linux-zen-desktop/drivers/net/ethernet/chelsio/cxgb4/cxgb4_tc_mqprio.c

723 lines
18 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2019 Chelsio Communications. All rights reserved. */
#include "cxgb4.h"
#include "cxgb4_tc_mqprio.h"
#include "sched.h"
static int cxgb4_mqprio_validate(struct net_device *dev,
struct tc_mqprio_qopt_offload *mqprio)
{
u64 min_rate = 0, max_rate = 0, max_link_rate;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
u32 speed, qcount = 0, qoffset = 0;
u32 start_a, start_b, end_a, end_b;
int ret;
u8 i, j;
if (!mqprio->qopt.num_tc)
return 0;
if (mqprio->qopt.hw != TC_MQPRIO_HW_OFFLOAD_TCS) {
netdev_err(dev, "Only full TC hardware offload is supported\n");
return -EINVAL;
} else if (mqprio->mode != TC_MQPRIO_MODE_CHANNEL) {
netdev_err(dev, "Only channel mode offload is supported\n");
return -EINVAL;
} else if (mqprio->shaper != TC_MQPRIO_SHAPER_BW_RATE) {
netdev_err(dev, "Only bandwidth rate shaper supported\n");
return -EINVAL;
} else if (mqprio->qopt.num_tc > adap->params.nsched_cls) {
netdev_err(dev,
"Only %u traffic classes supported by hardware\n",
adap->params.nsched_cls);
return -ERANGE;
}
ret = t4_get_link_params(pi, NULL, &speed, NULL);
if (ret) {
netdev_err(dev, "Failed to get link speed, ret: %d\n", ret);
return -EINVAL;
}
/* Convert from Mbps to bps */
max_link_rate = (u64)speed * 1000 * 1000;
for (i = 0; i < mqprio->qopt.num_tc; i++) {
qoffset = max_t(u16, mqprio->qopt.offset[i], qoffset);
qcount += mqprio->qopt.count[i];
start_a = mqprio->qopt.offset[i];
end_a = start_a + mqprio->qopt.count[i] - 1;
for (j = i + 1; j < mqprio->qopt.num_tc; j++) {
start_b = mqprio->qopt.offset[j];
end_b = start_b + mqprio->qopt.count[j] - 1;
/* If queue count is 0, then the traffic
* belonging to this class will not use
* ETHOFLD queues. So, no need to validate
* further.
*/
if (!mqprio->qopt.count[i])
break;
if (!mqprio->qopt.count[j])
continue;
if (max_t(u32, start_a, start_b) <=
min_t(u32, end_a, end_b)) {
netdev_err(dev,
"Queues can't overlap across tc\n");
return -EINVAL;
}
}
/* Convert byte per second to bits per second */
min_rate += (mqprio->min_rate[i] * 8);
max_rate += (mqprio->max_rate[i] * 8);
}
if (qoffset >= adap->tids.neotids || qcount > adap->tids.neotids)
return -ENOMEM;
if (min_rate > max_link_rate || max_rate > max_link_rate) {
netdev_err(dev,
"Total Min/Max (%llu/%llu) Rate > supported (%llu)\n",
min_rate, max_rate, max_link_rate);
return -EINVAL;
}
return 0;
}
static int cxgb4_init_eosw_txq(struct net_device *dev,
struct sge_eosw_txq *eosw_txq,
u32 eotid, u32 hwqid)
{
struct adapter *adap = netdev2adap(dev);
struct tx_sw_desc *ring;
memset(eosw_txq, 0, sizeof(*eosw_txq));
ring = kcalloc(CXGB4_EOSW_TXQ_DEFAULT_DESC_NUM,
sizeof(*ring), GFP_KERNEL);
if (!ring)
return -ENOMEM;
eosw_txq->desc = ring;
eosw_txq->ndesc = CXGB4_EOSW_TXQ_DEFAULT_DESC_NUM;
spin_lock_init(&eosw_txq->lock);
eosw_txq->state = CXGB4_EO_STATE_CLOSED;
eosw_txq->eotid = eotid;
eosw_txq->hwtid = adap->tids.eotid_base + eosw_txq->eotid;
eosw_txq->cred = adap->params.ofldq_wr_cred;
eosw_txq->hwqid = hwqid;
eosw_txq->netdev = dev;
tasklet_setup(&eosw_txq->qresume_tsk, cxgb4_ethofld_restart);
return 0;
}
static void cxgb4_clean_eosw_txq(struct net_device *dev,
struct sge_eosw_txq *eosw_txq)
{
struct adapter *adap = netdev2adap(dev);
cxgb4_eosw_txq_free_desc(adap, eosw_txq, eosw_txq->ndesc);
eosw_txq->pidx = 0;
eosw_txq->last_pidx = 0;
eosw_txq->cidx = 0;
eosw_txq->last_cidx = 0;
eosw_txq->flowc_idx = 0;
eosw_txq->inuse = 0;
eosw_txq->cred = adap->params.ofldq_wr_cred;
eosw_txq->ncompl = 0;
eosw_txq->last_compl = 0;
eosw_txq->state = CXGB4_EO_STATE_CLOSED;
}
static void cxgb4_free_eosw_txq(struct net_device *dev,
struct sge_eosw_txq *eosw_txq)
{
spin_lock_bh(&eosw_txq->lock);
cxgb4_clean_eosw_txq(dev, eosw_txq);
kfree(eosw_txq->desc);
spin_unlock_bh(&eosw_txq->lock);
tasklet_kill(&eosw_txq->qresume_tsk);
}
static int cxgb4_mqprio_alloc_hw_resources(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge_ofld_rxq *eorxq;
struct sge_eohw_txq *eotxq;
int ret, msix = 0;
u32 i;
/* Allocate ETHOFLD hardware queue structures if not done already */
if (!refcount_read(&adap->tc_mqprio->refcnt)) {
adap->sge.eohw_rxq = kcalloc(adap->sge.eoqsets,
sizeof(struct sge_ofld_rxq),
GFP_KERNEL);
if (!adap->sge.eohw_rxq)
return -ENOMEM;
adap->sge.eohw_txq = kcalloc(adap->sge.eoqsets,
sizeof(struct sge_eohw_txq),
GFP_KERNEL);
if (!adap->sge.eohw_txq) {
kfree(adap->sge.eohw_rxq);
return -ENOMEM;
}
refcount_set(&adap->tc_mqprio->refcnt, 1);
} else {
refcount_inc(&adap->tc_mqprio->refcnt);
}
if (!(adap->flags & CXGB4_USING_MSIX))
msix = -((int)adap->sge.intrq.abs_id + 1);
for (i = 0; i < pi->nqsets; i++) {
eorxq = &adap->sge.eohw_rxq[pi->first_qset + i];
eotxq = &adap->sge.eohw_txq[pi->first_qset + i];
/* Allocate Rxqs for receiving ETHOFLD Tx completions */
if (msix >= 0) {
msix = cxgb4_get_msix_idx_from_bmap(adap);
if (msix < 0) {
ret = msix;
goto out_free_queues;
}
eorxq->msix = &adap->msix_info[msix];
snprintf(eorxq->msix->desc,
sizeof(eorxq->msix->desc),
"%s-eorxq%d", dev->name, i);
}
init_rspq(adap, &eorxq->rspq,
CXGB4_EOHW_RXQ_DEFAULT_INTR_USEC,
CXGB4_EOHW_RXQ_DEFAULT_PKT_CNT,
CXGB4_EOHW_RXQ_DEFAULT_DESC_NUM,
CXGB4_EOHW_RXQ_DEFAULT_DESC_SIZE);
eorxq->fl.size = CXGB4_EOHW_FLQ_DEFAULT_DESC_NUM;
ret = t4_sge_alloc_rxq(adap, &eorxq->rspq, false,
dev, msix, &eorxq->fl,
cxgb4_ethofld_rx_handler,
NULL, 0);
if (ret)
goto out_free_queues;
/* Allocate ETHOFLD hardware Txqs */
eotxq->q.size = CXGB4_EOHW_TXQ_DEFAULT_DESC_NUM;
ret = t4_sge_alloc_ethofld_txq(adap, eotxq, dev,
eorxq->rspq.cntxt_id);
if (ret)
goto out_free_queues;
/* Allocate IRQs, set IRQ affinity, and start Rx */
if (adap->flags & CXGB4_USING_MSIX) {
ret = request_irq(eorxq->msix->vec, t4_sge_intr_msix, 0,
eorxq->msix->desc, &eorxq->rspq);
if (ret)
goto out_free_msix;
cxgb4_set_msix_aff(adap, eorxq->msix->vec,
&eorxq->msix->aff_mask, i);
}
if (adap->flags & CXGB4_FULL_INIT_DONE)
cxgb4_enable_rx(adap, &eorxq->rspq);
}
return 0;
out_free_msix:
while (i-- > 0) {
eorxq = &adap->sge.eohw_rxq[pi->first_qset + i];
if (adap->flags & CXGB4_FULL_INIT_DONE)
cxgb4_quiesce_rx(&eorxq->rspq);
if (adap->flags & CXGB4_USING_MSIX) {
cxgb4_clear_msix_aff(eorxq->msix->vec,
eorxq->msix->aff_mask);
free_irq(eorxq->msix->vec, &eorxq->rspq);
}
}
out_free_queues:
for (i = 0; i < pi->nqsets; i++) {
eorxq = &adap->sge.eohw_rxq[pi->first_qset + i];
eotxq = &adap->sge.eohw_txq[pi->first_qset + i];
if (eorxq->rspq.desc)
free_rspq_fl(adap, &eorxq->rspq, &eorxq->fl);
if (eorxq->msix)
cxgb4_free_msix_idx_in_bmap(adap, eorxq->msix->idx);
t4_sge_free_ethofld_txq(adap, eotxq);
}
if (refcount_dec_and_test(&adap->tc_mqprio->refcnt)) {
kfree(adap->sge.eohw_txq);
kfree(adap->sge.eohw_rxq);
}
return ret;
}
static void cxgb4_mqprio_free_hw_resources(struct net_device *dev)
{
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge_ofld_rxq *eorxq;
struct sge_eohw_txq *eotxq;
u32 i;
/* Return if no ETHOFLD structures have been allocated yet */
if (!refcount_read(&adap->tc_mqprio->refcnt))
return;
/* Return if no hardware queues have been allocated */
if (!adap->sge.eohw_rxq[pi->first_qset].rspq.desc)
return;
for (i = 0; i < pi->nqsets; i++) {
eorxq = &adap->sge.eohw_rxq[pi->first_qset + i];
eotxq = &adap->sge.eohw_txq[pi->first_qset + i];
/* Device removal path will already disable NAPI
* before unregistering netdevice. So, only disable
* NAPI if we're not in device removal path
*/
if (!(adap->flags & CXGB4_SHUTTING_DOWN))
cxgb4_quiesce_rx(&eorxq->rspq);
if (adap->flags & CXGB4_USING_MSIX) {
cxgb4_clear_msix_aff(eorxq->msix->vec,
eorxq->msix->aff_mask);
free_irq(eorxq->msix->vec, &eorxq->rspq);
cxgb4_free_msix_idx_in_bmap(adap, eorxq->msix->idx);
}
free_rspq_fl(adap, &eorxq->rspq, &eorxq->fl);
t4_sge_free_ethofld_txq(adap, eotxq);
}
/* Free up ETHOFLD structures if there are no users */
if (refcount_dec_and_test(&adap->tc_mqprio->refcnt)) {
kfree(adap->sge.eohw_txq);
kfree(adap->sge.eohw_rxq);
}
}
static int cxgb4_mqprio_alloc_tc(struct net_device *dev,
struct tc_mqprio_qopt_offload *mqprio)
{
struct ch_sched_params p = {
.type = SCHED_CLASS_TYPE_PACKET,
.u.params.level = SCHED_CLASS_LEVEL_CL_RL,
.u.params.mode = SCHED_CLASS_MODE_FLOW,
.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS,
.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS,
.u.params.class = SCHED_CLS_NONE,
.u.params.weight = 0,
.u.params.pktsize = dev->mtu,
};
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sched_class *e;
int ret;
u8 i;
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
p.u.params.channel = pi->tx_chan;
for (i = 0; i < mqprio->qopt.num_tc; i++) {
/* Convert from bytes per second to Kbps */
p.u.params.minrate = div_u64(mqprio->min_rate[i] * 8, 1000);
p.u.params.maxrate = div_u64(mqprio->max_rate[i] * 8, 1000);
/* Request larger burst buffer for smaller MTU, so
* that hardware can work on more data per burst
* cycle.
*/
if (dev->mtu <= ETH_DATA_LEN)
p.u.params.burstsize = 8 * dev->mtu;
e = cxgb4_sched_class_alloc(dev, &p);
if (!e) {
ret = -ENOMEM;
goto out_err;
}
tc_port_mqprio->tc_hwtc_map[i] = e->idx;
}
return 0;
out_err:
while (i--)
cxgb4_sched_class_free(dev, tc_port_mqprio->tc_hwtc_map[i]);
return ret;
}
static void cxgb4_mqprio_free_tc(struct net_device *dev)
{
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
u8 i;
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
for (i = 0; i < tc_port_mqprio->mqprio.qopt.num_tc; i++)
cxgb4_sched_class_free(dev, tc_port_mqprio->tc_hwtc_map[i]);
}
static int cxgb4_mqprio_class_bind(struct net_device *dev,
struct sge_eosw_txq *eosw_txq,
u8 tc)
{
struct ch_sched_flowc fe;
int ret;
init_completion(&eosw_txq->completion);
fe.tid = eosw_txq->eotid;
fe.class = tc;
ret = cxgb4_sched_class_bind(dev, &fe, SCHED_FLOWC);
if (ret)
return ret;
ret = wait_for_completion_timeout(&eosw_txq->completion,
CXGB4_FLOWC_WAIT_TIMEOUT);
if (!ret)
return -ETIMEDOUT;
return 0;
}
static void cxgb4_mqprio_class_unbind(struct net_device *dev,
struct sge_eosw_txq *eosw_txq,
u8 tc)
{
struct adapter *adap = netdev2adap(dev);
struct ch_sched_flowc fe;
/* If we're shutting down, interrupts are disabled and no completions
* come back. So, skip waiting for completions in this scenario.
*/
if (!(adap->flags & CXGB4_SHUTTING_DOWN))
init_completion(&eosw_txq->completion);
fe.tid = eosw_txq->eotid;
fe.class = tc;
cxgb4_sched_class_unbind(dev, &fe, SCHED_FLOWC);
if (!(adap->flags & CXGB4_SHUTTING_DOWN))
wait_for_completion_timeout(&eosw_txq->completion,
CXGB4_FLOWC_WAIT_TIMEOUT);
}
static int cxgb4_mqprio_enable_offload(struct net_device *dev,
struct tc_mqprio_qopt_offload *mqprio)
{
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
u32 qoffset, qcount, tot_qcount, qid, hwqid;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge_eosw_txq *eosw_txq;
int eotid, ret;
u16 i, j;
u8 hwtc;
ret = cxgb4_mqprio_alloc_hw_resources(dev);
if (ret)
return -ENOMEM;
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
for (i = 0; i < mqprio->qopt.num_tc; i++) {
qoffset = mqprio->qopt.offset[i];
qcount = mqprio->qopt.count[i];
for (j = 0; j < qcount; j++) {
eotid = cxgb4_get_free_eotid(&adap->tids);
if (eotid < 0) {
ret = -ENOMEM;
goto out_free_eotids;
}
qid = qoffset + j;
hwqid = pi->first_qset + (eotid % pi->nqsets);
eosw_txq = &tc_port_mqprio->eosw_txq[qid];
ret = cxgb4_init_eosw_txq(dev, eosw_txq,
eotid, hwqid);
if (ret)
goto out_free_eotids;
cxgb4_alloc_eotid(&adap->tids, eotid, eosw_txq);
hwtc = tc_port_mqprio->tc_hwtc_map[i];
ret = cxgb4_mqprio_class_bind(dev, eosw_txq, hwtc);
if (ret)
goto out_free_eotids;
}
}
memcpy(&tc_port_mqprio->mqprio, mqprio,
sizeof(struct tc_mqprio_qopt_offload));
/* Inform the stack about the configured tc params.
*
* Set the correct queue map. If no queue count has been
* specified, then send the traffic through default NIC
* queues; instead of ETHOFLD queues.
*/
ret = netdev_set_num_tc(dev, mqprio->qopt.num_tc);
if (ret)
goto out_free_eotids;
tot_qcount = pi->nqsets;
for (i = 0; i < mqprio->qopt.num_tc; i++) {
qcount = mqprio->qopt.count[i];
if (qcount) {
qoffset = mqprio->qopt.offset[i] + pi->nqsets;
} else {
qcount = pi->nqsets;
qoffset = 0;
}
ret = netdev_set_tc_queue(dev, i, qcount, qoffset);
if (ret)
goto out_reset_tc;
tot_qcount += mqprio->qopt.count[i];
}
ret = netif_set_real_num_tx_queues(dev, tot_qcount);
if (ret)
goto out_reset_tc;
tc_port_mqprio->state = CXGB4_MQPRIO_STATE_ACTIVE;
return 0;
out_reset_tc:
netdev_reset_tc(dev);
i = mqprio->qopt.num_tc;
out_free_eotids:
while (i-- > 0) {
qoffset = mqprio->qopt.offset[i];
qcount = mqprio->qopt.count[i];
for (j = 0; j < qcount; j++) {
eosw_txq = &tc_port_mqprio->eosw_txq[qoffset + j];
hwtc = tc_port_mqprio->tc_hwtc_map[i];
cxgb4_mqprio_class_unbind(dev, eosw_txq, hwtc);
cxgb4_free_eotid(&adap->tids, eosw_txq->eotid);
cxgb4_free_eosw_txq(dev, eosw_txq);
}
}
cxgb4_mqprio_free_hw_resources(dev);
return ret;
}
static void cxgb4_mqprio_disable_offload(struct net_device *dev)
{
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
struct port_info *pi = netdev2pinfo(dev);
struct adapter *adap = netdev2adap(dev);
struct sge_eosw_txq *eosw_txq;
u32 qoffset, qcount;
u16 i, j;
u8 hwtc;
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[pi->port_id];
if (tc_port_mqprio->state != CXGB4_MQPRIO_STATE_ACTIVE)
return;
netdev_reset_tc(dev);
netif_set_real_num_tx_queues(dev, pi->nqsets);
for (i = 0; i < tc_port_mqprio->mqprio.qopt.num_tc; i++) {
qoffset = tc_port_mqprio->mqprio.qopt.offset[i];
qcount = tc_port_mqprio->mqprio.qopt.count[i];
for (j = 0; j < qcount; j++) {
eosw_txq = &tc_port_mqprio->eosw_txq[qoffset + j];
hwtc = tc_port_mqprio->tc_hwtc_map[i];
cxgb4_mqprio_class_unbind(dev, eosw_txq, hwtc);
cxgb4_free_eotid(&adap->tids, eosw_txq->eotid);
cxgb4_free_eosw_txq(dev, eosw_txq);
}
}
cxgb4_mqprio_free_hw_resources(dev);
/* Free up the traffic classes */
cxgb4_mqprio_free_tc(dev);
memset(&tc_port_mqprio->mqprio, 0,
sizeof(struct tc_mqprio_qopt_offload));
tc_port_mqprio->state = CXGB4_MQPRIO_STATE_DISABLED;
}
int cxgb4_setup_tc_mqprio(struct net_device *dev,
struct tc_mqprio_qopt_offload *mqprio)
{
struct adapter *adap = netdev2adap(dev);
bool needs_bring_up = false;
int ret;
ret = cxgb4_mqprio_validate(dev, mqprio);
if (ret)
return ret;
mutex_lock(&adap->tc_mqprio->mqprio_mutex);
/* To configure tc params, the current allocated EOTIDs must
* be freed up. However, they can't be freed up if there's
* traffic running on the interface. So, ensure interface is
* down before configuring tc params.
*/
if (netif_running(dev)) {
netif_tx_stop_all_queues(dev);
netif_carrier_off(dev);
needs_bring_up = true;
}
cxgb4_mqprio_disable_offload(dev);
/* If requested for clear, then just return since resources are
* already freed up by now.
*/
if (!mqprio->qopt.num_tc)
goto out;
/* Allocate free available traffic classes and configure
* their rate parameters.
*/
ret = cxgb4_mqprio_alloc_tc(dev, mqprio);
if (ret)
goto out;
ret = cxgb4_mqprio_enable_offload(dev, mqprio);
if (ret) {
cxgb4_mqprio_free_tc(dev);
goto out;
}
out:
if (needs_bring_up) {
netif_tx_start_all_queues(dev);
netif_carrier_on(dev);
}
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
return ret;
}
void cxgb4_mqprio_stop_offload(struct adapter *adap)
{
struct cxgb4_tc_port_mqprio *tc_port_mqprio;
struct net_device *dev;
u8 i;
if (!adap->tc_mqprio || !adap->tc_mqprio->port_mqprio)
return;
mutex_lock(&adap->tc_mqprio->mqprio_mutex);
for_each_port(adap, i) {
dev = adap->port[i];
if (!dev)
continue;
tc_port_mqprio = &adap->tc_mqprio->port_mqprio[i];
if (!tc_port_mqprio->mqprio.qopt.num_tc)
continue;
cxgb4_mqprio_disable_offload(dev);
}
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
}
int cxgb4_init_tc_mqprio(struct adapter *adap)
{
struct cxgb4_tc_port_mqprio *tc_port_mqprio, *port_mqprio;
struct cxgb4_tc_mqprio *tc_mqprio;
struct sge_eosw_txq *eosw_txq;
int ret = 0;
u8 i;
tc_mqprio = kzalloc(sizeof(*tc_mqprio), GFP_KERNEL);
if (!tc_mqprio)
return -ENOMEM;
tc_port_mqprio = kcalloc(adap->params.nports, sizeof(*tc_port_mqprio),
GFP_KERNEL);
if (!tc_port_mqprio) {
ret = -ENOMEM;
goto out_free_mqprio;
}
mutex_init(&tc_mqprio->mqprio_mutex);
tc_mqprio->port_mqprio = tc_port_mqprio;
for (i = 0; i < adap->params.nports; i++) {
port_mqprio = &tc_mqprio->port_mqprio[i];
eosw_txq = kcalloc(adap->tids.neotids, sizeof(*eosw_txq),
GFP_KERNEL);
if (!eosw_txq) {
ret = -ENOMEM;
goto out_free_ports;
}
port_mqprio->eosw_txq = eosw_txq;
}
adap->tc_mqprio = tc_mqprio;
refcount_set(&adap->tc_mqprio->refcnt, 0);
return 0;
out_free_ports:
for (i = 0; i < adap->params.nports; i++) {
port_mqprio = &tc_mqprio->port_mqprio[i];
kfree(port_mqprio->eosw_txq);
}
kfree(tc_port_mqprio);
out_free_mqprio:
kfree(tc_mqprio);
return ret;
}
void cxgb4_cleanup_tc_mqprio(struct adapter *adap)
{
struct cxgb4_tc_port_mqprio *port_mqprio;
u8 i;
if (adap->tc_mqprio) {
mutex_lock(&adap->tc_mqprio->mqprio_mutex);
if (adap->tc_mqprio->port_mqprio) {
for (i = 0; i < adap->params.nports; i++) {
struct net_device *dev = adap->port[i];
if (dev)
cxgb4_mqprio_disable_offload(dev);
port_mqprio = &adap->tc_mqprio->port_mqprio[i];
kfree(port_mqprio->eosw_txq);
}
kfree(adap->tc_mqprio->port_mqprio);
}
mutex_unlock(&adap->tc_mqprio->mqprio_mutex);
kfree(adap->tc_mqprio);
}
}