_SCRATCH_OFF_HI 0x61f0
#define VK_BAR1_SCRATCH_OFF_LO (VK_BAR1_SCRATCH_OFF_HI + 4)
#define VK_BAR1_SCRATCH_SZ_ADDR (VK_BAR1_SCRATCH_OFF_HI + 8)
#define VK_BAR1_SCRATCH_DEF_NR_PAGES 32
/* BAR1 DAUTH info */
#define VK_BAR1_DAUTH_BASE_ADDR 0x6200
#define VK_BAR1_DAUTH_STORE_SIZE 0x48
#define VK_BAR1_DAUTH_VALID_SIZE 0x8
#define VK_BAR1_DAUTH_MAX 4
#define VK_BAR1_DAUTH_STORE_ADDR(x) \
(VK_BAR1_DAUTH_BASE_ADDR + \
(x) * (VK_BAR1_DAUTH_STORE_SIZE + VK_BAR1_DAUTH_VALID_SIZE))
#define VK_BAR1_DAUTH_VALID_ADDR(x) \
(VK_BAR1_DAUTH_STORE_ADDR(x) + VK_BAR1_DAUTH_STORE_SIZE)
/* BAR1 SOTP AUTH and REVID info */
#define VK_BAR1_SOTP_REVID_BASE_ADDR 0x6340
#define VK_BAR1_SOTP_REVID_SIZE 0x10
#define VK_BAR1_SOTP_REVID_MAX 2
#define VK_BAR1_SOTP_REVID_ADDR(x) \
(VK_BAR1_SOTP_REVID_BASE_ADDR + (x) * VK_BAR1_SOTP_REVID_SIZE)
/* VK device supports a maximum of 3 bars */
#define MAX_BAR 3
/* default number of msg blk for inband SGL */
#define BCM_VK_DEF_IB_SGL_BLK_LEN 16
#define BCM_VK_IB_SGL_BLK_MAX 24
enum pci_barno {
BAR_0 = 0,
BAR_1,
BAR_2
};
#ifdef CONFIG_BCM_VK_TTY
#define BCM_VK_NUM_TTY 2
#else
#define BCM_VK_NUM_TTY 0
#endif
struct bcm_vk_tty {
struct tty_port port;
u32 to_offset; /* bar offset to use */
u32 to_size; /* to VK buffer size */
u32 wr; /* write offset shadow */
u32 from_offset; /* bar offset to use */
u32 from_size; /* from VK buffer size */
u32 rd; /* read offset shadow */
pid_t pid;
bool irq_enabled;
bool is_opened; /* tracks tty open/close */
};
/* VK device max power state, supports 3, full, reduced and low */
#define MAX_OPP 3
#define MAX_CARD_INFO_TAG_SIZE 64
struct bcm_vk_card_info {
u32 version;
char os_tag[MAX_CARD_INFO_TAG_SIZE];
char cmpt_tag[MAX_CARD_INFO_TAG_SIZE];
u32 cpu_freq_mhz;
u32 cpu_scale[MAX_OPP];
u32 ddr_freq_mhz;
u32 ddr_size_MB;
u32 video_core_freq_mhz;
};
/* DAUTH related info */
struct bcm_vk_dauth_key {
char store[VK_BAR1_DAUTH_STORE_SIZE];
char valid[VK_BAR1_DAUTH_VALID_SIZE];
};
struct bcm_vk_dauth_info {
struct bcm_vk_dauth_key keys[VK_BAR1_DAUTH_MAX];
};
/*
* Control structure of logging messages from the card. This
* buffer is for logmsg that comes from vk
*/
struct bcm_vk_peer_log {
u32 rd_idx;
u32 wr_idx;
u32 buf_size;
u32 mask;
char data[];
};
/* max buf size allowed */
#define BCM_VK_PEER_LOG_BUF_MAX SZ_16K
/* max size per line of peer log */
#define BCM_VK_PEER_LOG_LINE_MAX 256
/*
* single entry for processing type + utilization
*/
#define BCM_VK_PROC_TYPE_TAG_LEN 8
struct bcm_vk_proc_mon_entry_t {
char tag[BCM_VK_PROC_TYPE_TAG_LEN];
u32 used;
u32 max; /**< max capacity */
};
/**
* Structure for run time utilization
*/
#define BCM_VK_PROC_MON_MAX 8 /* max entries supported */
struct bcm_vk_proc_mon_info {
u32 num; /**< no of entries */
u32 entry_size; /**< per entry size */
struct bcm_vk_proc_mon_entry_t entries[BCM_VK_PROC_MON_MAX];
};
struct bcm_vk_hb_ctrl {
struct timer_list timer;
u32 last_uptime;
u32 lost_cnt;
};
struct bcm_vk_alert {
u16 flags;
u16 notfs;
};
/* some alert counters that the driver will keep track */
struct bcm_vk_alert_cnts {
u16 ecc;
u16 uecc;
};
struct bcm_vk {
struct pci_dev *pdev;
void __iomem *bar[MAX_BAR];
int num_irqs;
struct bcm_vk_card_info card_info;
struct bcm_vk_proc_mon_info proc_mon_info;
struct bcm_vk_dauth_info dauth_info;
/* mutex to protect the ioctls */
struct mutex mutex;
struct miscdevice miscdev;
int devid; /* dev id allocated */
#ifdef CONFIG_BCM_VK_TTY
struct tty_driver *tty_drv;
struct timer_list serial_timer;
struct bcm_vk_tty tty[BCM_VK_NUM_TTY];
struct workqueue_struct *tty_wq_thread;
struct work_struct tty_wq_work;
#endif
/* Reference-counting to handle file operations */
struct kref kref;
spinlock_t msg_id_lock; /* Spinlock for msg_id */
u16 msg_id;
DECLARE_BITMAP(bmap, VK_MSG_ID_BITMAP_SIZE);
spinlock_t ctx_lock; /* Spinlock for component context */
struct bcm_vk_ctx ctx[VK_CMPT_CTX_MAX];
struct bcm_vk_ht_entry pid_ht[VK_PID_HT_SZ];
pid_t reset_pid; /* process that issue reset */
atomic_t msgq_inited; /* indicate if info has been synced with vk */
struct bcm_vk_msg_chan to_v_msg_chan;
struct bcm_vk_msg_chan to_h_msg_chan;
struct workqueue_struct *wq_thread;
struct work_struct wq_work; /* work queue for deferred job */
unsigned long wq_offload[1]; /* various flags on wq requested */
void *tdma_vaddr; /* test dma segment virtual addr */
dma_addr_t tdma_addr; /* test dma segment bus addr */
struct notifier_block panic_nb;
u32 ib_sgl_size; /* size allocated for inband sgl insertion */
/* heart beat mechanism control structure */
struct bcm_vk_hb_ctrl hb_ctrl;
/* house-keeping variable of error logs */
spinlock_t host_alert_lock; /* protection to access host_alert struct */
struct bcm_vk_alert host_alert;
struct bcm_vk_alert peer_alert; /* bits set by the card */
struct bcm_vk_alert_cnts alert_cnts;
/* offset of the peer log control in BAR2 */
u32 peerlog_off;
struct bcm_vk_peer_log peerlog_info; /* record of peer log info */
/* offset of processing monitoring info in BAR2 */
u32 proc_mon_off;
};
/* wq offload work items bits definitions */
enum bcm_vk_wq_offload_flags {
BCM_VK_WQ_DWNLD_PEND = 0,
BCM_VK_WQ_DWNLD_AUTO = 1,
BCM_VK_WQ_NOTF_PEND = 2,
};
/* a macro to get an individual field with mask and shift */
#define BCM_VK_EXTRACT_FIELD(_field, _reg, _mask, _shift) \
(_field = (((_reg) >> (_shift)) & (_mask)))
struct bcm_vk_entry {
const u32 mask;
const u32 exp_val;
const char *str;
};
/* alerts that could be generated from peer */
#define BCM_VK_PEER_ERR_NUM 12
extern struct bcm_vk_entry const bcm_vk_peer_err[BCM_VK_PEER_ERR_NUM];
/* alerts detected by the host */
#define BCM_VK_HOST_ERR_NUM 3
extern struct bcm_vk_entry const bcm_vk_host_err[BCM_VK_HOST_ERR_NUM];
/*
* check if PCIe interface is down on read. Use it when it is
* certain that _val should never be all ones.
*/
#define BCM_VK_INTF_IS_DOWN(val) ((val) == 0xffffffff)
static inline u32 vkread32(struct bcm_vk *vk, enum pci_barno bar, u64 offset)
{
return readl(vk->bar[bar] + offset);
}
static inline void vkwrite32(struct bcm_vk *vk,
u32 value,
enum pci_barno bar,
u64 offset)
{
writel(value, vk->bar[bar] + offset);
}
static inline u8 vkread8(struct bcm_vk *vk, enum pci_barno bar, u64 offset)
{
return readb(vk->bar[bar] + offset);
}
static inline void vkwrite8(struct bcm_vk *vk,
u8 value,
enum pci_barno bar,
u64 offset)
{
writeb(value, vk->bar[bar] + offset);
}
static inline bool bcm_vk_msgq_marker_valid(struct bcm_vk *vk)
{
u32 rdy_marker = 0;
u32 fw_status;
fw_status = vkread32(vk, BAR_0, VK_BAR_FWSTS);
if ((fw_status & VK_FWSTS_READY) == VK_FWSTS_READY)
rdy_marker = vkread32(vk, BAR_1, VK_BAR1_MSGQ_DEF_RDY);
return (rdy_marker == VK_BAR1_MSGQ_RDY_MARKER);
}
int bcm_vk_open(struct inode *inode, struct file *p_file);
ssize_t bcm_vk_read(struct file *p_file, char __user *buf, size_t count,
loff_t *f_pos);
ssize_t bcm_vk_write(struct file *p_file, const char __user *buf,
size_t count, loff_t *f_pos);
__poll_t bcm_vk_poll(struct file *p_file, struct poll_table_struct *wait);
int bcm_vk_release(struct inode *inode, struct file *p_file);
void bcm_vk_release_data(struct kref *kref);
irqreturn_t bcm_vk_msgq_irqhandler(int irq, void *dev_id);
irqreturn_t bcm_vk_notf_irqhandler(int irq, void *dev_id);
irqreturn_t bcm_vk_tty_irqhandler(int irq, void *dev_id);
int bcm_vk_msg_init(struct bcm_vk *vk);
void bcm_vk_msg_remove(struct bcm_vk *vk);
void bcm_vk_drain_msg_on_reset(struct bcm_vk *vk);
int bcm_vk_sync_msgq(struct bcm_vk *vk, bool force_sync);
void bcm_vk_blk_drv_access(struct bcm_vk *vk);
s32 bcm_to_h_msg_dequeue(struct bcm_vk *vk);
int bcm_vk_send_shutdown_msg(struct bcm_vk *vk, u32 shut_type,
const pid_t pid, const u32 q_num);
void bcm_to_v_q_doorbell(struct bcm_vk *vk, u32 q_num, u32 db_val);
int bcm_vk_auto_load_all_images(struct bcm_vk *vk);
void bcm_vk_hb_init(struct bcm_vk *vk);
void bcm_vk_hb_deinit(struct bcm_vk *vk);
void bcm_vk_handle_notf(struct bcm_vk *vk);
bool bcm_vk_drv_access_ok(struct bcm_vk *vk);
void bcm_vk_set_host_alert(struct bcm_vk *vk, u32 bit_mask);
#ifdef CONFIG_BCM_VK_TTY
int bcm_vk_tty_init(struct bcm_vk *vk, char *name);
void bcm_vk_tty_exit(struct bcm_vk *vk);
void bcm_vk_tty_terminate_tty_user(struct bcm_vk *vk);
void bcm_vk_tty_wq_exit(struct bcm_vk *vk);
static inline void bcm_vk_tty_set_irq_enabled(struct bcm_vk *vk, int index)
{
vk->tty[index].irq_enabled = true;
}
#else
static inline int bcm_vk_tty_init(struct bcm_vk *vk, char *name)
{
return 0;
}
static inline void bcm_vk_tty_exit(struct bcm_vk *vk)
{
}
static inline void bcm_vk_tty_terminate_tty_user(struct bcm_vk *vk)
{
}
static inline void bcm_vk_tty_wq_exit(struct bcm_vk *vk)
{
}
static inline void bcm_vk_tty_set_irq_enabled(struct bcm_vk *vk, int index)
{
}
#endif /* CONFIG_BCM_VK_TTY */
#endif