linux-zen-desktop/drivers/net/dsa/ocelot/felix_vsc9959.c

2750 lines
79 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
/* Copyright 2017 Microsemi Corporation
* Copyright 2018-2019 NXP
*/
#include <linux/fsl/enetc_mdio.h>
#include <soc/mscc/ocelot_qsys.h>
#include <soc/mscc/ocelot_vcap.h>
#include <soc/mscc/ocelot_ana.h>
#include <soc/mscc/ocelot_dev.h>
#include <soc/mscc/ocelot_ptp.h>
#include <soc/mscc/ocelot_sys.h>
#include <net/tc_act/tc_gate.h>
#include <soc/mscc/ocelot.h>
#include <linux/dsa/ocelot.h>
#include <linux/pcs-lynx.h>
#include <net/pkt_sched.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/pci.h>
#include <linux/time.h>
#include "felix.h"
#define VSC9959_NUM_PORTS 6
#define VSC9959_TAS_GCL_ENTRY_MAX 63
#define VSC9959_TAS_MIN_GATE_LEN_NS 33
#define VSC9959_VCAP_POLICER_BASE 63
#define VSC9959_VCAP_POLICER_MAX 383
#define VSC9959_SWITCH_PCI_BAR 4
#define VSC9959_IMDIO_PCI_BAR 0
#define VSC9959_PORT_MODE_SERDES (OCELOT_PORT_MODE_SGMII | \
OCELOT_PORT_MODE_QSGMII | \
OCELOT_PORT_MODE_1000BASEX | \
OCELOT_PORT_MODE_2500BASEX | \
OCELOT_PORT_MODE_USXGMII)
static const u32 vsc9959_port_modes[VSC9959_NUM_PORTS] = {
VSC9959_PORT_MODE_SERDES,
VSC9959_PORT_MODE_SERDES,
VSC9959_PORT_MODE_SERDES,
VSC9959_PORT_MODE_SERDES,
OCELOT_PORT_MODE_INTERNAL,
OCELOT_PORT_MODE_INTERNAL,
};
static const u32 vsc9959_ana_regmap[] = {
REG(ANA_ADVLEARN, 0x0089a0),
REG(ANA_VLANMASK, 0x0089a4),
REG_RESERVED(ANA_PORT_B_DOMAIN),
REG(ANA_ANAGEFIL, 0x0089ac),
REG(ANA_ANEVENTS, 0x0089b0),
REG(ANA_STORMLIMIT_BURST, 0x0089b4),
REG(ANA_STORMLIMIT_CFG, 0x0089b8),
REG(ANA_ISOLATED_PORTS, 0x0089c8),
REG(ANA_COMMUNITY_PORTS, 0x0089cc),
REG(ANA_AUTOAGE, 0x0089d0),
REG(ANA_MACTOPTIONS, 0x0089d4),
REG(ANA_LEARNDISC, 0x0089d8),
REG(ANA_AGENCTRL, 0x0089dc),
REG(ANA_MIRRORPORTS, 0x0089e0),
REG(ANA_EMIRRORPORTS, 0x0089e4),
REG(ANA_FLOODING, 0x0089e8),
REG(ANA_FLOODING_IPMC, 0x008a08),
REG(ANA_SFLOW_CFG, 0x008a0c),
REG(ANA_PORT_MODE, 0x008a28),
REG(ANA_CUT_THRU_CFG, 0x008a48),
REG(ANA_PGID_PGID, 0x008400),
REG(ANA_TABLES_ANMOVED, 0x007f1c),
REG(ANA_TABLES_MACHDATA, 0x007f20),
REG(ANA_TABLES_MACLDATA, 0x007f24),
REG(ANA_TABLES_STREAMDATA, 0x007f28),
REG(ANA_TABLES_MACACCESS, 0x007f2c),
REG(ANA_TABLES_MACTINDX, 0x007f30),
REG(ANA_TABLES_VLANACCESS, 0x007f34),
REG(ANA_TABLES_VLANTIDX, 0x007f38),
REG(ANA_TABLES_ISDXACCESS, 0x007f3c),
REG(ANA_TABLES_ISDXTIDX, 0x007f40),
REG(ANA_TABLES_ENTRYLIM, 0x007f00),
REG(ANA_TABLES_PTP_ID_HIGH, 0x007f44),
REG(ANA_TABLES_PTP_ID_LOW, 0x007f48),
REG(ANA_TABLES_STREAMACCESS, 0x007f4c),
REG(ANA_TABLES_STREAMTIDX, 0x007f50),
REG(ANA_TABLES_SEQ_HISTORY, 0x007f54),
REG(ANA_TABLES_SEQ_MASK, 0x007f58),
REG(ANA_TABLES_SFID_MASK, 0x007f5c),
REG(ANA_TABLES_SFIDACCESS, 0x007f60),
REG(ANA_TABLES_SFIDTIDX, 0x007f64),
REG(ANA_MSTI_STATE, 0x008600),
REG(ANA_OAM_UPM_LM_CNT, 0x008000),
REG(ANA_SG_ACCESS_CTRL, 0x008a64),
REG(ANA_SG_CONFIG_REG_1, 0x007fb0),
REG(ANA_SG_CONFIG_REG_2, 0x007fb4),
REG(ANA_SG_CONFIG_REG_3, 0x007fb8),
REG(ANA_SG_CONFIG_REG_4, 0x007fbc),
REG(ANA_SG_CONFIG_REG_5, 0x007fc0),
REG(ANA_SG_GCL_GS_CONFIG, 0x007f80),
REG(ANA_SG_GCL_TI_CONFIG, 0x007f90),
REG(ANA_SG_STATUS_REG_1, 0x008980),
REG(ANA_SG_STATUS_REG_2, 0x008984),
REG(ANA_SG_STATUS_REG_3, 0x008988),
REG(ANA_PORT_VLAN_CFG, 0x007800),
REG(ANA_PORT_DROP_CFG, 0x007804),
REG(ANA_PORT_QOS_CFG, 0x007808),
REG(ANA_PORT_VCAP_CFG, 0x00780c),
REG(ANA_PORT_VCAP_S1_KEY_CFG, 0x007810),
REG(ANA_PORT_VCAP_S2_CFG, 0x00781c),
REG(ANA_PORT_PCP_DEI_MAP, 0x007820),
REG(ANA_PORT_CPU_FWD_CFG, 0x007860),
REG(ANA_PORT_CPU_FWD_BPDU_CFG, 0x007864),
REG(ANA_PORT_CPU_FWD_GARP_CFG, 0x007868),
REG(ANA_PORT_CPU_FWD_CCM_CFG, 0x00786c),
REG(ANA_PORT_PORT_CFG, 0x007870),
REG(ANA_PORT_POL_CFG, 0x007874),
REG(ANA_PORT_PTP_CFG, 0x007878),
REG(ANA_PORT_PTP_DLY1_CFG, 0x00787c),
REG(ANA_PORT_PTP_DLY2_CFG, 0x007880),
REG(ANA_PORT_SFID_CFG, 0x007884),
REG(ANA_PFC_PFC_CFG, 0x008800),
REG_RESERVED(ANA_PFC_PFC_TIMER),
REG_RESERVED(ANA_IPT_OAM_MEP_CFG),
REG_RESERVED(ANA_IPT_IPT),
REG_RESERVED(ANA_PPT_PPT),
REG_RESERVED(ANA_FID_MAP_FID_MAP),
REG(ANA_AGGR_CFG, 0x008a68),
REG(ANA_CPUQ_CFG, 0x008a6c),
REG_RESERVED(ANA_CPUQ_CFG2),
REG(ANA_CPUQ_8021_CFG, 0x008a74),
REG(ANA_DSCP_CFG, 0x008ab4),
REG(ANA_DSCP_REWR_CFG, 0x008bb4),
REG(ANA_VCAP_RNG_TYPE_CFG, 0x008bf4),
REG(ANA_VCAP_RNG_VAL_CFG, 0x008c14),
REG_RESERVED(ANA_VRAP_CFG),
REG_RESERVED(ANA_VRAP_HDR_DATA),
REG_RESERVED(ANA_VRAP_HDR_MASK),
REG(ANA_DISCARD_CFG, 0x008c40),
REG(ANA_FID_CFG, 0x008c44),
REG(ANA_POL_PIR_CFG, 0x004000),
REG(ANA_POL_CIR_CFG, 0x004004),
REG(ANA_POL_MODE_CFG, 0x004008),
REG(ANA_POL_PIR_STATE, 0x00400c),
REG(ANA_POL_CIR_STATE, 0x004010),
REG_RESERVED(ANA_POL_STATE),
REG(ANA_POL_FLOWC, 0x008c48),
REG(ANA_POL_HYST, 0x008cb4),
REG_RESERVED(ANA_POL_MISC_CFG),
};
static const u32 vsc9959_qs_regmap[] = {
REG(QS_XTR_GRP_CFG, 0x000000),
REG(QS_XTR_RD, 0x000008),
REG(QS_XTR_FRM_PRUNING, 0x000010),
REG(QS_XTR_FLUSH, 0x000018),
REG(QS_XTR_DATA_PRESENT, 0x00001c),
REG(QS_XTR_CFG, 0x000020),
REG(QS_INJ_GRP_CFG, 0x000024),
REG(QS_INJ_WR, 0x00002c),
REG(QS_INJ_CTRL, 0x000034),
REG(QS_INJ_STATUS, 0x00003c),
REG(QS_INJ_ERR, 0x000040),
REG_RESERVED(QS_INH_DBG),
};
static const u32 vsc9959_vcap_regmap[] = {
/* VCAP_CORE_CFG */
REG(VCAP_CORE_UPDATE_CTRL, 0x000000),
REG(VCAP_CORE_MV_CFG, 0x000004),
/* VCAP_CORE_CACHE */
REG(VCAP_CACHE_ENTRY_DAT, 0x000008),
REG(VCAP_CACHE_MASK_DAT, 0x000108),
REG(VCAP_CACHE_ACTION_DAT, 0x000208),
REG(VCAP_CACHE_CNT_DAT, 0x000308),
REG(VCAP_CACHE_TG_DAT, 0x000388),
/* VCAP_CONST */
REG(VCAP_CONST_VCAP_VER, 0x000398),
REG(VCAP_CONST_ENTRY_WIDTH, 0x00039c),
REG(VCAP_CONST_ENTRY_CNT, 0x0003a0),
REG(VCAP_CONST_ENTRY_SWCNT, 0x0003a4),
REG(VCAP_CONST_ENTRY_TG_WIDTH, 0x0003a8),
REG(VCAP_CONST_ACTION_DEF_CNT, 0x0003ac),
REG(VCAP_CONST_ACTION_WIDTH, 0x0003b0),
REG(VCAP_CONST_CNT_WIDTH, 0x0003b4),
REG(VCAP_CONST_CORE_CNT, 0x0003b8),
REG(VCAP_CONST_IF_CNT, 0x0003bc),
};
static const u32 vsc9959_qsys_regmap[] = {
REG(QSYS_PORT_MODE, 0x00f460),
REG(QSYS_SWITCH_PORT_MODE, 0x00f480),
REG(QSYS_STAT_CNT_CFG, 0x00f49c),
REG(QSYS_EEE_CFG, 0x00f4a0),
REG(QSYS_EEE_THRES, 0x00f4b8),
REG(QSYS_IGR_NO_SHARING, 0x00f4bc),
REG(QSYS_EGR_NO_SHARING, 0x00f4c0),
REG(QSYS_SW_STATUS, 0x00f4c4),
REG(QSYS_EXT_CPU_CFG, 0x00f4e0),
REG_RESERVED(QSYS_PAD_CFG),
REG(QSYS_CPU_GROUP_MAP, 0x00f4e8),
REG_RESERVED(QSYS_QMAP),
REG_RESERVED(QSYS_ISDX_SGRP),
REG_RESERVED(QSYS_TIMED_FRAME_ENTRY),
REG(QSYS_TFRM_MISC, 0x00f50c),
REG(QSYS_TFRM_PORT_DLY, 0x00f510),
REG(QSYS_TFRM_TIMER_CFG_1, 0x00f514),
REG(QSYS_TFRM_TIMER_CFG_2, 0x00f518),
REG(QSYS_TFRM_TIMER_CFG_3, 0x00f51c),
REG(QSYS_TFRM_TIMER_CFG_4, 0x00f520),
REG(QSYS_TFRM_TIMER_CFG_5, 0x00f524),
REG(QSYS_TFRM_TIMER_CFG_6, 0x00f528),
REG(QSYS_TFRM_TIMER_CFG_7, 0x00f52c),
REG(QSYS_TFRM_TIMER_CFG_8, 0x00f530),
REG(QSYS_RED_PROFILE, 0x00f534),
REG(QSYS_RES_QOS_MODE, 0x00f574),
REG(QSYS_RES_CFG, 0x00c000),
REG(QSYS_RES_STAT, 0x00c004),
REG(QSYS_EGR_DROP_MODE, 0x00f578),
REG(QSYS_EQ_CTRL, 0x00f57c),
REG_RESERVED(QSYS_EVENTS_CORE),
REG(QSYS_QMAXSDU_CFG_0, 0x00f584),
REG(QSYS_QMAXSDU_CFG_1, 0x00f5a0),
REG(QSYS_QMAXSDU_CFG_2, 0x00f5bc),
REG(QSYS_QMAXSDU_CFG_3, 0x00f5d8),
REG(QSYS_QMAXSDU_CFG_4, 0x00f5f4),
REG(QSYS_QMAXSDU_CFG_5, 0x00f610),
REG(QSYS_QMAXSDU_CFG_6, 0x00f62c),
REG(QSYS_QMAXSDU_CFG_7, 0x00f648),
REG(QSYS_PREEMPTION_CFG, 0x00f664),
REG(QSYS_CIR_CFG, 0x000000),
REG(QSYS_EIR_CFG, 0x000004),
REG(QSYS_SE_CFG, 0x000008),
REG(QSYS_SE_DWRR_CFG, 0x00000c),
REG_RESERVED(QSYS_SE_CONNECT),
REG(QSYS_SE_DLB_SENSE, 0x000040),
REG(QSYS_CIR_STATE, 0x000044),
REG(QSYS_EIR_STATE, 0x000048),
REG_RESERVED(QSYS_SE_STATE),
REG(QSYS_HSCH_MISC_CFG, 0x00f67c),
REG(QSYS_TAG_CONFIG, 0x00f680),
REG(QSYS_TAS_PARAM_CFG_CTRL, 0x00f698),
REG(QSYS_PORT_MAX_SDU, 0x00f69c),
REG(QSYS_PARAM_CFG_REG_1, 0x00f440),
REG(QSYS_PARAM_CFG_REG_2, 0x00f444),
REG(QSYS_PARAM_CFG_REG_3, 0x00f448),
REG(QSYS_PARAM_CFG_REG_4, 0x00f44c),
REG(QSYS_PARAM_CFG_REG_5, 0x00f450),
REG(QSYS_GCL_CFG_REG_1, 0x00f454),
REG(QSYS_GCL_CFG_REG_2, 0x00f458),
REG(QSYS_PARAM_STATUS_REG_1, 0x00f400),
REG(QSYS_PARAM_STATUS_REG_2, 0x00f404),
REG(QSYS_PARAM_STATUS_REG_3, 0x00f408),
REG(QSYS_PARAM_STATUS_REG_4, 0x00f40c),
REG(QSYS_PARAM_STATUS_REG_5, 0x00f410),
REG(QSYS_PARAM_STATUS_REG_6, 0x00f414),
REG(QSYS_PARAM_STATUS_REG_7, 0x00f418),
REG(QSYS_PARAM_STATUS_REG_8, 0x00f41c),
REG(QSYS_PARAM_STATUS_REG_9, 0x00f420),
REG(QSYS_GCL_STATUS_REG_1, 0x00f424),
REG(QSYS_GCL_STATUS_REG_2, 0x00f428),
};
static const u32 vsc9959_rew_regmap[] = {
REG(REW_PORT_VLAN_CFG, 0x000000),
REG(REW_TAG_CFG, 0x000004),
REG(REW_PORT_CFG, 0x000008),
REG(REW_DSCP_CFG, 0x00000c),
REG(REW_PCP_DEI_QOS_MAP_CFG, 0x000010),
REG(REW_PTP_CFG, 0x000050),
REG(REW_PTP_DLY1_CFG, 0x000054),
REG(REW_RED_TAG_CFG, 0x000058),
REG(REW_DSCP_REMAP_DP1_CFG, 0x000410),
REG(REW_DSCP_REMAP_CFG, 0x000510),
REG_RESERVED(REW_STAT_CFG),
REG_RESERVED(REW_REW_STICKY),
REG_RESERVED(REW_PPT),
};
static const u32 vsc9959_sys_regmap[] = {
REG(SYS_COUNT_RX_OCTETS, 0x000000),
REG(SYS_COUNT_RX_UNICAST, 0x000004),
REG(SYS_COUNT_RX_MULTICAST, 0x000008),
REG(SYS_COUNT_RX_BROADCAST, 0x00000c),
REG(SYS_COUNT_RX_SHORTS, 0x000010),
REG(SYS_COUNT_RX_FRAGMENTS, 0x000014),
REG(SYS_COUNT_RX_JABBERS, 0x000018),
REG(SYS_COUNT_RX_CRC_ALIGN_ERRS, 0x00001c),
REG(SYS_COUNT_RX_SYM_ERRS, 0x000020),
REG(SYS_COUNT_RX_64, 0x000024),
REG(SYS_COUNT_RX_65_127, 0x000028),
REG(SYS_COUNT_RX_128_255, 0x00002c),
REG(SYS_COUNT_RX_256_511, 0x000030),
REG(SYS_COUNT_RX_512_1023, 0x000034),
REG(SYS_COUNT_RX_1024_1526, 0x000038),
REG(SYS_COUNT_RX_1527_MAX, 0x00003c),
REG(SYS_COUNT_RX_PAUSE, 0x000040),
REG(SYS_COUNT_RX_CONTROL, 0x000044),
REG(SYS_COUNT_RX_LONGS, 0x000048),
REG(SYS_COUNT_RX_CLASSIFIED_DROPS, 0x00004c),
REG(SYS_COUNT_RX_RED_PRIO_0, 0x000050),
REG(SYS_COUNT_RX_RED_PRIO_1, 0x000054),
REG(SYS_COUNT_RX_RED_PRIO_2, 0x000058),
REG(SYS_COUNT_RX_RED_PRIO_3, 0x00005c),
REG(SYS_COUNT_RX_RED_PRIO_4, 0x000060),
REG(SYS_COUNT_RX_RED_PRIO_5, 0x000064),
REG(SYS_COUNT_RX_RED_PRIO_6, 0x000068),
REG(SYS_COUNT_RX_RED_PRIO_7, 0x00006c),
REG(SYS_COUNT_RX_YELLOW_PRIO_0, 0x000070),
REG(SYS_COUNT_RX_YELLOW_PRIO_1, 0x000074),
REG(SYS_COUNT_RX_YELLOW_PRIO_2, 0x000078),
REG(SYS_COUNT_RX_YELLOW_PRIO_3, 0x00007c),
REG(SYS_COUNT_RX_YELLOW_PRIO_4, 0x000080),
REG(SYS_COUNT_RX_YELLOW_PRIO_5, 0x000084),
REG(SYS_COUNT_RX_YELLOW_PRIO_6, 0x000088),
REG(SYS_COUNT_RX_YELLOW_PRIO_7, 0x00008c),
REG(SYS_COUNT_RX_GREEN_PRIO_0, 0x000090),
REG(SYS_COUNT_RX_GREEN_PRIO_1, 0x000094),
REG(SYS_COUNT_RX_GREEN_PRIO_2, 0x000098),
REG(SYS_COUNT_RX_GREEN_PRIO_3, 0x00009c),
REG(SYS_COUNT_RX_GREEN_PRIO_4, 0x0000a0),
REG(SYS_COUNT_RX_GREEN_PRIO_5, 0x0000a4),
REG(SYS_COUNT_RX_GREEN_PRIO_6, 0x0000a8),
REG(SYS_COUNT_RX_GREEN_PRIO_7, 0x0000ac),
REG(SYS_COUNT_RX_ASSEMBLY_ERRS, 0x0000b0),
REG(SYS_COUNT_RX_SMD_ERRS, 0x0000b4),
REG(SYS_COUNT_RX_ASSEMBLY_OK, 0x0000b8),
REG(SYS_COUNT_RX_MERGE_FRAGMENTS, 0x0000bc),
REG(SYS_COUNT_RX_PMAC_OCTETS, 0x0000c0),
REG(SYS_COUNT_RX_PMAC_UNICAST, 0x0000c4),
REG(SYS_COUNT_RX_PMAC_MULTICAST, 0x0000c8),
REG(SYS_COUNT_RX_PMAC_BROADCAST, 0x0000cc),
REG(SYS_COUNT_RX_PMAC_SHORTS, 0x0000d0),
REG(SYS_COUNT_RX_PMAC_FRAGMENTS, 0x0000d4),
REG(SYS_COUNT_RX_PMAC_JABBERS, 0x0000d8),
REG(SYS_COUNT_RX_PMAC_CRC_ALIGN_ERRS, 0x0000dc),
REG(SYS_COUNT_RX_PMAC_SYM_ERRS, 0x0000e0),
REG(SYS_COUNT_RX_PMAC_64, 0x0000e4),
REG(SYS_COUNT_RX_PMAC_65_127, 0x0000e8),
REG(SYS_COUNT_RX_PMAC_128_255, 0x0000ec),
REG(SYS_COUNT_RX_PMAC_256_511, 0x0000f0),
REG(SYS_COUNT_RX_PMAC_512_1023, 0x0000f4),
REG(SYS_COUNT_RX_PMAC_1024_1526, 0x0000f8),
REG(SYS_COUNT_RX_PMAC_1527_MAX, 0x0000fc),
REG(SYS_COUNT_RX_PMAC_PAUSE, 0x000100),
REG(SYS_COUNT_RX_PMAC_CONTROL, 0x000104),
REG(SYS_COUNT_RX_PMAC_LONGS, 0x000108),
REG(SYS_COUNT_TX_OCTETS, 0x000200),
REG(SYS_COUNT_TX_UNICAST, 0x000204),
REG(SYS_COUNT_TX_MULTICAST, 0x000208),
REG(SYS_COUNT_TX_BROADCAST, 0x00020c),
REG(SYS_COUNT_TX_COLLISION, 0x000210),
REG(SYS_COUNT_TX_DROPS, 0x000214),
REG(SYS_COUNT_TX_PAUSE, 0x000218),
REG(SYS_COUNT_TX_64, 0x00021c),
REG(SYS_COUNT_TX_65_127, 0x000220),
REG(SYS_COUNT_TX_128_255, 0x000224),
REG(SYS_COUNT_TX_256_511, 0x000228),
REG(SYS_COUNT_TX_512_1023, 0x00022c),
REG(SYS_COUNT_TX_1024_1526, 0x000230),
REG(SYS_COUNT_TX_1527_MAX, 0x000234),
REG(SYS_COUNT_TX_YELLOW_PRIO_0, 0x000238),
REG(SYS_COUNT_TX_YELLOW_PRIO_1, 0x00023c),
REG(SYS_COUNT_TX_YELLOW_PRIO_2, 0x000240),
REG(SYS_COUNT_TX_YELLOW_PRIO_3, 0x000244),
REG(SYS_COUNT_TX_YELLOW_PRIO_4, 0x000248),
REG(SYS_COUNT_TX_YELLOW_PRIO_5, 0x00024c),
REG(SYS_COUNT_TX_YELLOW_PRIO_6, 0x000250),
REG(SYS_COUNT_TX_YELLOW_PRIO_7, 0x000254),
REG(SYS_COUNT_TX_GREEN_PRIO_0, 0x000258),
REG(SYS_COUNT_TX_GREEN_PRIO_1, 0x00025c),
REG(SYS_COUNT_TX_GREEN_PRIO_2, 0x000260),
REG(SYS_COUNT_TX_GREEN_PRIO_3, 0x000264),
REG(SYS_COUNT_TX_GREEN_PRIO_4, 0x000268),
REG(SYS_COUNT_TX_GREEN_PRIO_5, 0x00026c),
REG(SYS_COUNT_TX_GREEN_PRIO_6, 0x000270),
REG(SYS_COUNT_TX_GREEN_PRIO_7, 0x000274),
REG(SYS_COUNT_TX_AGED, 0x000278),
REG(SYS_COUNT_TX_MM_HOLD, 0x00027c),
REG(SYS_COUNT_TX_MERGE_FRAGMENTS, 0x000280),
REG(SYS_COUNT_TX_PMAC_OCTETS, 0x000284),
REG(SYS_COUNT_TX_PMAC_UNICAST, 0x000288),
REG(SYS_COUNT_TX_PMAC_MULTICAST, 0x00028c),
REG(SYS_COUNT_TX_PMAC_BROADCAST, 0x000290),
REG(SYS_COUNT_TX_PMAC_PAUSE, 0x000294),
REG(SYS_COUNT_TX_PMAC_64, 0x000298),
REG(SYS_COUNT_TX_PMAC_65_127, 0x00029c),
REG(SYS_COUNT_TX_PMAC_128_255, 0x0002a0),
REG(SYS_COUNT_TX_PMAC_256_511, 0x0002a4),
REG(SYS_COUNT_TX_PMAC_512_1023, 0x0002a8),
REG(SYS_COUNT_TX_PMAC_1024_1526, 0x0002ac),
REG(SYS_COUNT_TX_PMAC_1527_MAX, 0x0002b0),
REG(SYS_COUNT_DROP_LOCAL, 0x000400),
REG(SYS_COUNT_DROP_TAIL, 0x000404),
REG(SYS_COUNT_DROP_YELLOW_PRIO_0, 0x000408),
REG(SYS_COUNT_DROP_YELLOW_PRIO_1, 0x00040c),
REG(SYS_COUNT_DROP_YELLOW_PRIO_2, 0x000410),
REG(SYS_COUNT_DROP_YELLOW_PRIO_3, 0x000414),
REG(SYS_COUNT_DROP_YELLOW_PRIO_4, 0x000418),
REG(SYS_COUNT_DROP_YELLOW_PRIO_5, 0x00041c),
REG(SYS_COUNT_DROP_YELLOW_PRIO_6, 0x000420),
REG(SYS_COUNT_DROP_YELLOW_PRIO_7, 0x000424),
REG(SYS_COUNT_DROP_GREEN_PRIO_0, 0x000428),
REG(SYS_COUNT_DROP_GREEN_PRIO_1, 0x00042c),
REG(SYS_COUNT_DROP_GREEN_PRIO_2, 0x000430),
REG(SYS_COUNT_DROP_GREEN_PRIO_3, 0x000434),
REG(SYS_COUNT_DROP_GREEN_PRIO_4, 0x000438),
REG(SYS_COUNT_DROP_GREEN_PRIO_5, 0x00043c),
REG(SYS_COUNT_DROP_GREEN_PRIO_6, 0x000440),
REG(SYS_COUNT_DROP_GREEN_PRIO_7, 0x000444),
REG(SYS_COUNT_SF_MATCHING_FRAMES, 0x000800),
REG(SYS_COUNT_SF_NOT_PASSING_FRAMES, 0x000804),
REG(SYS_COUNT_SF_NOT_PASSING_SDU, 0x000808),
REG(SYS_COUNT_SF_RED_FRAMES, 0x00080c),
REG(SYS_RESET_CFG, 0x000e00),
REG(SYS_SR_ETYPE_CFG, 0x000e04),
REG(SYS_VLAN_ETYPE_CFG, 0x000e08),
REG(SYS_PORT_MODE, 0x000e0c),
REG(SYS_FRONT_PORT_MODE, 0x000e2c),
REG(SYS_FRM_AGING, 0x000e44),
REG(SYS_STAT_CFG, 0x000e48),
REG(SYS_SW_STATUS, 0x000e4c),
REG_RESERVED(SYS_MISC_CFG),
REG(SYS_REW_MAC_HIGH_CFG, 0x000e6c),
REG(SYS_REW_MAC_LOW_CFG, 0x000e84),
REG(SYS_TIMESTAMP_OFFSET, 0x000e9c),
REG(SYS_PAUSE_CFG, 0x000ea0),
REG(SYS_PAUSE_TOT_CFG, 0x000ebc),
REG(SYS_ATOP, 0x000ec0),
REG(SYS_ATOP_TOT_CFG, 0x000edc),
REG(SYS_MAC_FC_CFG, 0x000ee0),
REG(SYS_MMGT, 0x000ef8),
REG_RESERVED(SYS_MMGT_FAST),
REG_RESERVED(SYS_EVENTS_DIF),
REG_RESERVED(SYS_EVENTS_CORE),
REG(SYS_PTP_STATUS, 0x000f14),
REG(SYS_PTP_TXSTAMP, 0x000f18),
REG(SYS_PTP_NXT, 0x000f1c),
REG(SYS_PTP_CFG, 0x000f20),
REG(SYS_RAM_INIT, 0x000f24),
REG_RESERVED(SYS_CM_ADDR),
REG_RESERVED(SYS_CM_DATA_WR),
REG_RESERVED(SYS_CM_DATA_RD),
REG_RESERVED(SYS_CM_OP),
REG_RESERVED(SYS_CM_DATA),
};
static const u32 vsc9959_ptp_regmap[] = {
REG(PTP_PIN_CFG, 0x000000),
REG(PTP_PIN_TOD_SEC_MSB, 0x000004),
REG(PTP_PIN_TOD_SEC_LSB, 0x000008),
REG(PTP_PIN_TOD_NSEC, 0x00000c),
REG(PTP_PIN_WF_HIGH_PERIOD, 0x000014),
REG(PTP_PIN_WF_LOW_PERIOD, 0x000018),
REG(PTP_CFG_MISC, 0x0000a0),
REG(PTP_CLK_CFG_ADJ_CFG, 0x0000a4),
REG(PTP_CLK_CFG_ADJ_FREQ, 0x0000a8),
};
static const u32 vsc9959_gcb_regmap[] = {
REG(GCB_SOFT_RST, 0x000004),
};
static const u32 vsc9959_dev_gmii_regmap[] = {
REG(DEV_CLOCK_CFG, 0x0),
REG(DEV_PORT_MISC, 0x4),
REG(DEV_EVENTS, 0x8),
REG(DEV_EEE_CFG, 0xc),
REG(DEV_RX_PATH_DELAY, 0x10),
REG(DEV_TX_PATH_DELAY, 0x14),
REG(DEV_PTP_PREDICT_CFG, 0x18),
REG(DEV_MAC_ENA_CFG, 0x1c),
REG(DEV_MAC_MODE_CFG, 0x20),
REG(DEV_MAC_MAXLEN_CFG, 0x24),
REG(DEV_MAC_TAGS_CFG, 0x28),
REG(DEV_MAC_ADV_CHK_CFG, 0x2c),
REG(DEV_MAC_IFG_CFG, 0x30),
REG(DEV_MAC_HDX_CFG, 0x34),
REG(DEV_MAC_DBG_CFG, 0x38),
REG(DEV_MAC_FC_MAC_LOW_CFG, 0x3c),
REG(DEV_MAC_FC_MAC_HIGH_CFG, 0x40),
REG(DEV_MAC_STICKY, 0x44),
REG(DEV_MM_ENABLE_CONFIG, 0x48),
REG(DEV_MM_VERIF_CONFIG, 0x4C),
REG(DEV_MM_STATUS, 0x50),
REG_RESERVED(PCS1G_CFG),
REG_RESERVED(PCS1G_MODE_CFG),
REG_RESERVED(PCS1G_SD_CFG),
REG_RESERVED(PCS1G_ANEG_CFG),
REG_RESERVED(PCS1G_ANEG_NP_CFG),
REG_RESERVED(PCS1G_LB_CFG),
REG_RESERVED(PCS1G_DBG_CFG),
REG_RESERVED(PCS1G_CDET_CFG),
REG_RESERVED(PCS1G_ANEG_STATUS),
REG_RESERVED(PCS1G_ANEG_NP_STATUS),
REG_RESERVED(PCS1G_LINK_STATUS),
REG_RESERVED(PCS1G_LINK_DOWN_CNT),
REG_RESERVED(PCS1G_STICKY),
REG_RESERVED(PCS1G_DEBUG_STATUS),
REG_RESERVED(PCS1G_LPI_CFG),
REG_RESERVED(PCS1G_LPI_WAKE_ERROR_CNT),
REG_RESERVED(PCS1G_LPI_STATUS),
REG_RESERVED(PCS1G_TSTPAT_MODE_CFG),
REG_RESERVED(PCS1G_TSTPAT_STATUS),
REG_RESERVED(DEV_PCS_FX100_CFG),
REG_RESERVED(DEV_PCS_FX100_STATUS),
};
static const u32 *vsc9959_regmap[TARGET_MAX] = {
[ANA] = vsc9959_ana_regmap,
[QS] = vsc9959_qs_regmap,
[QSYS] = vsc9959_qsys_regmap,
[REW] = vsc9959_rew_regmap,
[SYS] = vsc9959_sys_regmap,
[S0] = vsc9959_vcap_regmap,
[S1] = vsc9959_vcap_regmap,
[S2] = vsc9959_vcap_regmap,
[PTP] = vsc9959_ptp_regmap,
[GCB] = vsc9959_gcb_regmap,
[DEV_GMII] = vsc9959_dev_gmii_regmap,
};
/* Addresses are relative to the PCI device's base address */
static const struct resource vsc9959_resources[] = {
DEFINE_RES_MEM_NAMED(0x0010000, 0x0010000, "sys"),
DEFINE_RES_MEM_NAMED(0x0030000, 0x0010000, "rew"),
DEFINE_RES_MEM_NAMED(0x0040000, 0x0000400, "s0"),
DEFINE_RES_MEM_NAMED(0x0050000, 0x0000400, "s1"),
DEFINE_RES_MEM_NAMED(0x0060000, 0x0000400, "s2"),
DEFINE_RES_MEM_NAMED(0x0070000, 0x0000200, "devcpu_gcb"),
DEFINE_RES_MEM_NAMED(0x0080000, 0x0000100, "qs"),
DEFINE_RES_MEM_NAMED(0x0090000, 0x00000cc, "ptp"),
DEFINE_RES_MEM_NAMED(0x0100000, 0x0010000, "port0"),
DEFINE_RES_MEM_NAMED(0x0110000, 0x0010000, "port1"),
DEFINE_RES_MEM_NAMED(0x0120000, 0x0010000, "port2"),
DEFINE_RES_MEM_NAMED(0x0130000, 0x0010000, "port3"),
DEFINE_RES_MEM_NAMED(0x0140000, 0x0010000, "port4"),
DEFINE_RES_MEM_NAMED(0x0150000, 0x0010000, "port5"),
DEFINE_RES_MEM_NAMED(0x0200000, 0x0020000, "qsys"),
DEFINE_RES_MEM_NAMED(0x0280000, 0x0010000, "ana"),
};
static const char * const vsc9959_resource_names[TARGET_MAX] = {
[SYS] = "sys",
[REW] = "rew",
[S0] = "s0",
[S1] = "s1",
[S2] = "s2",
[GCB] = "devcpu_gcb",
[QS] = "qs",
[PTP] = "ptp",
[QSYS] = "qsys",
[ANA] = "ana",
};
/* Port MAC 0 Internal MDIO bus through which the SerDes acting as an
* SGMII/QSGMII MAC PCS can be found.
*/
static const struct resource vsc9959_imdio_res =
DEFINE_RES_MEM_NAMED(0x8030, 0x10, "imdio");
static const struct reg_field vsc9959_regfields[REGFIELD_MAX] = {
[ANA_ADVLEARN_VLAN_CHK] = REG_FIELD(ANA_ADVLEARN, 6, 6),
[ANA_ADVLEARN_LEARN_MIRROR] = REG_FIELD(ANA_ADVLEARN, 0, 5),
[ANA_ANEVENTS_FLOOD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 30, 30),
[ANA_ANEVENTS_AUTOAGE] = REG_FIELD(ANA_ANEVENTS, 26, 26),
[ANA_ANEVENTS_STORM_DROP] = REG_FIELD(ANA_ANEVENTS, 24, 24),
[ANA_ANEVENTS_LEARN_DROP] = REG_FIELD(ANA_ANEVENTS, 23, 23),
[ANA_ANEVENTS_AGED_ENTRY] = REG_FIELD(ANA_ANEVENTS, 22, 22),
[ANA_ANEVENTS_CPU_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 21, 21),
[ANA_ANEVENTS_AUTO_LEARN_FAILED] = REG_FIELD(ANA_ANEVENTS, 20, 20),
[ANA_ANEVENTS_LEARN_REMOVE] = REG_FIELD(ANA_ANEVENTS, 19, 19),
[ANA_ANEVENTS_AUTO_LEARNED] = REG_FIELD(ANA_ANEVENTS, 18, 18),
[ANA_ANEVENTS_AUTO_MOVED] = REG_FIELD(ANA_ANEVENTS, 17, 17),
[ANA_ANEVENTS_CLASSIFIED_DROP] = REG_FIELD(ANA_ANEVENTS, 15, 15),
[ANA_ANEVENTS_CLASSIFIED_COPY] = REG_FIELD(ANA_ANEVENTS, 14, 14),
[ANA_ANEVENTS_VLAN_DISCARD] = REG_FIELD(ANA_ANEVENTS, 13, 13),
[ANA_ANEVENTS_FWD_DISCARD] = REG_FIELD(ANA_ANEVENTS, 12, 12),
[ANA_ANEVENTS_MULTICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 11, 11),
[ANA_ANEVENTS_UNICAST_FLOOD] = REG_FIELD(ANA_ANEVENTS, 10, 10),
[ANA_ANEVENTS_DEST_KNOWN] = REG_FIELD(ANA_ANEVENTS, 9, 9),
[ANA_ANEVENTS_BUCKET3_MATCH] = REG_FIELD(ANA_ANEVENTS, 8, 8),
[ANA_ANEVENTS_BUCKET2_MATCH] = REG_FIELD(ANA_ANEVENTS, 7, 7),
[ANA_ANEVENTS_BUCKET1_MATCH] = REG_FIELD(ANA_ANEVENTS, 6, 6),
[ANA_ANEVENTS_BUCKET0_MATCH] = REG_FIELD(ANA_ANEVENTS, 5, 5),
[ANA_ANEVENTS_CPU_OPERATION] = REG_FIELD(ANA_ANEVENTS, 4, 4),
[ANA_ANEVENTS_DMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 3, 3),
[ANA_ANEVENTS_SMAC_LOOKUP] = REG_FIELD(ANA_ANEVENTS, 2, 2),
[ANA_ANEVENTS_SEQ_GEN_ERR_0] = REG_FIELD(ANA_ANEVENTS, 1, 1),
[ANA_ANEVENTS_SEQ_GEN_ERR_1] = REG_FIELD(ANA_ANEVENTS, 0, 0),
[ANA_TABLES_MACACCESS_B_DOM] = REG_FIELD(ANA_TABLES_MACACCESS, 16, 16),
[ANA_TABLES_MACTINDX_BUCKET] = REG_FIELD(ANA_TABLES_MACTINDX, 11, 12),
[ANA_TABLES_MACTINDX_M_INDEX] = REG_FIELD(ANA_TABLES_MACTINDX, 0, 10),
[SYS_RESET_CFG_CORE_ENA] = REG_FIELD(SYS_RESET_CFG, 0, 0),
[GCB_SOFT_RST_SWC_RST] = REG_FIELD(GCB_SOFT_RST, 0, 0),
/* Replicated per number of ports (7), register size 4 per port */
[QSYS_SWITCH_PORT_MODE_PORT_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 14, 14, 7, 4),
[QSYS_SWITCH_PORT_MODE_SCH_NEXT_CFG] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 11, 13, 7, 4),
[QSYS_SWITCH_PORT_MODE_YEL_RSRVD] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 10, 10, 7, 4),
[QSYS_SWITCH_PORT_MODE_INGRESS_DROP_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 9, 9, 7, 4),
[QSYS_SWITCH_PORT_MODE_TX_PFC_ENA] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 1, 8, 7, 4),
[QSYS_SWITCH_PORT_MODE_TX_PFC_MODE] = REG_FIELD_ID(QSYS_SWITCH_PORT_MODE, 0, 0, 7, 4),
[SYS_PORT_MODE_DATA_WO_TS] = REG_FIELD_ID(SYS_PORT_MODE, 5, 6, 7, 4),
[SYS_PORT_MODE_INCL_INJ_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 3, 4, 7, 4),
[SYS_PORT_MODE_INCL_XTR_HDR] = REG_FIELD_ID(SYS_PORT_MODE, 1, 2, 7, 4),
[SYS_PORT_MODE_INCL_HDR_ERR] = REG_FIELD_ID(SYS_PORT_MODE, 0, 0, 7, 4),
[SYS_PAUSE_CFG_PAUSE_START] = REG_FIELD_ID(SYS_PAUSE_CFG, 10, 18, 7, 4),
[SYS_PAUSE_CFG_PAUSE_STOP] = REG_FIELD_ID(SYS_PAUSE_CFG, 1, 9, 7, 4),
[SYS_PAUSE_CFG_PAUSE_ENA] = REG_FIELD_ID(SYS_PAUSE_CFG, 0, 1, 7, 4),
};
static const struct vcap_field vsc9959_vcap_es0_keys[] = {
[VCAP_ES0_EGR_PORT] = { 0, 3},
[VCAP_ES0_IGR_PORT] = { 3, 3},
[VCAP_ES0_RSV] = { 6, 2},
[VCAP_ES0_L2_MC] = { 8, 1},
[VCAP_ES0_L2_BC] = { 9, 1},
[VCAP_ES0_VID] = { 10, 12},
[VCAP_ES0_DP] = { 22, 1},
[VCAP_ES0_PCP] = { 23, 3},
};
static const struct vcap_field vsc9959_vcap_es0_actions[] = {
[VCAP_ES0_ACT_PUSH_OUTER_TAG] = { 0, 2},
[VCAP_ES0_ACT_PUSH_INNER_TAG] = { 2, 1},
[VCAP_ES0_ACT_TAG_A_TPID_SEL] = { 3, 2},
[VCAP_ES0_ACT_TAG_A_VID_SEL] = { 5, 1},
[VCAP_ES0_ACT_TAG_A_PCP_SEL] = { 6, 2},
[VCAP_ES0_ACT_TAG_A_DEI_SEL] = { 8, 2},
[VCAP_ES0_ACT_TAG_B_TPID_SEL] = { 10, 2},
[VCAP_ES0_ACT_TAG_B_VID_SEL] = { 12, 1},
[VCAP_ES0_ACT_TAG_B_PCP_SEL] = { 13, 2},
[VCAP_ES0_ACT_TAG_B_DEI_SEL] = { 15, 2},
[VCAP_ES0_ACT_VID_A_VAL] = { 17, 12},
[VCAP_ES0_ACT_PCP_A_VAL] = { 29, 3},
[VCAP_ES0_ACT_DEI_A_VAL] = { 32, 1},
[VCAP_ES0_ACT_VID_B_VAL] = { 33, 12},
[VCAP_ES0_ACT_PCP_B_VAL] = { 45, 3},
[VCAP_ES0_ACT_DEI_B_VAL] = { 48, 1},
[VCAP_ES0_ACT_RSV] = { 49, 23},
[VCAP_ES0_ACT_HIT_STICKY] = { 72, 1},
};
static const struct vcap_field vsc9959_vcap_is1_keys[] = {
[VCAP_IS1_HK_TYPE] = { 0, 1},
[VCAP_IS1_HK_LOOKUP] = { 1, 2},
[VCAP_IS1_HK_IGR_PORT_MASK] = { 3, 7},
[VCAP_IS1_HK_RSV] = { 10, 9},
[VCAP_IS1_HK_OAM_Y1731] = { 19, 1},
[VCAP_IS1_HK_L2_MC] = { 20, 1},
[VCAP_IS1_HK_L2_BC] = { 21, 1},
[VCAP_IS1_HK_IP_MC] = { 22, 1},
[VCAP_IS1_HK_VLAN_TAGGED] = { 23, 1},
[VCAP_IS1_HK_VLAN_DBL_TAGGED] = { 24, 1},
[VCAP_IS1_HK_TPID] = { 25, 1},
[VCAP_IS1_HK_VID] = { 26, 12},
[VCAP_IS1_HK_DEI] = { 38, 1},
[VCAP_IS1_HK_PCP] = { 39, 3},
/* Specific Fields for IS1 Half Key S1_NORMAL */
[VCAP_IS1_HK_L2_SMAC] = { 42, 48},
[VCAP_IS1_HK_ETYPE_LEN] = { 90, 1},
[VCAP_IS1_HK_ETYPE] = { 91, 16},
[VCAP_IS1_HK_IP_SNAP] = {107, 1},
[VCAP_IS1_HK_IP4] = {108, 1},
/* Layer-3 Information */
[VCAP_IS1_HK_L3_FRAGMENT] = {109, 1},
[VCAP_IS1_HK_L3_FRAG_OFS_GT0] = {110, 1},
[VCAP_IS1_HK_L3_OPTIONS] = {111, 1},
[VCAP_IS1_HK_L3_DSCP] = {112, 6},
[VCAP_IS1_HK_L3_IP4_SIP] = {118, 32},
/* Layer-4 Information */
[VCAP_IS1_HK_TCP_UDP] = {150, 1},
[VCAP_IS1_HK_TCP] = {151, 1},
[VCAP_IS1_HK_L4_SPORT] = {152, 16},
[VCAP_IS1_HK_L4_RNG] = {168, 8},
/* Specific Fields for IS1 Half Key S1_5TUPLE_IP4 */
[VCAP_IS1_HK_IP4_INNER_TPID] = { 42, 1},
[VCAP_IS1_HK_IP4_INNER_VID] = { 43, 12},
[VCAP_IS1_HK_IP4_INNER_DEI] = { 55, 1},
[VCAP_IS1_HK_IP4_INNER_PCP] = { 56, 3},
[VCAP_IS1_HK_IP4_IP4] = { 59, 1},
[VCAP_IS1_HK_IP4_L3_FRAGMENT] = { 60, 1},
[VCAP_IS1_HK_IP4_L3_FRAG_OFS_GT0] = { 61, 1},
[VCAP_IS1_HK_IP4_L3_OPTIONS] = { 62, 1},
[VCAP_IS1_HK_IP4_L3_DSCP] = { 63, 6},
[VCAP_IS1_HK_IP4_L3_IP4_DIP] = { 69, 32},
[VCAP_IS1_HK_IP4_L3_IP4_SIP] = {101, 32},
[VCAP_IS1_HK_IP4_L3_PROTO] = {133, 8},
[VCAP_IS1_HK_IP4_TCP_UDP] = {141, 1},
[VCAP_IS1_HK_IP4_TCP] = {142, 1},
[VCAP_IS1_HK_IP4_L4_RNG] = {143, 8},
[VCAP_IS1_HK_IP4_IP_PAYLOAD_S1_5TUPLE] = {151, 32},
};
static const struct vcap_field vsc9959_vcap_is1_actions[] = {
[VCAP_IS1_ACT_DSCP_ENA] = { 0, 1},
[VCAP_IS1_ACT_DSCP_VAL] = { 1, 6},
[VCAP_IS1_ACT_QOS_ENA] = { 7, 1},
[VCAP_IS1_ACT_QOS_VAL] = { 8, 3},
[VCAP_IS1_ACT_DP_ENA] = { 11, 1},
[VCAP_IS1_ACT_DP_VAL] = { 12, 1},
[VCAP_IS1_ACT_PAG_OVERRIDE_MASK] = { 13, 8},
[VCAP_IS1_ACT_PAG_VAL] = { 21, 8},
[VCAP_IS1_ACT_RSV] = { 29, 9},
/* The fields below are incorrectly shifted by 2 in the manual */
[VCAP_IS1_ACT_VID_REPLACE_ENA] = { 38, 1},
[VCAP_IS1_ACT_VID_ADD_VAL] = { 39, 12},
[VCAP_IS1_ACT_FID_SEL] = { 51, 2},
[VCAP_IS1_ACT_FID_VAL] = { 53, 13},
[VCAP_IS1_ACT_PCP_DEI_ENA] = { 66, 1},
[VCAP_IS1_ACT_PCP_VAL] = { 67, 3},
[VCAP_IS1_ACT_DEI_VAL] = { 70, 1},
[VCAP_IS1_ACT_VLAN_POP_CNT_ENA] = { 71, 1},
[VCAP_IS1_ACT_VLAN_POP_CNT] = { 72, 2},
[VCAP_IS1_ACT_CUSTOM_ACE_TYPE_ENA] = { 74, 4},
[VCAP_IS1_ACT_HIT_STICKY] = { 78, 1},
};
static struct vcap_field vsc9959_vcap_is2_keys[] = {
/* Common: 41 bits */
[VCAP_IS2_TYPE] = { 0, 4},
[VCAP_IS2_HK_FIRST] = { 4, 1},
[VCAP_IS2_HK_PAG] = { 5, 8},
[VCAP_IS2_HK_IGR_PORT_MASK] = { 13, 7},
[VCAP_IS2_HK_RSV2] = { 20, 1},
[VCAP_IS2_HK_HOST_MATCH] = { 21, 1},
[VCAP_IS2_HK_L2_MC] = { 22, 1},
[VCAP_IS2_HK_L2_BC] = { 23, 1},
[VCAP_IS2_HK_VLAN_TAGGED] = { 24, 1},
[VCAP_IS2_HK_VID] = { 25, 12},
[VCAP_IS2_HK_DEI] = { 37, 1},
[VCAP_IS2_HK_PCP] = { 38, 3},
/* MAC_ETYPE / MAC_LLC / MAC_SNAP / OAM common */
[VCAP_IS2_HK_L2_DMAC] = { 41, 48},
[VCAP_IS2_HK_L2_SMAC] = { 89, 48},
/* MAC_ETYPE (TYPE=000) */
[VCAP_IS2_HK_MAC_ETYPE_ETYPE] = {137, 16},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0] = {153, 16},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1] = {169, 8},
[VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2] = {177, 3},
/* MAC_LLC (TYPE=001) */
[VCAP_IS2_HK_MAC_LLC_L2_LLC] = {137, 40},
/* MAC_SNAP (TYPE=010) */
[VCAP_IS2_HK_MAC_SNAP_L2_SNAP] = {137, 40},
/* MAC_ARP (TYPE=011) */
[VCAP_IS2_HK_MAC_ARP_SMAC] = { 41, 48},
[VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK] = { 89, 1},
[VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK] = { 90, 1},
[VCAP_IS2_HK_MAC_ARP_LEN_OK] = { 91, 1},
[VCAP_IS2_HK_MAC_ARP_TARGET_MATCH] = { 92, 1},
[VCAP_IS2_HK_MAC_ARP_SENDER_MATCH] = { 93, 1},
[VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN] = { 94, 1},
[VCAP_IS2_HK_MAC_ARP_OPCODE] = { 95, 2},
[VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP] = { 97, 32},
[VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP] = {129, 32},
[VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP] = {161, 1},
/* IP4_TCP_UDP / IP4_OTHER common */
[VCAP_IS2_HK_IP4] = { 41, 1},
[VCAP_IS2_HK_L3_FRAGMENT] = { 42, 1},
[VCAP_IS2_HK_L3_FRAG_OFS_GT0] = { 43, 1},
[VCAP_IS2_HK_L3_OPTIONS] = { 44, 1},
[VCAP_IS2_HK_IP4_L3_TTL_GT0] = { 45, 1},
[VCAP_IS2_HK_L3_TOS] = { 46, 8},
[VCAP_IS2_HK_L3_IP4_DIP] = { 54, 32},
[VCAP_IS2_HK_L3_IP4_SIP] = { 86, 32},
[VCAP_IS2_HK_DIP_EQ_SIP] = {118, 1},
/* IP4_TCP_UDP (TYPE=100) */
[VCAP_IS2_HK_TCP] = {119, 1},
[VCAP_IS2_HK_L4_DPORT] = {120, 16},
[VCAP_IS2_HK_L4_SPORT] = {136, 16},
[VCAP_IS2_HK_L4_RNG] = {152, 8},
[VCAP_IS2_HK_L4_SPORT_EQ_DPORT] = {160, 1},
[VCAP_IS2_HK_L4_SEQUENCE_EQ0] = {161, 1},
[VCAP_IS2_HK_L4_FIN] = {162, 1},
[VCAP_IS2_HK_L4_SYN] = {163, 1},
[VCAP_IS2_HK_L4_RST] = {164, 1},
[VCAP_IS2_HK_L4_PSH] = {165, 1},
[VCAP_IS2_HK_L4_ACK] = {166, 1},
[VCAP_IS2_HK_L4_URG] = {167, 1},
[VCAP_IS2_HK_L4_1588_DOM] = {168, 8},
[VCAP_IS2_HK_L4_1588_VER] = {176, 4},
/* IP4_OTHER (TYPE=101) */
[VCAP_IS2_HK_IP4_L3_PROTO] = {119, 8},
[VCAP_IS2_HK_L3_PAYLOAD] = {127, 56},
/* IP6_STD (TYPE=110) */
[VCAP_IS2_HK_IP6_L3_TTL_GT0] = { 41, 1},
[VCAP_IS2_HK_L3_IP6_SIP] = { 42, 128},
[VCAP_IS2_HK_IP6_L3_PROTO] = {170, 8},
/* OAM (TYPE=111) */
[VCAP_IS2_HK_OAM_MEL_FLAGS] = {137, 7},
[VCAP_IS2_HK_OAM_VER] = {144, 5},
[VCAP_IS2_HK_OAM_OPCODE] = {149, 8},
[VCAP_IS2_HK_OAM_FLAGS] = {157, 8},
[VCAP_IS2_HK_OAM_MEPID] = {165, 16},
[VCAP_IS2_HK_OAM_CCM_CNTS_EQ0] = {181, 1},
[VCAP_IS2_HK_OAM_IS_Y1731] = {182, 1},
};
static struct vcap_field vsc9959_vcap_is2_actions[] = {
[VCAP_IS2_ACT_HIT_ME_ONCE] = { 0, 1},
[VCAP_IS2_ACT_CPU_COPY_ENA] = { 1, 1},
[VCAP_IS2_ACT_CPU_QU_NUM] = { 2, 3},
[VCAP_IS2_ACT_MASK_MODE] = { 5, 2},
[VCAP_IS2_ACT_MIRROR_ENA] = { 7, 1},
[VCAP_IS2_ACT_LRN_DIS] = { 8, 1},
[VCAP_IS2_ACT_POLICE_ENA] = { 9, 1},
[VCAP_IS2_ACT_POLICE_IDX] = { 10, 9},
[VCAP_IS2_ACT_POLICE_VCAP_ONLY] = { 19, 1},
[VCAP_IS2_ACT_PORT_MASK] = { 20, 6},
[VCAP_IS2_ACT_REW_OP] = { 26, 9},
[VCAP_IS2_ACT_SMAC_REPLACE_ENA] = { 35, 1},
[VCAP_IS2_ACT_RSV] = { 36, 2},
[VCAP_IS2_ACT_ACL_ID] = { 38, 6},
[VCAP_IS2_ACT_HIT_CNT] = { 44, 32},
};
static struct vcap_props vsc9959_vcap_props[] = {
[VCAP_ES0] = {
.action_type_width = 0,
.action_table = {
[ES0_ACTION_TYPE_NORMAL] = {
.width = 72, /* HIT_STICKY not included */
.count = 1,
},
},
.target = S0,
.keys = vsc9959_vcap_es0_keys,
.actions = vsc9959_vcap_es0_actions,
},
[VCAP_IS1] = {
.action_type_width = 0,
.action_table = {
[IS1_ACTION_TYPE_NORMAL] = {
.width = 78, /* HIT_STICKY not included */
.count = 4,
},
},
.target = S1,
.keys = vsc9959_vcap_is1_keys,
.actions = vsc9959_vcap_is1_actions,
},
[VCAP_IS2] = {
.action_type_width = 1,
.action_table = {
[IS2_ACTION_TYPE_NORMAL] = {
.width = 44,
.count = 2
},
[IS2_ACTION_TYPE_SMAC_SIP] = {
.width = 6,
.count = 4
},
},
.target = S2,
.keys = vsc9959_vcap_is2_keys,
.actions = vsc9959_vcap_is2_actions,
},
};
static const struct ptp_clock_info vsc9959_ptp_caps = {
.owner = THIS_MODULE,
.name = "felix ptp",
.max_adj = 0x7fffffff,
.n_alarm = 0,
.n_ext_ts = 0,
.n_per_out = OCELOT_PTP_PINS_NUM,
.n_pins = OCELOT_PTP_PINS_NUM,
.pps = 0,
.gettime64 = ocelot_ptp_gettime64,
.settime64 = ocelot_ptp_settime64,
.adjtime = ocelot_ptp_adjtime,
.adjfine = ocelot_ptp_adjfine,
.verify = ocelot_ptp_verify,
.enable = ocelot_ptp_enable,
};
#define VSC9959_INIT_TIMEOUT 50000
#define VSC9959_GCB_RST_SLEEP 100
#define VSC9959_SYS_RAMINIT_SLEEP 80
static int vsc9959_gcb_soft_rst_status(struct ocelot *ocelot)
{
int val;
ocelot_field_read(ocelot, GCB_SOFT_RST_SWC_RST, &val);
return val;
}
static int vsc9959_sys_ram_init_status(struct ocelot *ocelot)
{
return ocelot_read(ocelot, SYS_RAM_INIT);
}
/* CORE_ENA is in SYS:SYSTEM:RESET_CFG
* RAM_INIT is in SYS:RAM_CTRL:RAM_INIT
*/
static int vsc9959_reset(struct ocelot *ocelot)
{
int val, err;
/* soft-reset the switch core */
ocelot_field_write(ocelot, GCB_SOFT_RST_SWC_RST, 1);
err = readx_poll_timeout(vsc9959_gcb_soft_rst_status, ocelot, val, !val,
VSC9959_GCB_RST_SLEEP, VSC9959_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch core reset\n");
return err;
}
/* initialize switch mem ~40us */
ocelot_write(ocelot, SYS_RAM_INIT_RAM_INIT, SYS_RAM_INIT);
err = readx_poll_timeout(vsc9959_sys_ram_init_status, ocelot, val, !val,
VSC9959_SYS_RAMINIT_SLEEP,
VSC9959_INIT_TIMEOUT);
if (err) {
dev_err(ocelot->dev, "timeout: switch sram init\n");
return err;
}
/* enable switch core */
ocelot_field_write(ocelot, SYS_RESET_CFG_CORE_ENA, 1);
return 0;
}
/* Watermark encode
* Bit 8: Unit; 0:1, 1:16
* Bit 7-0: Value to be multiplied with unit
*/
static u16 vsc9959_wm_enc(u16 value)
{
WARN_ON(value >= 16 * BIT(8));
if (value >= BIT(8))
return BIT(8) | (value / 16);
return value;
}
static u16 vsc9959_wm_dec(u16 wm)
{
WARN_ON(wm & ~GENMASK(8, 0));
if (wm & BIT(8))
return (wm & GENMASK(7, 0)) * 16;
return wm;
}
static void vsc9959_wm_stat(u32 val, u32 *inuse, u32 *maxuse)
{
*inuse = (val & GENMASK(23, 12)) >> 12;
*maxuse = val & GENMASK(11, 0);
}
static int vsc9959_mdio_bus_alloc(struct ocelot *ocelot)
{
struct pci_dev *pdev = to_pci_dev(ocelot->dev);
struct felix *felix = ocelot_to_felix(ocelot);
struct enetc_mdio_priv *mdio_priv;
struct device *dev = ocelot->dev;
resource_size_t imdio_base;
void __iomem *imdio_regs;
struct resource res;
struct enetc_hw *hw;
struct mii_bus *bus;
int port;
int rc;
felix->pcs = devm_kcalloc(dev, felix->info->num_ports,
sizeof(struct phylink_pcs *),
GFP_KERNEL);
if (!felix->pcs) {
dev_err(dev, "failed to allocate array for PCS PHYs\n");
return -ENOMEM;
}
imdio_base = pci_resource_start(pdev, VSC9959_IMDIO_PCI_BAR);
memcpy(&res, &vsc9959_imdio_res, sizeof(res));
res.start += imdio_base;
res.end += imdio_base;
imdio_regs = devm_ioremap_resource(dev, &res);
if (IS_ERR(imdio_regs))
return PTR_ERR(imdio_regs);
hw = enetc_hw_alloc(dev, imdio_regs);
if (IS_ERR(hw)) {
dev_err(dev, "failed to allocate ENETC HW structure\n");
return PTR_ERR(hw);
}
bus = mdiobus_alloc_size(sizeof(*mdio_priv));
if (!bus)
return -ENOMEM;
bus->name = "VSC9959 internal MDIO bus";
bus->read = enetc_mdio_read_c22;
bus->write = enetc_mdio_write_c22;
bus->read_c45 = enetc_mdio_read_c45;
bus->write_c45 = enetc_mdio_write_c45;
bus->parent = dev;
mdio_priv = bus->priv;
mdio_priv->hw = hw;
/* This gets added to imdio_regs, which already maps addresses
* starting with the proper offset.
*/
mdio_priv->mdio_base = 0;
snprintf(bus->id, MII_BUS_ID_SIZE, "%s-imdio", dev_name(dev));
/* Needed in order to initialize the bus mutex lock */
rc = mdiobus_register(bus);
if (rc < 0) {
dev_err(dev, "failed to register MDIO bus\n");
mdiobus_free(bus);
return rc;
}
felix->imdio = bus;
for (port = 0; port < felix->info->num_ports; port++) {
struct ocelot_port *ocelot_port = ocelot->ports[port];
struct phylink_pcs *phylink_pcs;
struct mdio_device *mdio_device;
if (dsa_is_unused_port(felix->ds, port))
continue;
if (ocelot_port->phy_mode == PHY_INTERFACE_MODE_INTERNAL)
continue;
mdio_device = mdio_device_create(felix->imdio, port);
if (IS_ERR(mdio_device))
continue;
phylink_pcs = lynx_pcs_create(mdio_device);
if (!phylink_pcs) {
mdio_device_free(mdio_device);
continue;
}
felix->pcs[port] = phylink_pcs;
dev_info(dev, "Found PCS at internal MDIO address %d\n", port);
}
return 0;
}
static void vsc9959_mdio_bus_free(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
int port;
for (port = 0; port < ocelot->num_phys_ports; port++) {
struct phylink_pcs *phylink_pcs = felix->pcs[port];
struct mdio_device *mdio_device;
if (!phylink_pcs)
continue;
mdio_device = lynx_get_mdio_device(phylink_pcs);
mdio_device_free(mdio_device);
lynx_pcs_destroy(phylink_pcs);
}
mdiobus_unregister(felix->imdio);
mdiobus_free(felix->imdio);
}
/* The switch considers any frame (regardless of size) as eligible for
* transmission if the traffic class gate is open for at least 33 ns.
* Overruns are prevented by cropping an interval at the end of the gate time
* slot for which egress scheduling is blocked, but we need to still keep 33 ns
* available for one packet to be transmitted, otherwise the port tc will hang.
* This function returns the size of a gate interval that remains available for
* setting the guard band, after reserving the space for one egress frame.
*/
static u64 vsc9959_tas_remaining_gate_len_ps(u64 gate_len_ns)
{
/* Gate always open */
if (gate_len_ns == U64_MAX)
return U64_MAX;
return (gate_len_ns - VSC9959_TAS_MIN_GATE_LEN_NS) * PSEC_PER_NSEC;
}
/* Extract shortest continuous gate open intervals in ns for each traffic class
* of a cyclic tc-taprio schedule. If a gate is always open, the duration is
* considered U64_MAX. If the gate is always closed, it is considered 0.
*/
static void vsc9959_tas_min_gate_lengths(struct tc_taprio_qopt_offload *taprio,
u64 min_gate_len[OCELOT_NUM_TC])
{
struct tc_taprio_sched_entry *entry;
u64 gate_len[OCELOT_NUM_TC];
u8 gates_ever_opened = 0;
int tc, i, n;
/* Initialize arrays */
for (tc = 0; tc < OCELOT_NUM_TC; tc++) {
min_gate_len[tc] = U64_MAX;
gate_len[tc] = 0;
}
/* If we don't have taprio, consider all gates as permanently open */
if (!taprio)
return;
n = taprio->num_entries;
/* Walk through the gate list twice to determine the length
* of consecutively open gates for a traffic class, including
* open gates that wrap around. We are just interested in the
* minimum window size, and this doesn't change what the
* minimum is (if the gate never closes, min_gate_len will
* remain U64_MAX).
*/
for (i = 0; i < 2 * n; i++) {
entry = &taprio->entries[i % n];
for (tc = 0; tc < OCELOT_NUM_TC; tc++) {
if (entry->gate_mask & BIT(tc)) {
gate_len[tc] += entry->interval;
gates_ever_opened |= BIT(tc);
} else {
/* Gate closes now, record a potential new
* minimum and reinitialize length
*/
if (min_gate_len[tc] > gate_len[tc] &&
gate_len[tc])
min_gate_len[tc] = gate_len[tc];
gate_len[tc] = 0;
}
}
}
/* min_gate_len[tc] actually tracks minimum *open* gate time, so for
* permanently closed gates, min_gate_len[tc] will still be U64_MAX.
* Therefore they are currently indistinguishable from permanently
* open gates. Overwrite the gate len with 0 when we know they're
* actually permanently closed, i.e. after the loop above.
*/
for (tc = 0; tc < OCELOT_NUM_TC; tc++)
if (!(gates_ever_opened & BIT(tc)))
min_gate_len[tc] = 0;
}
/* ocelot_write_rix is a macro that concatenates QSYS_MAXSDU_CFG_* with _RSZ,
* so we need to spell out the register access to each traffic class in helper
* functions, to simplify callers
*/
static void vsc9959_port_qmaxsdu_set(struct ocelot *ocelot, int port, int tc,
u32 max_sdu)
{
switch (tc) {
case 0:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_0,
port);
break;
case 1:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_1,
port);
break;
case 2:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_2,
port);
break;
case 3:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_3,
port);
break;
case 4:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_4,
port);
break;
case 5:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_5,
port);
break;
case 6:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_6,
port);
break;
case 7:
ocelot_write_rix(ocelot, max_sdu, QSYS_QMAXSDU_CFG_7,
port);
break;
}
}
static u32 vsc9959_port_qmaxsdu_get(struct ocelot *ocelot, int port, int tc)
{
switch (tc) {
case 0: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_0, port);
case 1: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_1, port);
case 2: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_2, port);
case 3: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_3, port);
case 4: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_4, port);
case 5: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_5, port);
case 6: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_6, port);
case 7: return ocelot_read_rix(ocelot, QSYS_QMAXSDU_CFG_7, port);
default:
return 0;
}
}
static u32 vsc9959_tas_tc_max_sdu(struct tc_taprio_qopt_offload *taprio, int tc)
{
if (!taprio || !taprio->max_sdu[tc])
return 0;
return taprio->max_sdu[tc] + ETH_HLEN + 2 * VLAN_HLEN + ETH_FCS_LEN;
}
/* Update QSYS_PORT_MAX_SDU to make sure the static guard bands added by the
* switch (see the ALWAYS_GUARD_BAND_SCH_Q comment) are correct at all MTU
* values (the default value is 1518). Also, for traffic class windows smaller
* than one MTU sized frame, update QSYS_QMAXSDU_CFG to enable oversized frame
* dropping, such that these won't hang the port, as they will never be sent.
*/
static void vsc9959_tas_guard_bands_update(struct ocelot *ocelot, int port)
{
struct ocelot_port *ocelot_port = ocelot->ports[port];
struct tc_taprio_qopt_offload *taprio;
u64 min_gate_len[OCELOT_NUM_TC];
int speed, picos_per_byte;
u64 needed_bit_time_ps;
u32 val, maxlen;
u8 tas_speed;
int tc;
lockdep_assert_held(&ocelot->tas_lock);
taprio = ocelot_port->taprio;
val = ocelot_read_rix(ocelot, QSYS_TAG_CONFIG, port);
tas_speed = QSYS_TAG_CONFIG_LINK_SPEED_X(val);
switch (tas_speed) {
case OCELOT_SPEED_10:
speed = SPEED_10;
break;
case OCELOT_SPEED_100:
speed = SPEED_100;
break;
case OCELOT_SPEED_1000:
speed = SPEED_1000;
break;
case OCELOT_SPEED_2500:
speed = SPEED_2500;
break;
default:
return;
}
picos_per_byte = (USEC_PER_SEC * 8) / speed;
val = ocelot_port_readl(ocelot_port, DEV_MAC_MAXLEN_CFG);
/* MAXLEN_CFG accounts automatically for VLAN. We need to include it
* manually in the bit time calculation, plus the preamble and SFD.
*/
maxlen = val + 2 * VLAN_HLEN;
/* Consider the standard Ethernet overhead of 8 octets preamble+SFD,
* 4 octets FCS, 12 octets IFG.
*/
needed_bit_time_ps = (u64)(maxlen + 24) * picos_per_byte;
dev_dbg(ocelot->dev,
"port %d: max frame size %d needs %llu ps at speed %d\n",
port, maxlen, needed_bit_time_ps, speed);
vsc9959_tas_min_gate_lengths(taprio, min_gate_len);
mutex_lock(&ocelot->fwd_domain_lock);
for (tc = 0; tc < OCELOT_NUM_TC; tc++) {
u32 requested_max_sdu = vsc9959_tas_tc_max_sdu(taprio, tc);
u64 remaining_gate_len_ps;
u32 max_sdu;
remaining_gate_len_ps =
vsc9959_tas_remaining_gate_len_ps(min_gate_len[tc]);
if (remaining_gate_len_ps > needed_bit_time_ps) {
/* Setting QMAXSDU_CFG to 0 disables oversized frame
* dropping.
*/
max_sdu = requested_max_sdu;
dev_dbg(ocelot->dev,
"port %d tc %d min gate len %llu"
", sending all frames\n",
port, tc, min_gate_len[tc]);
} else {
/* If traffic class doesn't support a full MTU sized
* frame, make sure to enable oversize frame dropping
* for frames larger than the smallest that would fit.
*
* However, the exact same register, QSYS_QMAXSDU_CFG_*,
* controls not only oversized frame dropping, but also
* per-tc static guard band lengths, so it reduces the
* useful gate interval length. Therefore, be careful
* to calculate a guard band (and therefore max_sdu)
* that still leaves 33 ns available in the time slot.
*/
max_sdu = div_u64(remaining_gate_len_ps, picos_per_byte);
/* A TC gate may be completely closed, which is a
* special case where all packets are oversized.
* Any limit smaller than 64 octets accomplishes this
*/
if (!max_sdu)
max_sdu = 1;
/* Take L1 overhead into account, but just don't allow
* max_sdu to go negative or to 0. Here we use 20
* because QSYS_MAXSDU_CFG_* already counts the 4 FCS
* octets as part of packet size.
*/
if (max_sdu > 20)
max_sdu -= 20;
if (requested_max_sdu && requested_max_sdu < max_sdu)
max_sdu = requested_max_sdu;
dev_info(ocelot->dev,
"port %d tc %d min gate length %llu"
" ns not enough for max frame size %d at %d"
" Mbps, dropping frames over %d"
" octets including FCS\n",
port, tc, min_gate_len[tc], maxlen, speed,
max_sdu);
}
vsc9959_port_qmaxsdu_set(ocelot, port, tc, max_sdu);
}
ocelot_write_rix(ocelot, maxlen, QSYS_PORT_MAX_SDU, port);
ocelot->ops->cut_through_fwd(ocelot);
mutex_unlock(&ocelot->fwd_domain_lock);
}
static void vsc9959_sched_speed_set(struct ocelot *ocelot, int port,
u32 speed)
{
struct ocelot_port *ocelot_port = ocelot->ports[port];
u8 tas_speed;
switch (speed) {
case SPEED_10:
tas_speed = OCELOT_SPEED_10;
break;
case SPEED_100:
tas_speed = OCELOT_SPEED_100;
break;
case SPEED_1000:
tas_speed = OCELOT_SPEED_1000;
break;
case SPEED_2500:
tas_speed = OCELOT_SPEED_2500;
break;
default:
tas_speed = OCELOT_SPEED_1000;
break;
}
mutex_lock(&ocelot->tas_lock);
ocelot_rmw_rix(ocelot,
QSYS_TAG_CONFIG_LINK_SPEED(tas_speed),
QSYS_TAG_CONFIG_LINK_SPEED_M,
QSYS_TAG_CONFIG, port);
if (ocelot_port->taprio)
vsc9959_tas_guard_bands_update(ocelot, port);
mutex_unlock(&ocelot->tas_lock);
}
static void vsc9959_new_base_time(struct ocelot *ocelot, ktime_t base_time,
u64 cycle_time,
struct timespec64 *new_base_ts)
{
struct timespec64 ts;
ktime_t new_base_time;
ktime_t current_time;
ocelot_ptp_gettime64(&ocelot->ptp_info, &ts);
current_time = timespec64_to_ktime(ts);
new_base_time = base_time;
if (base_time < current_time) {
u64 nr_of_cycles = current_time - base_time;
do_div(nr_of_cycles, cycle_time);
new_base_time += cycle_time * (nr_of_cycles + 1);
}
*new_base_ts = ktime_to_timespec64(new_base_time);
}
static u32 vsc9959_tas_read_cfg_status(struct ocelot *ocelot)
{
return ocelot_read(ocelot, QSYS_TAS_PARAM_CFG_CTRL);
}
static void vsc9959_tas_gcl_set(struct ocelot *ocelot, const u32 gcl_ix,
struct tc_taprio_sched_entry *entry)
{
ocelot_write(ocelot,
QSYS_GCL_CFG_REG_1_GCL_ENTRY_NUM(gcl_ix) |
QSYS_GCL_CFG_REG_1_GATE_STATE(entry->gate_mask),
QSYS_GCL_CFG_REG_1);
ocelot_write(ocelot, entry->interval, QSYS_GCL_CFG_REG_2);
}
static int vsc9959_qos_port_tas_set(struct ocelot *ocelot, int port,
struct tc_taprio_qopt_offload *taprio)
{
struct ocelot_port *ocelot_port = ocelot->ports[port];
struct timespec64 base_ts;
int ret, i;
u32 val;
mutex_lock(&ocelot->tas_lock);
if (!taprio->enable) {
ocelot_rmw_rix(ocelot, 0, QSYS_TAG_CONFIG_ENABLE,
QSYS_TAG_CONFIG, port);
taprio_offload_free(ocelot_port->taprio);
ocelot_port->taprio = NULL;
vsc9959_tas_guard_bands_update(ocelot, port);
mutex_unlock(&ocelot->tas_lock);
return 0;
}
if (taprio->cycle_time > NSEC_PER_SEC ||
taprio->cycle_time_extension >= NSEC_PER_SEC) {
ret = -EINVAL;
goto err;
}
if (taprio->num_entries > VSC9959_TAS_GCL_ENTRY_MAX) {
ret = -ERANGE;
goto err;
}
/* Enable guard band. The switch will schedule frames without taking
* their length into account. Thus we'll always need to enable the
* guard band which reserves the time of a maximum sized frame at the
* end of the time window.
*
* Although the ALWAYS_GUARD_BAND_SCH_Q bit is global for all ports, we
* need to set PORT_NUM, because subsequent writes to PARAM_CFG_REG_n
* operate on the port number.
*/
ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM(port) |
QSYS_TAS_PARAM_CFG_CTRL_ALWAYS_GUARD_BAND_SCH_Q,
QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM_M |
QSYS_TAS_PARAM_CFG_CTRL_ALWAYS_GUARD_BAND_SCH_Q,
QSYS_TAS_PARAM_CFG_CTRL);
/* Hardware errata - Admin config could not be overwritten if
* config is pending, need reset the TAS module
*/
val = ocelot_read(ocelot, QSYS_PARAM_STATUS_REG_8);
if (val & QSYS_PARAM_STATUS_REG_8_CONFIG_PENDING) {
ret = -EBUSY;
goto err;
}
ocelot_rmw_rix(ocelot,
QSYS_TAG_CONFIG_ENABLE |
QSYS_TAG_CONFIG_INIT_GATE_STATE(0xFF) |
QSYS_TAG_CONFIG_SCH_TRAFFIC_QUEUES(0xFF),
QSYS_TAG_CONFIG_ENABLE |
QSYS_TAG_CONFIG_INIT_GATE_STATE_M |
QSYS_TAG_CONFIG_SCH_TRAFFIC_QUEUES_M,
QSYS_TAG_CONFIG, port);
vsc9959_new_base_time(ocelot, taprio->base_time,
taprio->cycle_time, &base_ts);
ocelot_write(ocelot, base_ts.tv_nsec, QSYS_PARAM_CFG_REG_1);
ocelot_write(ocelot, lower_32_bits(base_ts.tv_sec), QSYS_PARAM_CFG_REG_2);
val = upper_32_bits(base_ts.tv_sec);
ocelot_write(ocelot,
QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB(val) |
QSYS_PARAM_CFG_REG_3_LIST_LENGTH(taprio->num_entries),
QSYS_PARAM_CFG_REG_3);
ocelot_write(ocelot, taprio->cycle_time, QSYS_PARAM_CFG_REG_4);
ocelot_write(ocelot, taprio->cycle_time_extension, QSYS_PARAM_CFG_REG_5);
for (i = 0; i < taprio->num_entries; i++)
vsc9959_tas_gcl_set(ocelot, i, &taprio->entries[i]);
ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE,
QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE,
QSYS_TAS_PARAM_CFG_CTRL);
ret = readx_poll_timeout(vsc9959_tas_read_cfg_status, ocelot, val,
!(val & QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE),
10, 100000);
if (ret)
goto err;
ocelot_port->taprio = taprio_offload_get(taprio);
vsc9959_tas_guard_bands_update(ocelot, port);
err:
mutex_unlock(&ocelot->tas_lock);
return ret;
}
static void vsc9959_tas_clock_adjust(struct ocelot *ocelot)
{
struct tc_taprio_qopt_offload *taprio;
struct ocelot_port *ocelot_port;
struct timespec64 base_ts;
int port;
u32 val;
mutex_lock(&ocelot->tas_lock);
for (port = 0; port < ocelot->num_phys_ports; port++) {
ocelot_port = ocelot->ports[port];
taprio = ocelot_port->taprio;
if (!taprio)
continue;
ocelot_rmw(ocelot,
QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM(port),
QSYS_TAS_PARAM_CFG_CTRL_PORT_NUM_M,
QSYS_TAS_PARAM_CFG_CTRL);
/* Disable time-aware shaper */
ocelot_rmw_rix(ocelot, 0, QSYS_TAG_CONFIG_ENABLE,
QSYS_TAG_CONFIG, port);
vsc9959_new_base_time(ocelot, taprio->base_time,
taprio->cycle_time, &base_ts);
ocelot_write(ocelot, base_ts.tv_nsec, QSYS_PARAM_CFG_REG_1);
ocelot_write(ocelot, lower_32_bits(base_ts.tv_sec),
QSYS_PARAM_CFG_REG_2);
val = upper_32_bits(base_ts.tv_sec);
ocelot_rmw(ocelot,
QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB(val),
QSYS_PARAM_CFG_REG_3_BASE_TIME_SEC_MSB_M,
QSYS_PARAM_CFG_REG_3);
ocelot_rmw(ocelot, QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE,
QSYS_TAS_PARAM_CFG_CTRL_CONFIG_CHANGE,
QSYS_TAS_PARAM_CFG_CTRL);
/* Re-enable time-aware shaper */
ocelot_rmw_rix(ocelot, QSYS_TAG_CONFIG_ENABLE,
QSYS_TAG_CONFIG_ENABLE,
QSYS_TAG_CONFIG, port);
}
mutex_unlock(&ocelot->tas_lock);
}
static int vsc9959_qos_port_cbs_set(struct dsa_switch *ds, int port,
struct tc_cbs_qopt_offload *cbs_qopt)
{
struct ocelot *ocelot = ds->priv;
int port_ix = port * 8 + cbs_qopt->queue;
u32 rate, burst;
if (cbs_qopt->queue >= ds->num_tx_queues)
return -EINVAL;
if (!cbs_qopt->enable) {
ocelot_write_gix(ocelot, QSYS_CIR_CFG_CIR_RATE(0) |
QSYS_CIR_CFG_CIR_BURST(0),
QSYS_CIR_CFG, port_ix);
ocelot_rmw_gix(ocelot, 0, QSYS_SE_CFG_SE_AVB_ENA,
QSYS_SE_CFG, port_ix);
return 0;
}
/* Rate unit is 100 kbps */
rate = DIV_ROUND_UP(cbs_qopt->idleslope, 100);
/* Avoid using zero rate */
rate = clamp_t(u32, rate, 1, GENMASK(14, 0));
/* Burst unit is 4kB */
burst = DIV_ROUND_UP(cbs_qopt->hicredit, 4096);
/* Avoid using zero burst size */
burst = clamp_t(u32, burst, 1, GENMASK(5, 0));
ocelot_write_gix(ocelot,
QSYS_CIR_CFG_CIR_RATE(rate) |
QSYS_CIR_CFG_CIR_BURST(burst),
QSYS_CIR_CFG,
port_ix);
ocelot_rmw_gix(ocelot,
QSYS_SE_CFG_SE_FRM_MODE(0) |
QSYS_SE_CFG_SE_AVB_ENA,
QSYS_SE_CFG_SE_AVB_ENA |
QSYS_SE_CFG_SE_FRM_MODE_M,
QSYS_SE_CFG,
port_ix);
return 0;
}
static int vsc9959_qos_query_caps(struct tc_query_caps_base *base)
{
switch (base->type) {
case TC_SETUP_QDISC_TAPRIO: {
struct tc_taprio_caps *caps = base->caps;
caps->supports_queue_max_sdu = true;
return 0;
}
default:
return -EOPNOTSUPP;
}
}
static int vsc9959_port_setup_tc(struct dsa_switch *ds, int port,
enum tc_setup_type type,
void *type_data)
{
struct ocelot *ocelot = ds->priv;
switch (type) {
case TC_QUERY_CAPS:
return vsc9959_qos_query_caps(type_data);
case TC_SETUP_QDISC_TAPRIO:
return vsc9959_qos_port_tas_set(ocelot, port, type_data);
case TC_SETUP_QDISC_CBS:
return vsc9959_qos_port_cbs_set(ds, port, type_data);
default:
return -EOPNOTSUPP;
}
}
#define VSC9959_PSFP_SFID_MAX 175
#define VSC9959_PSFP_GATE_ID_MAX 183
#define VSC9959_PSFP_POLICER_BASE 63
#define VSC9959_PSFP_POLICER_MAX 383
#define VSC9959_PSFP_GATE_LIST_NUM 4
#define VSC9959_PSFP_GATE_CYCLETIME_MIN 5000
struct felix_stream {
struct list_head list;
unsigned long id;
bool dummy;
int ports;
int port;
u8 dmac[ETH_ALEN];
u16 vid;
s8 prio;
u8 sfid_valid;
u8 ssid_valid;
u32 sfid;
u32 ssid;
};
struct felix_stream_filter_counters {
u64 match;
u64 not_pass_gate;
u64 not_pass_sdu;
u64 red;
};
struct felix_stream_filter {
struct felix_stream_filter_counters stats;
struct list_head list;
refcount_t refcount;
u32 index;
u8 enable;
int portmask;
u8 sg_valid;
u32 sgid;
u8 fm_valid;
u32 fmid;
u8 prio_valid;
u8 prio;
u32 maxsdu;
};
struct felix_stream_gate {
u32 index;
u8 enable;
u8 ipv_valid;
u8 init_ipv;
u64 basetime;
u64 cycletime;
u64 cycletime_ext;
u32 num_entries;
struct action_gate_entry entries[];
};
struct felix_stream_gate_entry {
struct list_head list;
refcount_t refcount;
u32 index;
};
static int vsc9959_stream_identify(struct flow_cls_offload *f,
struct felix_stream *stream)
{
struct flow_rule *rule = flow_cls_offload_flow_rule(f);
struct flow_dissector *dissector = rule->match.dissector;
if (dissector->used_keys &
~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
BIT(FLOW_DISSECTOR_KEY_BASIC) |
BIT(FLOW_DISSECTOR_KEY_VLAN) |
BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS)))
return -EOPNOTSUPP;
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
struct flow_match_eth_addrs match;
flow_rule_match_eth_addrs(rule, &match);
ether_addr_copy(stream->dmac, match.key->dst);
if (!is_zero_ether_addr(match.mask->src))
return -EOPNOTSUPP;
} else {
return -EOPNOTSUPP;
}
if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
struct flow_match_vlan match;
flow_rule_match_vlan(rule, &match);
if (match.mask->vlan_priority)
stream->prio = match.key->vlan_priority;
else
stream->prio = -1;
if (!match.mask->vlan_id)
return -EOPNOTSUPP;
stream->vid = match.key->vlan_id;
} else {
return -EOPNOTSUPP;
}
stream->id = f->cookie;
return 0;
}
static int vsc9959_mact_stream_set(struct ocelot *ocelot,
struct felix_stream *stream,
struct netlink_ext_ack *extack)
{
enum macaccess_entry_type type;
int ret, sfid, ssid;
u32 vid, dst_idx;
u8 mac[ETH_ALEN];
ether_addr_copy(mac, stream->dmac);
vid = stream->vid;
/* Stream identification desn't support to add a stream with non
* existent MAC (The MAC entry has not been learned in MAC table).
*/
ret = ocelot_mact_lookup(ocelot, &dst_idx, mac, vid, &type);
if (ret) {
if (extack)
NL_SET_ERR_MSG_MOD(extack, "Stream is not learned in MAC table");
return -EOPNOTSUPP;
}
if ((stream->sfid_valid || stream->ssid_valid) &&
type == ENTRYTYPE_NORMAL)
type = ENTRYTYPE_LOCKED;
sfid = stream->sfid_valid ? stream->sfid : -1;
ssid = stream->ssid_valid ? stream->ssid : -1;
ret = ocelot_mact_learn_streamdata(ocelot, dst_idx, mac, vid, type,
sfid, ssid);
return ret;
}
static struct felix_stream *
vsc9959_stream_table_lookup(struct list_head *stream_list,
struct felix_stream *stream)
{
struct felix_stream *tmp;
list_for_each_entry(tmp, stream_list, list)
if (ether_addr_equal(tmp->dmac, stream->dmac) &&
tmp->vid == stream->vid)
return tmp;
return NULL;
}
static int vsc9959_stream_table_add(struct ocelot *ocelot,
struct list_head *stream_list,
struct felix_stream *stream,
struct netlink_ext_ack *extack)
{
struct felix_stream *stream_entry;
int ret;
stream_entry = kmemdup(stream, sizeof(*stream_entry), GFP_KERNEL);
if (!stream_entry)
return -ENOMEM;
if (!stream->dummy) {
ret = vsc9959_mact_stream_set(ocelot, stream_entry, extack);
if (ret) {
kfree(stream_entry);
return ret;
}
}
list_add_tail(&stream_entry->list, stream_list);
return 0;
}
static struct felix_stream *
vsc9959_stream_table_get(struct list_head *stream_list, unsigned long id)
{
struct felix_stream *tmp;
list_for_each_entry(tmp, stream_list, list)
if (tmp->id == id)
return tmp;
return NULL;
}
static void vsc9959_stream_table_del(struct ocelot *ocelot,
struct felix_stream *stream)
{
if (!stream->dummy)
vsc9959_mact_stream_set(ocelot, stream, NULL);
list_del(&stream->list);
kfree(stream);
}
static u32 vsc9959_sfi_access_status(struct ocelot *ocelot)
{
return ocelot_read(ocelot, ANA_TABLES_SFIDACCESS);
}
static int vsc9959_psfp_sfi_set(struct ocelot *ocelot,
struct felix_stream_filter *sfi)
{
u32 val;
if (sfi->index > VSC9959_PSFP_SFID_MAX)
return -EINVAL;
if (!sfi->enable) {
ocelot_write(ocelot, ANA_TABLES_SFIDTIDX_SFID_INDEX(sfi->index),
ANA_TABLES_SFIDTIDX);
val = ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE);
ocelot_write(ocelot, val, ANA_TABLES_SFIDACCESS);
return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val,
(!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)),
10, 100000);
}
if (sfi->sgid > VSC9959_PSFP_GATE_ID_MAX ||
sfi->fmid > VSC9959_PSFP_POLICER_MAX)
return -EINVAL;
ocelot_write(ocelot,
(sfi->sg_valid ? ANA_TABLES_SFIDTIDX_SGID_VALID : 0) |
ANA_TABLES_SFIDTIDX_SGID(sfi->sgid) |
(sfi->fm_valid ? ANA_TABLES_SFIDTIDX_POL_ENA : 0) |
ANA_TABLES_SFIDTIDX_POL_IDX(sfi->fmid) |
ANA_TABLES_SFIDTIDX_SFID_INDEX(sfi->index),
ANA_TABLES_SFIDTIDX);
ocelot_write(ocelot,
(sfi->prio_valid ? ANA_TABLES_SFIDACCESS_IGR_PRIO_MATCH_ENA : 0) |
ANA_TABLES_SFIDACCESS_IGR_PRIO(sfi->prio) |
ANA_TABLES_SFIDACCESS_MAX_SDU_LEN(sfi->maxsdu) |
ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE),
ANA_TABLES_SFIDACCESS);
return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val,
(!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)),
10, 100000);
}
static int vsc9959_psfp_sfidmask_set(struct ocelot *ocelot, u32 sfid, int ports)
{
u32 val;
ocelot_rmw(ocelot,
ANA_TABLES_SFIDTIDX_SFID_INDEX(sfid),
ANA_TABLES_SFIDTIDX_SFID_INDEX_M,
ANA_TABLES_SFIDTIDX);
ocelot_write(ocelot,
ANA_TABLES_SFID_MASK_IGR_PORT_MASK(ports) |
ANA_TABLES_SFID_MASK_IGR_SRCPORT_MATCH_ENA,
ANA_TABLES_SFID_MASK);
ocelot_rmw(ocelot,
ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(SFIDACCESS_CMD_WRITE),
ANA_TABLES_SFIDACCESS_SFID_TBL_CMD_M,
ANA_TABLES_SFIDACCESS);
return readx_poll_timeout(vsc9959_sfi_access_status, ocelot, val,
(!ANA_TABLES_SFIDACCESS_SFID_TBL_CMD(val)),
10, 100000);
}
static int vsc9959_psfp_sfi_list_add(struct ocelot *ocelot,
struct felix_stream_filter *sfi,
struct list_head *pos)
{
struct felix_stream_filter *sfi_entry;
int ret;
sfi_entry = kmemdup(sfi, sizeof(*sfi_entry), GFP_KERNEL);
if (!sfi_entry)
return -ENOMEM;
refcount_set(&sfi_entry->refcount, 1);
ret = vsc9959_psfp_sfi_set(ocelot, sfi_entry);
if (ret) {
kfree(sfi_entry);
return ret;
}
vsc9959_psfp_sfidmask_set(ocelot, sfi->index, sfi->portmask);
list_add(&sfi_entry->list, pos);
return 0;
}
static int vsc9959_psfp_sfi_table_add(struct ocelot *ocelot,
struct felix_stream_filter *sfi)
{
struct list_head *pos, *q, *last;
struct felix_stream_filter *tmp;
struct ocelot_psfp_list *psfp;
u32 insert = 0;
psfp = &ocelot->psfp;
last = &psfp->sfi_list;
list_for_each_safe(pos, q, &psfp->sfi_list) {
tmp = list_entry(pos, struct felix_stream_filter, list);
if (sfi->sg_valid == tmp->sg_valid &&
sfi->fm_valid == tmp->fm_valid &&
sfi->portmask == tmp->portmask &&
tmp->sgid == sfi->sgid &&
tmp->fmid == sfi->fmid) {
sfi->index = tmp->index;
refcount_inc(&tmp->refcount);
return 0;
}
/* Make sure that the index is increasing in order. */
if (tmp->index == insert) {
last = pos;
insert++;
}
}
sfi->index = insert;
return vsc9959_psfp_sfi_list_add(ocelot, sfi, last);
}
static int vsc9959_psfp_sfi_table_add2(struct ocelot *ocelot,
struct felix_stream_filter *sfi,
struct felix_stream_filter *sfi2)
{
struct felix_stream_filter *tmp;
struct list_head *pos, *q, *last;
struct ocelot_psfp_list *psfp;
u32 insert = 0;
int ret;
psfp = &ocelot->psfp;
last = &psfp->sfi_list;
list_for_each_safe(pos, q, &psfp->sfi_list) {
tmp = list_entry(pos, struct felix_stream_filter, list);
/* Make sure that the index is increasing in order. */
if (tmp->index >= insert + 2)
break;
insert = tmp->index + 1;
last = pos;
}
sfi->index = insert;
ret = vsc9959_psfp_sfi_list_add(ocelot, sfi, last);
if (ret)
return ret;
sfi2->index = insert + 1;
return vsc9959_psfp_sfi_list_add(ocelot, sfi2, last->next);
}
static struct felix_stream_filter *
vsc9959_psfp_sfi_table_get(struct list_head *sfi_list, u32 index)
{
struct felix_stream_filter *tmp;
list_for_each_entry(tmp, sfi_list, list)
if (tmp->index == index)
return tmp;
return NULL;
}
static void vsc9959_psfp_sfi_table_del(struct ocelot *ocelot, u32 index)
{
struct felix_stream_filter *tmp, *n;
struct ocelot_psfp_list *psfp;
u8 z;
psfp = &ocelot->psfp;
list_for_each_entry_safe(tmp, n, &psfp->sfi_list, list)
if (tmp->index == index) {
z = refcount_dec_and_test(&tmp->refcount);
if (z) {
tmp->enable = 0;
vsc9959_psfp_sfi_set(ocelot, tmp);
list_del(&tmp->list);
kfree(tmp);
}
break;
}
}
static void vsc9959_psfp_parse_gate(const struct flow_action_entry *entry,
struct felix_stream_gate *sgi)
{
sgi->index = entry->hw_index;
sgi->ipv_valid = (entry->gate.prio < 0) ? 0 : 1;
sgi->init_ipv = (sgi->ipv_valid) ? entry->gate.prio : 0;
sgi->basetime = entry->gate.basetime;
sgi->cycletime = entry->gate.cycletime;
sgi->num_entries = entry->gate.num_entries;
sgi->enable = 1;
memcpy(sgi->entries, entry->gate.entries,
entry->gate.num_entries * sizeof(struct action_gate_entry));
}
static u32 vsc9959_sgi_cfg_status(struct ocelot *ocelot)
{
return ocelot_read(ocelot, ANA_SG_ACCESS_CTRL);
}
static int vsc9959_psfp_sgi_set(struct ocelot *ocelot,
struct felix_stream_gate *sgi)
{
struct action_gate_entry *e;
struct timespec64 base_ts;
u32 interval_sum = 0;
u32 val;
int i;
if (sgi->index > VSC9959_PSFP_GATE_ID_MAX)
return -EINVAL;
ocelot_write(ocelot, ANA_SG_ACCESS_CTRL_SGID(sgi->index),
ANA_SG_ACCESS_CTRL);
if (!sgi->enable) {
ocelot_rmw(ocelot, ANA_SG_CONFIG_REG_3_INIT_GATE_STATE,
ANA_SG_CONFIG_REG_3_INIT_GATE_STATE |
ANA_SG_CONFIG_REG_3_GATE_ENABLE,
ANA_SG_CONFIG_REG_3);
return 0;
}
if (sgi->cycletime < VSC9959_PSFP_GATE_CYCLETIME_MIN ||
sgi->cycletime > NSEC_PER_SEC)
return -EINVAL;
if (sgi->num_entries > VSC9959_PSFP_GATE_LIST_NUM)
return -EINVAL;
vsc9959_new_base_time(ocelot, sgi->basetime, sgi->cycletime, &base_ts);
ocelot_write(ocelot, base_ts.tv_nsec, ANA_SG_CONFIG_REG_1);
val = lower_32_bits(base_ts.tv_sec);
ocelot_write(ocelot, val, ANA_SG_CONFIG_REG_2);
val = upper_32_bits(base_ts.tv_sec);
ocelot_write(ocelot,
(sgi->ipv_valid ? ANA_SG_CONFIG_REG_3_IPV_VALID : 0) |
ANA_SG_CONFIG_REG_3_INIT_IPV(sgi->init_ipv) |
ANA_SG_CONFIG_REG_3_GATE_ENABLE |
ANA_SG_CONFIG_REG_3_LIST_LENGTH(sgi->num_entries) |
ANA_SG_CONFIG_REG_3_INIT_GATE_STATE |
ANA_SG_CONFIG_REG_3_BASE_TIME_SEC_MSB(val),
ANA_SG_CONFIG_REG_3);
ocelot_write(ocelot, sgi->cycletime, ANA_SG_CONFIG_REG_4);
e = sgi->entries;
for (i = 0; i < sgi->num_entries; i++) {
u32 ips = (e[i].ipv < 0) ? 0 : (e[i].ipv + 8);
ocelot_write_rix(ocelot, ANA_SG_GCL_GS_CONFIG_IPS(ips) |
(e[i].gate_state ?
ANA_SG_GCL_GS_CONFIG_GATE_STATE : 0),
ANA_SG_GCL_GS_CONFIG, i);
interval_sum += e[i].interval;
ocelot_write_rix(ocelot, interval_sum, ANA_SG_GCL_TI_CONFIG, i);
}
ocelot_rmw(ocelot, ANA_SG_ACCESS_CTRL_CONFIG_CHANGE,
ANA_SG_ACCESS_CTRL_CONFIG_CHANGE,
ANA_SG_ACCESS_CTRL);
return readx_poll_timeout(vsc9959_sgi_cfg_status, ocelot, val,
(!(ANA_SG_ACCESS_CTRL_CONFIG_CHANGE & val)),
10, 100000);
}
static int vsc9959_psfp_sgi_table_add(struct ocelot *ocelot,
struct felix_stream_gate *sgi)
{
struct felix_stream_gate_entry *tmp;
struct ocelot_psfp_list *psfp;
int ret;
psfp = &ocelot->psfp;
list_for_each_entry(tmp, &psfp->sgi_list, list)
if (tmp->index == sgi->index) {
refcount_inc(&tmp->refcount);
return 0;
}
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return -ENOMEM;
ret = vsc9959_psfp_sgi_set(ocelot, sgi);
if (ret) {
kfree(tmp);
return ret;
}
tmp->index = sgi->index;
refcount_set(&tmp->refcount, 1);
list_add_tail(&tmp->list, &psfp->sgi_list);
return 0;
}
static void vsc9959_psfp_sgi_table_del(struct ocelot *ocelot,
u32 index)
{
struct felix_stream_gate_entry *tmp, *n;
struct felix_stream_gate sgi = {0};
struct ocelot_psfp_list *psfp;
u8 z;
psfp = &ocelot->psfp;
list_for_each_entry_safe(tmp, n, &psfp->sgi_list, list)
if (tmp->index == index) {
z = refcount_dec_and_test(&tmp->refcount);
if (z) {
sgi.index = index;
sgi.enable = 0;
vsc9959_psfp_sgi_set(ocelot, &sgi);
list_del(&tmp->list);
kfree(tmp);
}
break;
}
}
static int vsc9959_psfp_filter_add(struct ocelot *ocelot, int port,
struct flow_cls_offload *f)
{
struct netlink_ext_ack *extack = f->common.extack;
struct felix_stream_filter old_sfi, *sfi_entry;
struct felix_stream_filter sfi = {0};
const struct flow_action_entry *a;
struct felix_stream *stream_entry;
struct felix_stream stream = {0};
struct felix_stream_gate *sgi;
struct ocelot_psfp_list *psfp;
struct ocelot_policer pol;
int ret, i, size;
u64 rate, burst;
u32 index;
psfp = &ocelot->psfp;
ret = vsc9959_stream_identify(f, &stream);
if (ret) {
NL_SET_ERR_MSG_MOD(extack, "Only can match on VID, PCP, and dest MAC");
return ret;
}
mutex_lock(&psfp->lock);
flow_action_for_each(i, a, &f->rule->action) {
switch (a->id) {
case FLOW_ACTION_GATE:
size = struct_size(sgi, entries, a->gate.num_entries);
sgi = kzalloc(size, GFP_KERNEL);
if (!sgi) {
ret = -ENOMEM;
goto err;
}
vsc9959_psfp_parse_gate(a, sgi);
ret = vsc9959_psfp_sgi_table_add(ocelot, sgi);
if (ret) {
kfree(sgi);
goto err;
}
sfi.sg_valid = 1;
sfi.sgid = sgi->index;
kfree(sgi);
break;
case FLOW_ACTION_POLICE:
index = a->hw_index + VSC9959_PSFP_POLICER_BASE;
if (index > VSC9959_PSFP_POLICER_MAX) {
ret = -EINVAL;
goto err;
}
rate = a->police.rate_bytes_ps;
burst = rate * PSCHED_NS2TICKS(a->police.burst);
pol = (struct ocelot_policer) {
.burst = div_u64(burst, PSCHED_TICKS_PER_SEC),
.rate = div_u64(rate, 1000) * 8,
};
ret = ocelot_vcap_policer_add(ocelot, index, &pol);
if (ret)
goto err;
sfi.fm_valid = 1;
sfi.fmid = index;
sfi.maxsdu = a->police.mtu;
break;
default:
mutex_unlock(&psfp->lock);
return -EOPNOTSUPP;
}
}
stream.ports = BIT(port);
stream.port = port;
sfi.portmask = stream.ports;
sfi.prio_valid = (stream.prio < 0 ? 0 : 1);
sfi.prio = (sfi.prio_valid ? stream.prio : 0);
sfi.enable = 1;
/* Check if stream is set. */
stream_entry = vsc9959_stream_table_lookup(&psfp->stream_list, &stream);
if (stream_entry) {
if (stream_entry->ports & BIT(port)) {
NL_SET_ERR_MSG_MOD(extack,
"The stream is added on this port");
ret = -EEXIST;
goto err;
}
if (stream_entry->ports != BIT(stream_entry->port)) {
NL_SET_ERR_MSG_MOD(extack,
"The stream is added on two ports");
ret = -EEXIST;
goto err;
}
stream_entry->ports |= BIT(port);
stream.ports = stream_entry->ports;
sfi_entry = vsc9959_psfp_sfi_table_get(&psfp->sfi_list,
stream_entry->sfid);
memcpy(&old_sfi, sfi_entry, sizeof(old_sfi));
vsc9959_psfp_sfi_table_del(ocelot, stream_entry->sfid);
old_sfi.portmask = stream_entry->ports;
sfi.portmask = stream.ports;
if (stream_entry->port > port) {
ret = vsc9959_psfp_sfi_table_add2(ocelot, &sfi,
&old_sfi);
stream_entry->dummy = true;
} else {
ret = vsc9959_psfp_sfi_table_add2(ocelot, &old_sfi,
&sfi);
stream.dummy = true;
}
if (ret)
goto err;
stream_entry->sfid = old_sfi.index;
} else {
ret = vsc9959_psfp_sfi_table_add(ocelot, &sfi);
if (ret)
goto err;
}
stream.sfid = sfi.index;
stream.sfid_valid = 1;
ret = vsc9959_stream_table_add(ocelot, &psfp->stream_list,
&stream, extack);
if (ret) {
vsc9959_psfp_sfi_table_del(ocelot, stream.sfid);
goto err;
}
mutex_unlock(&psfp->lock);
return 0;
err:
if (sfi.sg_valid)
vsc9959_psfp_sgi_table_del(ocelot, sfi.sgid);
if (sfi.fm_valid)
ocelot_vcap_policer_del(ocelot, sfi.fmid);
mutex_unlock(&psfp->lock);
return ret;
}
static int vsc9959_psfp_filter_del(struct ocelot *ocelot,
struct flow_cls_offload *f)
{
struct felix_stream *stream, tmp, *stream_entry;
struct ocelot_psfp_list *psfp = &ocelot->psfp;
static struct felix_stream_filter *sfi;
mutex_lock(&psfp->lock);
stream = vsc9959_stream_table_get(&psfp->stream_list, f->cookie);
if (!stream) {
mutex_unlock(&psfp->lock);
return -ENOMEM;
}
sfi = vsc9959_psfp_sfi_table_get(&psfp->sfi_list, stream->sfid);
if (!sfi) {
mutex_unlock(&psfp->lock);
return -ENOMEM;
}
if (sfi->sg_valid)
vsc9959_psfp_sgi_table_del(ocelot, sfi->sgid);
if (sfi->fm_valid)
ocelot_vcap_policer_del(ocelot, sfi->fmid);
vsc9959_psfp_sfi_table_del(ocelot, stream->sfid);
memcpy(&tmp, stream, sizeof(tmp));
stream->sfid_valid = 0;
vsc9959_stream_table_del(ocelot, stream);
stream_entry = vsc9959_stream_table_lookup(&psfp->stream_list, &tmp);
if (stream_entry) {
stream_entry->ports = BIT(stream_entry->port);
if (stream_entry->dummy) {
stream_entry->dummy = false;
vsc9959_mact_stream_set(ocelot, stream_entry, NULL);
}
vsc9959_psfp_sfidmask_set(ocelot, stream_entry->sfid,
stream_entry->ports);
}
mutex_unlock(&psfp->lock);
return 0;
}
static void vsc9959_update_sfid_stats(struct ocelot *ocelot,
struct felix_stream_filter *sfi)
{
struct felix_stream_filter_counters *s = &sfi->stats;
u32 match, not_pass_gate, not_pass_sdu, red;
u32 sfid = sfi->index;
lockdep_assert_held(&ocelot->stat_view_lock);
ocelot_rmw(ocelot, SYS_STAT_CFG_STAT_VIEW(sfid),
SYS_STAT_CFG_STAT_VIEW_M,
SYS_STAT_CFG);
match = ocelot_read(ocelot, SYS_COUNT_SF_MATCHING_FRAMES);
not_pass_gate = ocelot_read(ocelot, SYS_COUNT_SF_NOT_PASSING_FRAMES);
not_pass_sdu = ocelot_read(ocelot, SYS_COUNT_SF_NOT_PASSING_SDU);
red = ocelot_read(ocelot, SYS_COUNT_SF_RED_FRAMES);
/* Clear the PSFP counter. */
ocelot_write(ocelot,
SYS_STAT_CFG_STAT_VIEW(sfid) |
SYS_STAT_CFG_STAT_CLEAR_SHOT(0x10),
SYS_STAT_CFG);
s->match += match;
s->not_pass_gate += not_pass_gate;
s->not_pass_sdu += not_pass_sdu;
s->red += red;
}
/* Caller must hold &ocelot->stat_view_lock */
static void vsc9959_update_stats(struct ocelot *ocelot)
{
struct ocelot_psfp_list *psfp = &ocelot->psfp;
struct felix_stream_filter *sfi;
mutex_lock(&psfp->lock);
list_for_each_entry(sfi, &psfp->sfi_list, list)
vsc9959_update_sfid_stats(ocelot, sfi);
mutex_unlock(&psfp->lock);
}
static int vsc9959_psfp_stats_get(struct ocelot *ocelot,
struct flow_cls_offload *f,
struct flow_stats *stats)
{
struct ocelot_psfp_list *psfp = &ocelot->psfp;
struct felix_stream_filter_counters *s;
static struct felix_stream_filter *sfi;
struct felix_stream *stream;
stream = vsc9959_stream_table_get(&psfp->stream_list, f->cookie);
if (!stream)
return -ENOMEM;
sfi = vsc9959_psfp_sfi_table_get(&psfp->sfi_list, stream->sfid);
if (!sfi)
return -EINVAL;
mutex_lock(&ocelot->stat_view_lock);
vsc9959_update_sfid_stats(ocelot, sfi);
s = &sfi->stats;
stats->pkts = s->match;
stats->drops = s->not_pass_gate + s->not_pass_sdu + s->red;
memset(s, 0, sizeof(*s));
mutex_unlock(&ocelot->stat_view_lock);
return 0;
}
static void vsc9959_psfp_init(struct ocelot *ocelot)
{
struct ocelot_psfp_list *psfp = &ocelot->psfp;
INIT_LIST_HEAD(&psfp->stream_list);
INIT_LIST_HEAD(&psfp->sfi_list);
INIT_LIST_HEAD(&psfp->sgi_list);
mutex_init(&psfp->lock);
}
/* When using cut-through forwarding and the egress port runs at a higher data
* rate than the ingress port, the packet currently under transmission would
* suffer an underrun since it would be transmitted faster than it is received.
* The Felix switch implementation of cut-through forwarding does not check in
* hardware whether this condition is satisfied or not, so we must restrict the
* list of ports that have cut-through forwarding enabled on egress to only be
* the ports operating at the lowest link speed within their respective
* forwarding domain.
*/
static void vsc9959_cut_through_fwd(struct ocelot *ocelot)
{
struct felix *felix = ocelot_to_felix(ocelot);
struct dsa_switch *ds = felix->ds;
int tc, port, other_port;
lockdep_assert_held(&ocelot->fwd_domain_lock);
for (port = 0; port < ocelot->num_phys_ports; port++) {
struct ocelot_port *ocelot_port = ocelot->ports[port];
int min_speed = ocelot_port->speed;
unsigned long mask = 0;
u32 tmp, val = 0;
/* Disable cut-through on ports that are down */
if (ocelot_port->speed <= 0)
goto set;
if (dsa_is_cpu_port(ds, port)) {
/* Ocelot switches forward from the NPI port towards
* any port, regardless of it being in the NPI port's
* forwarding domain or not.
*/
mask = dsa_user_ports(ds);
} else {
mask = ocelot_get_bridge_fwd_mask(ocelot, port);
mask &= ~BIT(port);
if (ocelot->npi >= 0)
mask |= BIT(ocelot->npi);
else
mask |= ocelot_port_assigned_dsa_8021q_cpu_mask(ocelot,
port);
}
/* Calculate the minimum link speed, among the ports that are
* up, of this source port's forwarding domain.
*/
for_each_set_bit(other_port, &mask, ocelot->num_phys_ports) {
struct ocelot_port *other_ocelot_port;
other_ocelot_port = ocelot->ports[other_port];
if (other_ocelot_port->speed <= 0)
continue;
if (min_speed > other_ocelot_port->speed)
min_speed = other_ocelot_port->speed;
}
/* Enable cut-through forwarding for all traffic classes that
* don't have oversized dropping enabled, since this check is
* bypassed in cut-through mode.
*/
if (ocelot_port->speed == min_speed) {
val = GENMASK(7, 0);
for (tc = 0; tc < OCELOT_NUM_TC; tc++)
if (vsc9959_port_qmaxsdu_get(ocelot, port, tc))
val &= ~BIT(tc);
}
set:
tmp = ocelot_read_rix(ocelot, ANA_CUT_THRU_CFG, port);
if (tmp == val)
continue;
dev_dbg(ocelot->dev,
"port %d fwd mask 0x%lx speed %d min_speed %d, %s cut-through forwarding on TC mask 0x%x\n",
port, mask, ocelot_port->speed, min_speed,
val ? "enabling" : "disabling", val);
ocelot_write_rix(ocelot, val, ANA_CUT_THRU_CFG, port);
}
}
static const struct ocelot_ops vsc9959_ops = {
.reset = vsc9959_reset,
.wm_enc = vsc9959_wm_enc,
.wm_dec = vsc9959_wm_dec,
.wm_stat = vsc9959_wm_stat,
.port_to_netdev = felix_port_to_netdev,
.netdev_to_port = felix_netdev_to_port,
.psfp_init = vsc9959_psfp_init,
.psfp_filter_add = vsc9959_psfp_filter_add,
.psfp_filter_del = vsc9959_psfp_filter_del,
.psfp_stats_get = vsc9959_psfp_stats_get,
.cut_through_fwd = vsc9959_cut_through_fwd,
.tas_clock_adjust = vsc9959_tas_clock_adjust,
.update_stats = vsc9959_update_stats,
};
static const struct felix_info felix_info_vsc9959 = {
.resources = vsc9959_resources,
.num_resources = ARRAY_SIZE(vsc9959_resources),
.resource_names = vsc9959_resource_names,
.regfields = vsc9959_regfields,
.map = vsc9959_regmap,
.ops = &vsc9959_ops,
.vcap = vsc9959_vcap_props,
.vcap_pol_base = VSC9959_VCAP_POLICER_BASE,
.vcap_pol_max = VSC9959_VCAP_POLICER_MAX,
.vcap_pol_base2 = 0,
.vcap_pol_max2 = 0,
.num_mact_rows = 2048,
.num_ports = VSC9959_NUM_PORTS,
.num_tx_queues = OCELOT_NUM_TC,
.quirks = FELIX_MAC_QUIRKS,
.quirk_no_xtr_irq = true,
.ptp_caps = &vsc9959_ptp_caps,
.mdio_bus_alloc = vsc9959_mdio_bus_alloc,
.mdio_bus_free = vsc9959_mdio_bus_free,
.port_modes = vsc9959_port_modes,
.port_setup_tc = vsc9959_port_setup_tc,
.port_sched_speed_set = vsc9959_sched_speed_set,
.tas_guard_bands_update = vsc9959_tas_guard_bands_update,
};
/* The INTB interrupt is shared between for PTP TX timestamp availability
* notification and MAC Merge status change on each port.
*/
static irqreturn_t felix_irq_handler(int irq, void *data)
{
struct ocelot *ocelot = (struct ocelot *)data;
int port;
ocelot_get_txtstamp(ocelot);
for (port = 0; port < ocelot->num_phys_ports; port++)
ocelot_port_mm_irq(ocelot, port);
return IRQ_HANDLED;
}
static int felix_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct dsa_switch *ds;
struct ocelot *ocelot;
struct felix *felix;
int err;
if (pdev->dev.of_node && !of_device_is_available(pdev->dev.of_node)) {
dev_info(&pdev->dev, "device is disabled, skipping\n");
return -ENODEV;
}
err = pci_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "device enable failed\n");
goto err_pci_enable;
}
felix = kzalloc(sizeof(struct felix), GFP_KERNEL);
if (!felix) {
err = -ENOMEM;
dev_err(&pdev->dev, "Failed to allocate driver memory\n");
goto err_alloc_felix;
}
pci_set_drvdata(pdev, felix);
ocelot = &felix->ocelot;
ocelot->dev = &pdev->dev;
ocelot->num_flooding_pgids = OCELOT_NUM_TC;
felix->info = &felix_info_vsc9959;
felix->switch_base = pci_resource_start(pdev, VSC9959_SWITCH_PCI_BAR);
pci_set_master(pdev);
err = devm_request_threaded_irq(&pdev->dev, pdev->irq, NULL,
&felix_irq_handler, IRQF_ONESHOT,
"felix-intb", ocelot);
if (err) {
dev_err(&pdev->dev, "Failed to request irq\n");
goto err_alloc_irq;
}
ocelot->ptp = 1;
ocelot->mm_supported = true;
ds = kzalloc(sizeof(struct dsa_switch), GFP_KERNEL);
if (!ds) {
err = -ENOMEM;
dev_err(&pdev->dev, "Failed to allocate DSA switch\n");
goto err_alloc_ds;
}
ds->dev = &pdev->dev;
ds->num_ports = felix->info->num_ports;
ds->num_tx_queues = felix->info->num_tx_queues;
ds->ops = &felix_switch_ops;
ds->priv = ocelot;
felix->ds = ds;
felix->tag_proto = DSA_TAG_PROTO_OCELOT;
err = dsa_register_switch(ds);
if (err) {
dev_err_probe(&pdev->dev, err, "Failed to register DSA switch\n");
goto err_register_ds;
}
return 0;
err_register_ds:
kfree(ds);
err_alloc_ds:
err_alloc_irq:
kfree(felix);
err_alloc_felix:
pci_disable_device(pdev);
err_pci_enable:
return err;
}
static void felix_pci_remove(struct pci_dev *pdev)
{
struct felix *felix = pci_get_drvdata(pdev);
if (!felix)
return;
dsa_unregister_switch(felix->ds);
kfree(felix->ds);
kfree(felix);
pci_disable_device(pdev);
}
static void felix_pci_shutdown(struct pci_dev *pdev)
{
struct felix *felix = pci_get_drvdata(pdev);
if (!felix)
return;
dsa_switch_shutdown(felix->ds);
pci_set_drvdata(pdev, NULL);
}
static struct pci_device_id felix_ids[] = {
{
/* NXP LS1028A */
PCI_DEVICE(PCI_VENDOR_ID_FREESCALE, 0xEEF0),
},
{ 0, }
};
MODULE_DEVICE_TABLE(pci, felix_ids);
static struct pci_driver felix_vsc9959_pci_driver = {
.name = "mscc_felix",
.id_table = felix_ids,
.probe = felix_pci_probe,
.remove = felix_pci_remove,
.shutdown = felix_pci_shutdown,
};
module_pci_driver(felix_vsc9959_pci_driver);
MODULE_DESCRIPTION("Felix Switch driver");
MODULE_LICENSE("GPL v2");