linux-zen-desktop/drivers/net/ethernet/intel/ice/ice_virtchnl.c

4023 lines
112 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0
/* Copyright (C) 2022, Intel Corporation. */
#include "ice_virtchnl.h"
#include "ice_vf_lib_private.h"
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_fltr.h"
#include "ice_virtchnl_allowlist.h"
#include "ice_vf_vsi_vlan_ops.h"
#include "ice_vlan.h"
#include "ice_flex_pipe.h"
#include "ice_dcb_lib.h"
#define FIELD_SELECTOR(proto_hdr_field) \
BIT((proto_hdr_field) & PROTO_HDR_FIELD_MASK)
struct ice_vc_hdr_match_type {
u32 vc_hdr; /* virtchnl headers (VIRTCHNL_PROTO_HDR_XXX) */
u32 ice_hdr; /* ice headers (ICE_FLOW_SEG_HDR_XXX) */
};
static const struct ice_vc_hdr_match_type ice_vc_hdr_list[] = {
{VIRTCHNL_PROTO_HDR_NONE, ICE_FLOW_SEG_HDR_NONE},
{VIRTCHNL_PROTO_HDR_ETH, ICE_FLOW_SEG_HDR_ETH},
{VIRTCHNL_PROTO_HDR_S_VLAN, ICE_FLOW_SEG_HDR_VLAN},
{VIRTCHNL_PROTO_HDR_C_VLAN, ICE_FLOW_SEG_HDR_VLAN},
{VIRTCHNL_PROTO_HDR_IPV4, ICE_FLOW_SEG_HDR_IPV4 |
ICE_FLOW_SEG_HDR_IPV_OTHER},
{VIRTCHNL_PROTO_HDR_IPV6, ICE_FLOW_SEG_HDR_IPV6 |
ICE_FLOW_SEG_HDR_IPV_OTHER},
{VIRTCHNL_PROTO_HDR_TCP, ICE_FLOW_SEG_HDR_TCP},
{VIRTCHNL_PROTO_HDR_UDP, ICE_FLOW_SEG_HDR_UDP},
{VIRTCHNL_PROTO_HDR_SCTP, ICE_FLOW_SEG_HDR_SCTP},
{VIRTCHNL_PROTO_HDR_PPPOE, ICE_FLOW_SEG_HDR_PPPOE},
{VIRTCHNL_PROTO_HDR_GTPU_IP, ICE_FLOW_SEG_HDR_GTPU_IP},
{VIRTCHNL_PROTO_HDR_GTPU_EH, ICE_FLOW_SEG_HDR_GTPU_EH},
{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_DWN,
ICE_FLOW_SEG_HDR_GTPU_DWN},
{VIRTCHNL_PROTO_HDR_GTPU_EH_PDU_UP,
ICE_FLOW_SEG_HDR_GTPU_UP},
{VIRTCHNL_PROTO_HDR_L2TPV3, ICE_FLOW_SEG_HDR_L2TPV3},
{VIRTCHNL_PROTO_HDR_ESP, ICE_FLOW_SEG_HDR_ESP},
{VIRTCHNL_PROTO_HDR_AH, ICE_FLOW_SEG_HDR_AH},
{VIRTCHNL_PROTO_HDR_PFCP, ICE_FLOW_SEG_HDR_PFCP_SESSION},
};
struct ice_vc_hash_field_match_type {
u32 vc_hdr; /* virtchnl headers
* (VIRTCHNL_PROTO_HDR_XXX)
*/
u32 vc_hash_field; /* virtchnl hash fields selector
* FIELD_SELECTOR((VIRTCHNL_PROTO_HDR_ETH_XXX))
*/
u64 ice_hash_field; /* ice hash fields
* (BIT_ULL(ICE_FLOW_FIELD_IDX_XXX))
*/
};
static const struct
ice_vc_hash_field_match_type ice_vc_hash_field_list[] = {
{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC),
BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_SA)},
{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_DA)},
{VIRTCHNL_PROTO_HDR_ETH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_DST),
ICE_FLOW_HASH_ETH},
{VIRTCHNL_PROTO_HDR_ETH,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ETH_ETHERTYPE),
BIT_ULL(ICE_FLOW_FIELD_IDX_ETH_TYPE)},
{VIRTCHNL_PROTO_HDR_S_VLAN,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_S_VLAN_ID),
BIT_ULL(ICE_FLOW_FIELD_IDX_S_VLAN)},
{VIRTCHNL_PROTO_HDR_C_VLAN,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_C_VLAN_ID),
BIT_ULL(ICE_FLOW_FIELD_IDX_C_VLAN)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST),
ICE_FLOW_HASH_IPV4},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_SA) |
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_DA) |
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_DST) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
ICE_FLOW_HASH_IPV4 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
{VIRTCHNL_PROTO_HDR_IPV4, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV4_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV4_PROT)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST),
ICE_FLOW_HASH_IPV6},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_SA) |
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_DA) |
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_SRC) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_DST) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
ICE_FLOW_HASH_IPV6 | BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
{VIRTCHNL_PROTO_HDR_IPV6, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_IPV6_PROT),
BIT_ULL(ICE_FLOW_FIELD_IDX_IPV6_PROT)},
{VIRTCHNL_PROTO_HDR_TCP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_SRC_PORT)},
{VIRTCHNL_PROTO_HDR_TCP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_TCP_DST_PORT)},
{VIRTCHNL_PROTO_HDR_TCP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_SRC_PORT) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_TCP_DST_PORT),
ICE_FLOW_HASH_TCP_PORT},
{VIRTCHNL_PROTO_HDR_UDP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_SRC_PORT)},
{VIRTCHNL_PROTO_HDR_UDP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_UDP_DST_PORT)},
{VIRTCHNL_PROTO_HDR_UDP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_SRC_PORT) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_UDP_DST_PORT),
ICE_FLOW_HASH_UDP_PORT},
{VIRTCHNL_PROTO_HDR_SCTP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_SRC_PORT)},
{VIRTCHNL_PROTO_HDR_SCTP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
BIT_ULL(ICE_FLOW_FIELD_IDX_SCTP_DST_PORT)},
{VIRTCHNL_PROTO_HDR_SCTP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_SRC_PORT) |
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_SCTP_DST_PORT),
ICE_FLOW_HASH_SCTP_PORT},
{VIRTCHNL_PROTO_HDR_PPPOE,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PPPOE_SESS_ID),
BIT_ULL(ICE_FLOW_FIELD_IDX_PPPOE_SESS_ID)},
{VIRTCHNL_PROTO_HDR_GTPU_IP,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_GTPU_IP_TEID),
BIT_ULL(ICE_FLOW_FIELD_IDX_GTPU_IP_TEID)},
{VIRTCHNL_PROTO_HDR_L2TPV3,
FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_L2TPV3_SESS_ID),
BIT_ULL(ICE_FLOW_FIELD_IDX_L2TPV3_SESS_ID)},
{VIRTCHNL_PROTO_HDR_ESP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_ESP_SPI),
BIT_ULL(ICE_FLOW_FIELD_IDX_ESP_SPI)},
{VIRTCHNL_PROTO_HDR_AH, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_AH_SPI),
BIT_ULL(ICE_FLOW_FIELD_IDX_AH_SPI)},
{VIRTCHNL_PROTO_HDR_PFCP, FIELD_SELECTOR(VIRTCHNL_PROTO_HDR_PFCP_SEID),
BIT_ULL(ICE_FLOW_FIELD_IDX_PFCP_SEID)},
};
/**
* ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
* @pf: pointer to the PF structure
* @v_opcode: operation code
* @v_retval: return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*/
static void
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
{
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
unsigned int bkt;
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf) {
/* Not all vfs are enabled so skip the ones that are not */
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
continue;
/* Ignore return value on purpose - a given VF may fail, but
* we need to keep going and send to all of them
*/
ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
msglen, NULL);
}
mutex_unlock(&pf->vfs.table_lock);
}
/**
* ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
* @vf: pointer to the VF structure
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
* @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
* @link_up: whether or not to set the link up/down
*/
static void
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
int ice_link_speed, bool link_up)
{
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
pfe->event_data.link_event_adv.link_status = link_up;
/* Speed in Mbps */
pfe->event_data.link_event_adv.link_speed =
ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
} else {
pfe->event_data.link_event.link_status = link_up;
/* Legacy method for virtchnl link speeds */
pfe->event_data.link_event.link_speed =
(enum virtchnl_link_speed)
ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
}
}
/**
* ice_vc_notify_vf_link_state - Inform a VF of link status
* @vf: pointer to the VF structure
*
* send a link status message to a single VF
*/
void ice_vc_notify_vf_link_state(struct ice_vf *vf)
{
struct virtchnl_pf_event pfe = { 0 };
struct ice_hw *hw = &vf->pf->hw;
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
pfe.severity = PF_EVENT_SEVERITY_INFO;
if (ice_is_vf_link_up(vf))
ice_set_pfe_link(vf, &pfe,
hw->port_info->phy.link_info.link_speed, true);
else
ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
sizeof(pfe), NULL);
}
/**
* ice_vc_notify_link_state - Inform all VFs on a PF of link status
* @pf: pointer to the PF structure
*/
void ice_vc_notify_link_state(struct ice_pf *pf)
{
struct ice_vf *vf;
unsigned int bkt;
mutex_lock(&pf->vfs.table_lock);
ice_for_each_vf(pf, bkt, vf)
ice_vc_notify_vf_link_state(vf);
mutex_unlock(&pf->vfs.table_lock);
}
/**
* ice_vc_notify_reset - Send pending reset message to all VFs
* @pf: pointer to the PF structure
*
* indicate a pending reset to all VFs on a given PF
*/
void ice_vc_notify_reset(struct ice_pf *pf)
{
struct virtchnl_pf_event pfe;
if (!ice_has_vfs(pf))
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
(u8 *)&pfe, sizeof(struct virtchnl_pf_event));
}
/**
* ice_vc_send_msg_to_vf - Send message to VF
* @vf: pointer to the VF info
* @v_opcode: virtual channel opcode
* @v_retval: virtual channel return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* send msg to VF
*/
int
ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
{
struct device *dev;
struct ice_pf *pf;
int aq_ret;
pf = vf->pf;
dev = ice_pf_to_dev(pf);
aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
msg, msglen, NULL);
if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
dev_info(dev, "Unable to send the message to VF %d ret %d aq_err %s\n",
vf->vf_id, aq_ret,
ice_aq_str(pf->hw.mailboxq.sq_last_status));
return -EIO;
}
return 0;
}
/**
* ice_vc_get_ver_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request the API version used by the PF
*/
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_version_info info = {
VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
};
vf->vf_ver = *(struct virtchnl_version_info *)msg;
/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
if (VF_IS_V10(&vf->vf_ver))
info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
sizeof(struct virtchnl_version_info));
}
/**
* ice_vc_get_max_frame_size - get max frame size allowed for VF
* @vf: VF used to determine max frame size
*
* Max frame size is determined based on the current port's max frame size and
* whether a port VLAN is configured on this VF. The VF is not aware whether
* it's in a port VLAN so the PF needs to account for this in max frame size
* checks and sending the max frame size to the VF.
*/
static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
{
struct ice_port_info *pi = ice_vf_get_port_info(vf);
u16 max_frame_size;
max_frame_size = pi->phy.link_info.max_frame_size;
if (ice_vf_is_port_vlan_ena(vf))
max_frame_size -= VLAN_HLEN;
return max_frame_size;
}
/**
* ice_vc_get_vlan_caps
* @hw: pointer to the hw
* @vf: pointer to the VF info
* @vsi: pointer to the VSI
* @driver_caps: current driver caps
*
* Return 0 if there is no VLAN caps supported, or VLAN caps value
*/
static u32
ice_vc_get_vlan_caps(struct ice_hw *hw, struct ice_vf *vf, struct ice_vsi *vsi,
u32 driver_caps)
{
if (ice_is_eswitch_mode_switchdev(vf->pf))
/* In switchdev setting VLAN from VF isn't supported */
return 0;
if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN_V2) {
/* VLAN offloads based on current device configuration */
return VIRTCHNL_VF_OFFLOAD_VLAN_V2;
} else if (driver_caps & VIRTCHNL_VF_OFFLOAD_VLAN) {
/* allow VF to negotiate VIRTCHNL_VF_OFFLOAD explicitly for
* these two conditions, which amounts to guest VLAN filtering
* and offloads being based on the inner VLAN or the
* inner/single VLAN respectively and don't allow VF to
* negotiate VIRTCHNL_VF_OFFLOAD in any other cases
*/
if (ice_is_dvm_ena(hw) && ice_vf_is_port_vlan_ena(vf)) {
return VIRTCHNL_VF_OFFLOAD_VLAN;
} else if (!ice_is_dvm_ena(hw) &&
!ice_vf_is_port_vlan_ena(vf)) {
/* configure backward compatible support for VFs that
* only support VIRTCHNL_VF_OFFLOAD_VLAN, the PF is
* configured in SVM, and no port VLAN is configured
*/
ice_vf_vsi_cfg_svm_legacy_vlan_mode(vsi);
return VIRTCHNL_VF_OFFLOAD_VLAN;
} else if (ice_is_dvm_ena(hw)) {
/* configure software offloaded VLAN support when DVM
* is enabled, but no port VLAN is enabled
*/
ice_vf_vsi_cfg_dvm_legacy_vlan_mode(vsi);
}
}
return 0;
}
/**
* ice_vc_get_vf_res_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request its resources
*/
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vf_resource *vfres = NULL;
struct ice_hw *hw = &vf->pf->hw;
struct ice_vsi *vsi;
int len = 0;
int ret;
if (ice_check_vf_init(vf)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
len = sizeof(struct virtchnl_vf_resource);
vfres = kzalloc(len, GFP_KERNEL);
if (!vfres) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
len = 0;
goto err;
}
if (VF_IS_V11(&vf->vf_ver))
vf->driver_caps = *(u32 *)msg;
else
vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
VIRTCHNL_VF_OFFLOAD_RSS_REG |
VIRTCHNL_VF_OFFLOAD_VLAN;
vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
vfres->vf_cap_flags |= ice_vc_get_vlan_caps(hw, vf, vsi,
vf->driver_caps);
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
} else {
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
else
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
}
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_FDIR_PF)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_FDIR_PF;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_USO)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_USO;
vfres->num_vsis = 1;
/* Tx and Rx queue are equal for VF */
vfres->num_queue_pairs = vsi->num_txq;
vfres->max_vectors = vf->pf->vfs.num_msix_per;
vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vfres->max_mtu = ice_vc_get_max_frame_size(vf);
vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
vf->hw_lan_addr);
/* match guest capabilities */
vf->driver_caps = vfres->vf_cap_flags;
ice_vc_set_caps_allowlist(vf);
ice_vc_set_working_allowlist(vf);
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
err:
/* send the response back to the VF */
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
(u8 *)vfres, len);
kfree(vfres);
return ret;
}
/**
* ice_vc_reset_vf_msg
* @vf: pointer to the VF info
*
* called from the VF to reset itself,
* unlike other virtchnl messages, PF driver
* doesn't send the response back to the VF
*/
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
{
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
ice_reset_vf(vf, 0);
}
/**
* ice_vc_isvalid_vsi_id
* @vf: pointer to the VF info
* @vsi_id: VF relative VSI ID
*
* check for the valid VSI ID
*/
bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_find_vsi(pf, vsi_id);
return (vsi && (vsi->vf == vf));
}
/**
* ice_vc_isvalid_q_id
* @vf: pointer to the VF info
* @vsi_id: VSI ID
* @qid: VSI relative queue ID
*
* check for the valid queue ID
*/
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
{
struct ice_vsi *vsi = ice_find_vsi(vf->pf, vsi_id);
/* allocated Tx and Rx queues should be always equal for VF VSI */
return (vsi && (qid < vsi->alloc_txq));
}
/**
* ice_vc_isvalid_ring_len
* @ring_len: length of ring
*
* check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
* or zero
*/
static bool ice_vc_isvalid_ring_len(u16 ring_len)
{
return ring_len == 0 ||
(ring_len >= ICE_MIN_NUM_DESC &&
ring_len <= ICE_MAX_NUM_DESC &&
!(ring_len % ICE_REQ_DESC_MULTIPLE));
}
/**
* ice_vc_validate_pattern
* @vf: pointer to the VF info
* @proto: virtchnl protocol headers
*
* validate the pattern is supported or not.
*
* Return: true on success, false on error.
*/
bool
ice_vc_validate_pattern(struct ice_vf *vf, struct virtchnl_proto_hdrs *proto)
{
bool is_ipv4 = false;
bool is_ipv6 = false;
bool is_udp = false;
u16 ptype = -1;
int i = 0;
while (i < proto->count &&
proto->proto_hdr[i].type != VIRTCHNL_PROTO_HDR_NONE) {
switch (proto->proto_hdr[i].type) {
case VIRTCHNL_PROTO_HDR_ETH:
ptype = ICE_PTYPE_MAC_PAY;
break;
case VIRTCHNL_PROTO_HDR_IPV4:
ptype = ICE_PTYPE_IPV4_PAY;
is_ipv4 = true;
break;
case VIRTCHNL_PROTO_HDR_IPV6:
ptype = ICE_PTYPE_IPV6_PAY;
is_ipv6 = true;
break;
case VIRTCHNL_PROTO_HDR_UDP:
if (is_ipv4)
ptype = ICE_PTYPE_IPV4_UDP_PAY;
else if (is_ipv6)
ptype = ICE_PTYPE_IPV6_UDP_PAY;
is_udp = true;
break;
case VIRTCHNL_PROTO_HDR_TCP:
if (is_ipv4)
ptype = ICE_PTYPE_IPV4_TCP_PAY;
else if (is_ipv6)
ptype = ICE_PTYPE_IPV6_TCP_PAY;
break;
case VIRTCHNL_PROTO_HDR_SCTP:
if (is_ipv4)
ptype = ICE_PTYPE_IPV4_SCTP_PAY;
else if (is_ipv6)
ptype = ICE_PTYPE_IPV6_SCTP_PAY;
break;
case VIRTCHNL_PROTO_HDR_GTPU_IP:
case VIRTCHNL_PROTO_HDR_GTPU_EH:
if (is_ipv4)
ptype = ICE_MAC_IPV4_GTPU;
else if (is_ipv6)
ptype = ICE_MAC_IPV6_GTPU;
goto out;
case VIRTCHNL_PROTO_HDR_L2TPV3:
if (is_ipv4)
ptype = ICE_MAC_IPV4_L2TPV3;
else if (is_ipv6)
ptype = ICE_MAC_IPV6_L2TPV3;
goto out;
case VIRTCHNL_PROTO_HDR_ESP:
if (is_ipv4)
ptype = is_udp ? ICE_MAC_IPV4_NAT_T_ESP :
ICE_MAC_IPV4_ESP;
else if (is_ipv6)
ptype = is_udp ? ICE_MAC_IPV6_NAT_T_ESP :
ICE_MAC_IPV6_ESP;
goto out;
case VIRTCHNL_PROTO_HDR_AH:
if (is_ipv4)
ptype = ICE_MAC_IPV4_AH;
else if (is_ipv6)
ptype = ICE_MAC_IPV6_AH;
goto out;
case VIRTCHNL_PROTO_HDR_PFCP:
if (is_ipv4)
ptype = ICE_MAC_IPV4_PFCP_SESSION;
else if (is_ipv6)
ptype = ICE_MAC_IPV6_PFCP_SESSION;
goto out;
default:
break;
}
i++;
}
out:
return ice_hw_ptype_ena(&vf->pf->hw, ptype);
}
/**
* ice_vc_parse_rss_cfg - parses hash fields and headers from
* a specific virtchnl RSS cfg
* @hw: pointer to the hardware
* @rss_cfg: pointer to the virtchnl RSS cfg
* @addl_hdrs: pointer to the protocol header fields (ICE_FLOW_SEG_HDR_*)
* to configure
* @hash_flds: pointer to the hash bit fields (ICE_FLOW_HASH_*) to configure
*
* Return true if all the protocol header and hash fields in the RSS cfg could
* be parsed, else return false
*
* This function parses the virtchnl RSS cfg to be the intended
* hash fields and the intended header for RSS configuration
*/
static bool
ice_vc_parse_rss_cfg(struct ice_hw *hw, struct virtchnl_rss_cfg *rss_cfg,
u32 *addl_hdrs, u64 *hash_flds)
{
const struct ice_vc_hash_field_match_type *hf_list;
const struct ice_vc_hdr_match_type *hdr_list;
int i, hf_list_len, hdr_list_len;
hf_list = ice_vc_hash_field_list;
hf_list_len = ARRAY_SIZE(ice_vc_hash_field_list);
hdr_list = ice_vc_hdr_list;
hdr_list_len = ARRAY_SIZE(ice_vc_hdr_list);
for (i = 0; i < rss_cfg->proto_hdrs.count; i++) {
struct virtchnl_proto_hdr *proto_hdr =
&rss_cfg->proto_hdrs.proto_hdr[i];
bool hdr_found = false;
int j;
/* Find matched ice headers according to virtchnl headers. */
for (j = 0; j < hdr_list_len; j++) {
struct ice_vc_hdr_match_type hdr_map = hdr_list[j];
if (proto_hdr->type == hdr_map.vc_hdr) {
*addl_hdrs |= hdr_map.ice_hdr;
hdr_found = true;
}
}
if (!hdr_found)
return false;
/* Find matched ice hash fields according to
* virtchnl hash fields.
*/
for (j = 0; j < hf_list_len; j++) {
struct ice_vc_hash_field_match_type hf_map = hf_list[j];
if (proto_hdr->type == hf_map.vc_hdr &&
proto_hdr->field_selector == hf_map.vc_hash_field) {
*hash_flds |= hf_map.ice_hash_field;
break;
}
}
}
return true;
}
/**
* ice_vf_adv_rss_offload_ena - determine if capabilities support advanced
* RSS offloads
* @caps: VF driver negotiated capabilities
*
* Return true if VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF capability is set,
* else return false
*/
static bool ice_vf_adv_rss_offload_ena(u32 caps)
{
return !!(caps & VIRTCHNL_VF_OFFLOAD_ADV_RSS_PF);
}
/**
* ice_vc_handle_rss_cfg
* @vf: pointer to the VF info
* @msg: pointer to the message buffer
* @add: add a RSS config if true, otherwise delete a RSS config
*
* This function adds/deletes a RSS config
*/
static int ice_vc_handle_rss_cfg(struct ice_vf *vf, u8 *msg, bool add)
{
u32 v_opcode = add ? VIRTCHNL_OP_ADD_RSS_CFG : VIRTCHNL_OP_DEL_RSS_CFG;
struct virtchnl_rss_cfg *rss_cfg = (struct virtchnl_rss_cfg *)msg;
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_hw *hw = &vf->pf->hw;
struct ice_vsi *vsi;
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
dev_dbg(dev, "VF %d attempting to configure RSS, but RSS is not supported by the PF\n",
vf->vf_id);
v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
goto error_param;
}
if (!ice_vf_adv_rss_offload_ena(vf->driver_caps)) {
dev_dbg(dev, "VF %d attempting to configure RSS, but Advanced RSS offload is not supported\n",
vf->vf_id);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (rss_cfg->proto_hdrs.count > VIRTCHNL_MAX_NUM_PROTO_HDRS ||
rss_cfg->rss_algorithm < VIRTCHNL_RSS_ALG_TOEPLITZ_ASYMMETRIC ||
rss_cfg->rss_algorithm > VIRTCHNL_RSS_ALG_XOR_SYMMETRIC) {
dev_dbg(dev, "VF %d attempting to configure RSS, but RSS configuration is not valid\n",
vf->vf_id);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_validate_pattern(vf, &rss_cfg->proto_hdrs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (rss_cfg->rss_algorithm == VIRTCHNL_RSS_ALG_R_ASYMMETRIC) {
struct ice_vsi_ctx *ctx;
u8 lut_type, hash_type;
int status;
lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
hash_type = add ? ICE_AQ_VSI_Q_OPT_RSS_XOR :
ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
goto error_param;
}
ctx->info.q_opt_rss = ((lut_type <<
ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
(hash_type &
ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
/* Preserve existing queueing option setting */
ctx->info.q_opt_rss |= (vsi->info.q_opt_rss &
ICE_AQ_VSI_Q_OPT_RSS_GBL_LUT_M);
ctx->info.q_opt_tc = vsi->info.q_opt_tc;
ctx->info.q_opt_flags = vsi->info.q_opt_rss;
ctx->info.valid_sections =
cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
status = ice_update_vsi(hw, vsi->idx, ctx, NULL);
if (status) {
dev_err(dev, "update VSI for RSS failed, err %d aq_err %s\n",
status, ice_aq_str(hw->adminq.sq_last_status));
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
} else {
vsi->info.q_opt_rss = ctx->info.q_opt_rss;
}
kfree(ctx);
} else {
u32 addl_hdrs = ICE_FLOW_SEG_HDR_NONE;
u64 hash_flds = ICE_HASH_INVALID;
if (!ice_vc_parse_rss_cfg(hw, rss_cfg, &addl_hdrs,
&hash_flds)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (add) {
if (ice_add_rss_cfg(hw, vsi->idx, hash_flds,
addl_hdrs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "ice_add_rss_cfg failed for vsi = %d, v_ret = %d\n",
vsi->vsi_num, v_ret);
}
} else {
int status;
status = ice_rem_rss_cfg(hw, vsi->idx, hash_flds,
addl_hdrs);
/* We just ignore -ENOENT, because if two configurations
* share the same profile remove one of them actually
* removes both, since the profile is deleted.
*/
if (status && status != -ENOENT) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "ice_rem_rss_cfg failed for VF ID:%d, error:%d\n",
vf->vf_id, status);
}
}
}
error_param:
return ice_vc_send_msg_to_vf(vf, v_opcode, v_ret, NULL, 0);
}
/**
* ice_vc_config_rss_key
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS key
*/
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_set_rss_key(vsi, vrk->key))
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
NULL, 0);
}
/**
* ice_vc_config_rss_lut
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS LUT
*/
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_set_rss_lut(vsi, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
NULL, 0);
}
/**
* ice_vc_cfg_promiscuous_mode_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure VF VSIs promiscuous mode
*/
static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
bool rm_promisc, alluni = false, allmulti = false;
struct virtchnl_promisc_info *info =
(struct virtchnl_promisc_info *)msg;
struct ice_vsi_vlan_ops *vlan_ops;
int mcast_err = 0, ucast_err = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
u8 mcast_m, ucast_m;
struct device *dev;
int ret = 0;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
dev = ice_pf_to_dev(pf);
if (!ice_is_vf_trusted(vf)) {
dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
vf->vf_id);
/* Leave v_ret alone, lie to the VF on purpose. */
goto error_param;
}
if (info->flags & FLAG_VF_UNICAST_PROMISC)
alluni = true;
if (info->flags & FLAG_VF_MULTICAST_PROMISC)
allmulti = true;
rm_promisc = !allmulti && !alluni;
vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
if (rm_promisc)
ret = vlan_ops->ena_rx_filtering(vsi);
else
ret = vlan_ops->dis_rx_filtering(vsi);
if (ret) {
dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
ice_vf_get_promisc_masks(vf, vsi, &ucast_m, &mcast_m);
if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
if (alluni) {
/* in this case we're turning on promiscuous mode */
ret = ice_set_dflt_vsi(vsi);
} else {
/* in this case we're turning off promiscuous mode */
if (ice_is_dflt_vsi_in_use(vsi->port_info))
ret = ice_clear_dflt_vsi(vsi);
}
/* in this case we're turning on/off only
* allmulticast
*/
if (allmulti)
mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
else
mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
if (ret) {
dev_err(dev, "Turning on/off promiscuous mode for VF %d failed, error: %d\n",
vf->vf_id, ret);
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
goto error_param;
}
} else {
if (alluni)
ucast_err = ice_vf_set_vsi_promisc(vf, vsi, ucast_m);
else
ucast_err = ice_vf_clear_vsi_promisc(vf, vsi, ucast_m);
if (allmulti)
mcast_err = ice_vf_set_vsi_promisc(vf, vsi, mcast_m);
else
mcast_err = ice_vf_clear_vsi_promisc(vf, vsi, mcast_m);
if (ucast_err || mcast_err)
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
}
if (!mcast_err) {
if (allmulti &&
!test_and_set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
dev_info(dev, "VF %u successfully set multicast promiscuous mode\n",
vf->vf_id);
else if (!allmulti &&
test_and_clear_bit(ICE_VF_STATE_MC_PROMISC,
vf->vf_states))
dev_info(dev, "VF %u successfully unset multicast promiscuous mode\n",
vf->vf_id);
} else {
dev_err(dev, "Error while modifying multicast promiscuous mode for VF %u, error: %d\n",
vf->vf_id, mcast_err);
}
if (!ucast_err) {
if (alluni &&
!test_and_set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states))
dev_info(dev, "VF %u successfully set unicast promiscuous mode\n",
vf->vf_id);
else if (!alluni &&
test_and_clear_bit(ICE_VF_STATE_UC_PROMISC,
vf->vf_states))
dev_info(dev, "VF %u successfully unset unicast promiscuous mode\n",
vf->vf_id);
} else {
dev_err(dev, "Error while modifying unicast promiscuous mode for VF %u, error: %d\n",
vf->vf_id, ucast_err);
}
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
v_ret, NULL, 0);
}
/**
* ice_vc_get_stats_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to get VSI stats
*/
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_eth_stats stats = { 0 };
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
ice_update_eth_stats(vsi);
stats = vsi->eth_stats;
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
(u8 *)&stats, sizeof(stats));
}
/**
* ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
* @vqs: virtchnl_queue_select structure containing bitmaps to validate
*
* Return true on successful validation, else false
*/
static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
{
if ((!vqs->rx_queues && !vqs->tx_queues) ||
vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
return false;
return true;
}
/**
* ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
* @vsi: VSI of the VF to configure
* @q_idx: VF queue index used to determine the queue in the PF's space
*/
static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
{
struct ice_hw *hw = &vsi->back->hw;
u32 pfq = vsi->txq_map[q_idx];
u32 reg;
reg = rd32(hw, QINT_TQCTL(pfq));
/* MSI-X index 0 in the VF's space is always for the OICR, which means
* this is most likely a poll mode VF driver, so don't enable an
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
*/
if (!(reg & QINT_TQCTL_MSIX_INDX_M))
return;
wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
}
/**
* ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
* @vsi: VSI of the VF to configure
* @q_idx: VF queue index used to determine the queue in the PF's space
*/
static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
{
struct ice_hw *hw = &vsi->back->hw;
u32 pfq = vsi->rxq_map[q_idx];
u32 reg;
reg = rd32(hw, QINT_RQCTL(pfq));
/* MSI-X index 0 in the VF's space is always for the OICR, which means
* this is most likely a poll mode VF driver, so don't enable an
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
*/
if (!(reg & QINT_RQCTL_MSIX_INDX_M))
return;
wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
}
/**
* ice_vc_ena_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to enable all or specific queue(s)
*/
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_vsi *vsi;
unsigned long q_map;
u16 vf_q_id;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Enable only Rx rings, Tx rings were enabled by the FW when the
* Tx queue group list was configured and the context bits were
* programmed using ice_vsi_cfg_txqs
*/
q_map = vqs->rx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if enabled */
if (test_bit(vf_q_id, vf->rxq_ena))
continue;
if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
vf_q_id, vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
set_bit(vf_q_id, vf->rxq_ena);
}
q_map = vqs->tx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if enabled */
if (test_bit(vf_q_id, vf->txq_ena))
continue;
ice_vf_ena_txq_interrupt(vsi, vf_q_id);
set_bit(vf_q_id, vf->txq_ena);
}
/* Set flag to indicate that queues are enabled */
if (v_ret == VIRTCHNL_STATUS_SUCCESS)
set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
NULL, 0);
}
/**
* ice_vf_vsi_dis_single_txq - disable a single Tx queue
* @vf: VF to disable queue for
* @vsi: VSI for the VF
* @q_id: VF relative (0-based) queue ID
*
* Attempt to disable the Tx queue passed in. If the Tx queue was successfully
* disabled then clear q_id bit in the enabled queues bitmap and return
* success. Otherwise return error.
*/
static int
ice_vf_vsi_dis_single_txq(struct ice_vf *vf, struct ice_vsi *vsi, u16 q_id)
{
struct ice_txq_meta txq_meta = { 0 };
struct ice_tx_ring *ring;
int err;
if (!test_bit(q_id, vf->txq_ena))
dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
q_id, vsi->vsi_num);
ring = vsi->tx_rings[q_id];
if (!ring)
return -EINVAL;
ice_fill_txq_meta(vsi, ring, &txq_meta);
err = ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, ring, &txq_meta);
if (err) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
q_id, vsi->vsi_num);
return err;
}
/* Clear enabled queues flag */
clear_bit(q_id, vf->txq_ena);
return 0;
}
/**
* ice_vc_dis_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to disable all or specific queue(s)
*/
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_vsi *vsi;
unsigned long q_map;
u16 vf_q_id;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
!test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vqs->tx_queues) {
q_map = vqs->tx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_vf_vsi_dis_single_txq(vf, vsi, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
}
}
q_map = vqs->rx_queues;
/* speed up Rx queue disable by batching them if possible */
if (q_map &&
bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
if (ice_vsi_stop_all_rx_rings(vsi)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
} else if (q_map) {
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if not enabled */
if (!test_bit(vf_q_id, vf->rxq_ena))
continue;
if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
true)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
vf_q_id, vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Clear enabled queues flag */
clear_bit(vf_q_id, vf->rxq_ena);
}
}
/* Clear enabled queues flag */
if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
NULL, 0);
}
/**
* ice_cfg_interrupt
* @vf: pointer to the VF info
* @vsi: the VSI being configured
* @vector_id: vector ID
* @map: vector map for mapping vectors to queues
* @q_vector: structure for interrupt vector
* configure the IRQ to queue map
*/
static int
ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
struct virtchnl_vector_map *map,
struct ice_q_vector *q_vector)
{
u16 vsi_q_id, vsi_q_id_idx;
unsigned long qmap;
q_vector->num_ring_rx = 0;
q_vector->num_ring_tx = 0;
qmap = map->rxq_map;
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
vsi_q_id = vsi_q_id_idx;
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
return VIRTCHNL_STATUS_ERR_PARAM;
q_vector->num_ring_rx++;
q_vector->rx.itr_idx = map->rxitr_idx;
vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
q_vector->rx.itr_idx);
}
qmap = map->txq_map;
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
vsi_q_id = vsi_q_id_idx;
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
return VIRTCHNL_STATUS_ERR_PARAM;
q_vector->num_ring_tx++;
q_vector->tx.itr_idx = map->txitr_idx;
vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
q_vector->tx.itr_idx);
}
return VIRTCHNL_STATUS_SUCCESS;
}
/**
* ice_vc_cfg_irq_map_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the IRQ to queue map
*/
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
u16 num_q_vectors_mapped, vsi_id, vector_id;
struct virtchnl_irq_map_info *irqmap_info;
struct virtchnl_vector_map *map;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int i;
irqmap_info = (struct virtchnl_irq_map_info *)msg;
num_q_vectors_mapped = irqmap_info->num_vectors;
/* Check to make sure number of VF vectors mapped is not greater than
* number of VF vectors originally allocated, and check that
* there is actually at least a single VF queue vector mapped
*/
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
pf->vfs.num_msix_per < num_q_vectors_mapped ||
!num_q_vectors_mapped) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
for (i = 0; i < num_q_vectors_mapped; i++) {
struct ice_q_vector *q_vector;
map = &irqmap_info->vecmap[i];
vector_id = map->vector_id;
vsi_id = map->vsi_id;
/* vector_id is always 0-based for each VF, and can never be
* larger than or equal to the max allowed interrupts per VF
*/
if (!(vector_id < pf->vfs.num_msix_per) ||
!ice_vc_isvalid_vsi_id(vf, vsi_id) ||
(!vector_id && (map->rxq_map || map->txq_map))) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* No need to map VF miscellaneous or rogue vector */
if (!vector_id)
continue;
/* Subtract non queue vector from vector_id passed by VF
* to get actual number of VSI queue vector array index
*/
q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
if (!q_vector) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* lookout for the invalid queue index */
v_ret = (enum virtchnl_status_code)
ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
if (v_ret)
goto error_param;
}
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
NULL, 0);
}
/**
* ice_vc_cfg_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the Rx/Tx queues
*/
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_vsi_queue_config_info *qci =
(struct virtchnl_vsi_queue_config_info *)msg;
struct virtchnl_queue_pair_info *qpi;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int i = -1, q_idx;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
goto error_param;
if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id))
goto error_param;
vsi = ice_get_vf_vsi(vf);
if (!vsi)
goto error_param;
if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
goto error_param;
}
for (i = 0; i < qci->num_queue_pairs; i++) {
qpi = &qci->qpair[i];
if (qpi->txq.vsi_id != qci->vsi_id ||
qpi->rxq.vsi_id != qci->vsi_id ||
qpi->rxq.queue_id != qpi->txq.queue_id ||
qpi->txq.headwb_enabled ||
!ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
!ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
!ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
goto error_param;
}
q_idx = qpi->rxq.queue_id;
/* make sure selected "q_idx" is in valid range of queues
* for selected "vsi"
*/
if (q_idx >= vsi->alloc_txq || q_idx >= vsi->alloc_rxq) {
goto error_param;
}
/* copy Tx queue info from VF into VSI */
if (qpi->txq.ring_len > 0) {
vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
vsi->tx_rings[i]->count = qpi->txq.ring_len;
/* Disable any existing queue first */
if (ice_vf_vsi_dis_single_txq(vf, vsi, q_idx))
goto error_param;
/* Configure a queue with the requested settings */
if (ice_vsi_cfg_single_txq(vsi, vsi->tx_rings, q_idx)) {
dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure TX queue %d\n",
vf->vf_id, i);
goto error_param;
}
}
/* copy Rx queue info from VF into VSI */
if (qpi->rxq.ring_len > 0) {
u16 max_frame_size = ice_vc_get_max_frame_size(vf);
u32 rxdid;
vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
vsi->rx_rings[i]->count = qpi->rxq.ring_len;
if (qpi->rxq.databuffer_size != 0 &&
(qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
qpi->rxq.databuffer_size < 1024))
goto error_param;
vsi->rx_buf_len = qpi->rxq.databuffer_size;
vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
if (qpi->rxq.max_pkt_size > max_frame_size ||
qpi->rxq.max_pkt_size < 64)
goto error_param;
vsi->max_frame = qpi->rxq.max_pkt_size;
/* add space for the port VLAN since the VF driver is
* not expected to account for it in the MTU
* calculation
*/
if (ice_vf_is_port_vlan_ena(vf))
vsi->max_frame += VLAN_HLEN;
if (ice_vsi_cfg_single_rxq(vsi, q_idx)) {
dev_warn(ice_pf_to_dev(pf), "VF-%d failed to configure RX queue %d\n",
vf->vf_id, i);
goto error_param;
}
/* If Rx flex desc is supported, select RXDID for Rx
* queues. Otherwise, use legacy 32byte descriptor
* format. Legacy 16byte descriptor is not supported.
* If this RXDID is selected, return error.
*/
if (vf->driver_caps &
VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC) {
rxdid = qpi->rxq.rxdid;
if (!(BIT(rxdid) & pf->supported_rxdids))
goto error_param;
} else {
rxdid = ICE_RXDID_LEGACY_1;
}
ice_write_qrxflxp_cntxt(&vsi->back->hw,
vsi->rxq_map[q_idx],
rxdid, 0x03, false);
}
}
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
VIRTCHNL_STATUS_SUCCESS, NULL, 0);
error_param:
/* disable whatever we can */
for (; i >= 0; i--) {
if (ice_vsi_ctrl_one_rx_ring(vsi, false, i, true))
dev_err(ice_pf_to_dev(pf), "VF-%d could not disable RX queue %d\n",
vf->vf_id, i);
if (ice_vf_vsi_dis_single_txq(vf, vsi, i))
dev_err(ice_pf_to_dev(pf), "VF-%d could not disable TX queue %d\n",
vf->vf_id, i);
}
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES,
VIRTCHNL_STATUS_ERR_PARAM, NULL, 0);
}
/**
* ice_can_vf_change_mac
* @vf: pointer to the VF info
*
* Return true if the VF is allowed to change its MAC filters, false otherwise
*/
static bool ice_can_vf_change_mac(struct ice_vf *vf)
{
/* If the VF MAC address has been set administratively (via the
* ndo_set_vf_mac command), then deny permission to the VF to
* add/delete unicast MAC addresses, unless the VF is trusted
*/
if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
return false;
return true;
}
/**
* ice_vc_ether_addr_type - get type of virtchnl_ether_addr
* @vc_ether_addr: used to extract the type
*/
static u8
ice_vc_ether_addr_type(struct virtchnl_ether_addr *vc_ether_addr)
{
return (vc_ether_addr->type & VIRTCHNL_ETHER_ADDR_TYPE_MASK);
}
/**
* ice_is_vc_addr_legacy - check if the MAC address is from an older VF
* @vc_ether_addr: VIRTCHNL structure that contains MAC and type
*/
static bool
ice_is_vc_addr_legacy(struct virtchnl_ether_addr *vc_ether_addr)
{
u8 type = ice_vc_ether_addr_type(vc_ether_addr);
return (type == VIRTCHNL_ETHER_ADDR_LEGACY);
}
/**
* ice_is_vc_addr_primary - check if the MAC address is the VF's primary MAC
* @vc_ether_addr: VIRTCHNL structure that contains MAC and type
*
* This function should only be called when the MAC address in
* virtchnl_ether_addr is a valid unicast MAC
*/
static bool
ice_is_vc_addr_primary(struct virtchnl_ether_addr __maybe_unused *vc_ether_addr)
{
u8 type = ice_vc_ether_addr_type(vc_ether_addr);
return (type == VIRTCHNL_ETHER_ADDR_PRIMARY);
}
/**
* ice_vfhw_mac_add - update the VF's cached hardware MAC if allowed
* @vf: VF to update
* @vc_ether_addr: structure from VIRTCHNL with MAC to add
*/
static void
ice_vfhw_mac_add(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
{
u8 *mac_addr = vc_ether_addr->addr;
if (!is_valid_ether_addr(mac_addr))
return;
/* only allow legacy VF drivers to set the device and hardware MAC if it
* is zero and allow new VF drivers to set the hardware MAC if the type
* was correctly specified over VIRTCHNL
*/
if ((ice_is_vc_addr_legacy(vc_ether_addr) &&
is_zero_ether_addr(vf->hw_lan_addr)) ||
ice_is_vc_addr_primary(vc_ether_addr)) {
ether_addr_copy(vf->dev_lan_addr, mac_addr);
ether_addr_copy(vf->hw_lan_addr, mac_addr);
}
/* hardware and device MACs are already set, but its possible that the
* VF driver sent the VIRTCHNL_OP_ADD_ETH_ADDR message before the
* VIRTCHNL_OP_DEL_ETH_ADDR when trying to update its MAC, so save it
* away for the legacy VF driver case as it will be updated in the
* delete flow for this case
*/
if (ice_is_vc_addr_legacy(vc_ether_addr)) {
ether_addr_copy(vf->legacy_last_added_umac.addr,
mac_addr);
vf->legacy_last_added_umac.time_modified = jiffies;
}
}
/**
* ice_vc_add_mac_addr - attempt to add the MAC address passed in
* @vf: pointer to the VF info
* @vsi: pointer to the VF's VSI
* @vc_ether_addr: VIRTCHNL MAC address structure used to add MAC
*/
static int
ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
struct virtchnl_ether_addr *vc_ether_addr)
{
struct device *dev = ice_pf_to_dev(vf->pf);
u8 *mac_addr = vc_ether_addr->addr;
int ret;
/* device MAC already added */
if (ether_addr_equal(mac_addr, vf->dev_lan_addr))
return 0;
if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
return -EPERM;
}
ret = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
if (ret == -EEXIST) {
dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
vf->vf_id);
/* don't return since we might need to update
* the primary MAC in ice_vfhw_mac_add() below
*/
} else if (ret) {
dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %d\n",
mac_addr, vf->vf_id, ret);
return ret;
} else {
vf->num_mac++;
}
ice_vfhw_mac_add(vf, vc_ether_addr);
return ret;
}
/**
* ice_is_legacy_umac_expired - check if last added legacy unicast MAC expired
* @last_added_umac: structure used to check expiration
*/
static bool ice_is_legacy_umac_expired(struct ice_time_mac *last_added_umac)
{
#define ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME msecs_to_jiffies(3000)
return time_is_before_jiffies(last_added_umac->time_modified +
ICE_LEGACY_VF_MAC_CHANGE_EXPIRE_TIME);
}
/**
* ice_update_legacy_cached_mac - update cached hardware MAC for legacy VF
* @vf: VF to update
* @vc_ether_addr: structure from VIRTCHNL with MAC to check
*
* only update cached hardware MAC for legacy VF drivers on delete
* because we cannot guarantee order/type of MAC from the VF driver
*/
static void
ice_update_legacy_cached_mac(struct ice_vf *vf,
struct virtchnl_ether_addr *vc_ether_addr)
{
if (!ice_is_vc_addr_legacy(vc_ether_addr) ||
ice_is_legacy_umac_expired(&vf->legacy_last_added_umac))
return;
ether_addr_copy(vf->dev_lan_addr, vf->legacy_last_added_umac.addr);
ether_addr_copy(vf->hw_lan_addr, vf->legacy_last_added_umac.addr);
}
/**
* ice_vfhw_mac_del - update the VF's cached hardware MAC if allowed
* @vf: VF to update
* @vc_ether_addr: structure from VIRTCHNL with MAC to delete
*/
static void
ice_vfhw_mac_del(struct ice_vf *vf, struct virtchnl_ether_addr *vc_ether_addr)
{
u8 *mac_addr = vc_ether_addr->addr;
if (!is_valid_ether_addr(mac_addr) ||
!ether_addr_equal(vf->dev_lan_addr, mac_addr))
return;
/* allow the device MAC to be repopulated in the add flow and don't
* clear the hardware MAC (i.e. hw_lan_addr) here as that is meant
* to be persistent on VM reboot and across driver unload/load, which
* won't work if we clear the hardware MAC here
*/
eth_zero_addr(vf->dev_lan_addr);
ice_update_legacy_cached_mac(vf, vc_ether_addr);
}
/**
* ice_vc_del_mac_addr - attempt to delete the MAC address passed in
* @vf: pointer to the VF info
* @vsi: pointer to the VF's VSI
* @vc_ether_addr: VIRTCHNL MAC address structure used to delete MAC
*/
static int
ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi,
struct virtchnl_ether_addr *vc_ether_addr)
{
struct device *dev = ice_pf_to_dev(vf->pf);
u8 *mac_addr = vc_ether_addr->addr;
int status;
if (!ice_can_vf_change_mac(vf) &&
ether_addr_equal(vf->dev_lan_addr, mac_addr))
return 0;
status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
if (status == -ENOENT) {
dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
vf->vf_id);
return -ENOENT;
} else if (status) {
dev_err(dev, "Failed to delete MAC %pM for VF %d, error %d\n",
mac_addr, vf->vf_id, status);
return -EIO;
}
ice_vfhw_mac_del(vf, vc_ether_addr);
vf->num_mac--;
return 0;
}
/**
* ice_vc_handle_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @set: true if MAC filters are being set, false otherwise
*
* add guest MAC address filter
*/
static int
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
{
int (*ice_vc_cfg_mac)
(struct ice_vf *vf, struct ice_vsi *vsi,
struct virtchnl_ether_addr *virtchnl_ether_addr);
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_ether_addr_list *al =
(struct virtchnl_ether_addr_list *)msg;
struct ice_pf *pf = vf->pf;
enum virtchnl_ops vc_op;
struct ice_vsi *vsi;
int i;
if (set) {
vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
ice_vc_cfg_mac = ice_vc_add_mac_addr;
} else {
vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
ice_vc_cfg_mac = ice_vc_del_mac_addr;
}
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
!ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
/* If this VF is not privileged, then we can't add more than a
* limited number of addresses. Check to make sure that the
* additions do not push us over the limit.
*/
if (set && !ice_is_vf_trusted(vf) &&
(vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
vf->vf_id);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
for (i = 0; i < al->num_elements; i++) {
u8 *mac_addr = al->list[i].addr;
int result;
if (is_broadcast_ether_addr(mac_addr) ||
is_zero_ether_addr(mac_addr))
continue;
result = ice_vc_cfg_mac(vf, vsi, &al->list[i]);
if (result == -EEXIST || result == -ENOENT) {
continue;
} else if (result) {
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
goto handle_mac_exit;
}
}
handle_mac_exit:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
}
/**
* ice_vc_add_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* add guest MAC address filter
*/
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, true);
}
/**
* ice_vc_del_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove guest MAC address filter
*/
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, false);
}
/**
* ice_vc_request_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* VFs get a default number of queues but can use this message to request a
* different number. If the request is successful, PF will reset the VF and
* return 0. If unsuccessful, PF will send message informing VF of number of
* available queue pairs via virtchnl message response to VF.
*/
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vf_res_request *vfres =
(struct virtchnl_vf_res_request *)msg;
u16 req_queues = vfres->num_queue_pairs;
struct ice_pf *pf = vf->pf;
u16 max_allowed_vf_queues;
u16 tx_rx_queue_left;
struct device *dev;
u16 cur_queues;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
cur_queues = vf->num_vf_qs;
tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
ice_get_avail_rxq_count(pf));
max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
if (!req_queues) {
dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
vf->vf_id);
} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
dev_err(dev, "VF %d tried to request more than %d queues.\n",
vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
} else if (req_queues > cur_queues &&
req_queues - cur_queues > tx_rx_queue_left) {
dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
ICE_MAX_RSS_QS_PER_VF);
} else {
/* request is successful, then reset VF */
vf->num_req_qs = req_queues;
ice_reset_vf(vf, ICE_VF_RESET_NOTIFY);
dev_info(dev, "VF %d granted request of %u queues.\n",
vf->vf_id, req_queues);
return 0;
}
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
v_ret, (u8 *)vfres, sizeof(*vfres));
}
/**
* ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
* @caps: VF driver negotiated capabilities
*
* Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
*/
static bool ice_vf_vlan_offload_ena(u32 caps)
{
return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
}
/**
* ice_is_vlan_promisc_allowed - check if VLAN promiscuous config is allowed
* @vf: VF used to determine if VLAN promiscuous config is allowed
*/
static bool ice_is_vlan_promisc_allowed(struct ice_vf *vf)
{
if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, vf->pf->flags))
return true;
return false;
}
/**
* ice_vf_ena_vlan_promisc - Enable Tx/Rx VLAN promiscuous for the VLAN
* @vsi: VF's VSI used to enable VLAN promiscuous mode
* @vlan: VLAN used to enable VLAN promiscuous
*
* This function should only be called if VLAN promiscuous mode is allowed,
* which can be determined via ice_is_vlan_promisc_allowed().
*/
static int ice_vf_ena_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
{
u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
int status;
status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
vlan->vid);
if (status && status != -EEXIST)
return status;
return 0;
}
/**
* ice_vf_dis_vlan_promisc - Disable Tx/Rx VLAN promiscuous for the VLAN
* @vsi: VF's VSI used to disable VLAN promiscuous mode for
* @vlan: VLAN used to disable VLAN promiscuous
*
* This function should only be called if VLAN promiscuous mode is allowed,
* which can be determined via ice_is_vlan_promisc_allowed().
*/
static int ice_vf_dis_vlan_promisc(struct ice_vsi *vsi, struct ice_vlan *vlan)
{
u8 promisc_m = ICE_PROMISC_VLAN_TX | ICE_PROMISC_VLAN_RX;
int status;
status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx, promisc_m,
vlan->vid);
if (status && status != -ENOENT)
return status;
return 0;
}
/**
* ice_vf_has_max_vlans - check if VF already has the max allowed VLAN filters
* @vf: VF to check against
* @vsi: VF's VSI
*
* If the VF is trusted then the VF is allowed to add as many VLANs as it
* wants to, so return false.
*
* When the VF is untrusted compare the number of non-zero VLANs + 1 to the max
* allowed VLANs for an untrusted VF. Return the result of this comparison.
*/
static bool ice_vf_has_max_vlans(struct ice_vf *vf, struct ice_vsi *vsi)
{
if (ice_is_vf_trusted(vf))
return false;
#define ICE_VF_ADDED_VLAN_ZERO_FLTRS 1
return ((ice_vsi_num_non_zero_vlans(vsi) +
ICE_VF_ADDED_VLAN_ZERO_FLTRS) >= ICE_MAX_VLAN_PER_VF);
}
/**
* ice_vc_process_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @add_v: Add VLAN if true, otherwise delete VLAN
*
* Process virtchnl op to add or remove programmed guest VLAN ID
*/
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
struct ice_pf *pf = vf->pf;
bool vlan_promisc = false;
struct ice_vsi *vsi;
struct device *dev;
int status = 0;
int i;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
for (i = 0; i < vfl->num_elements; i++) {
if (vfl->vlan_id[i] >= VLAN_N_VID) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "invalid VF VLAN id %d\n",
vfl->vlan_id[i]);
goto error_param;
}
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (add_v && ice_vf_has_max_vlans(vf, vsi)) {
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
vf->vf_id);
/* There is no need to let VF know about being not trusted,
* so we can just return success message here
*/
goto error_param;
}
/* in DVM a VF can add/delete inner VLAN filters when
* VIRTCHNL_VF_OFFLOAD_VLAN is negotiated, so only reject in SVM
*/
if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&pf->hw)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* in DVM VLAN promiscuous is based on the outer VLAN, which would be
* the port VLAN if VIRTCHNL_VF_OFFLOAD_VLAN was negotiated, so only
* allow vlan_promisc = true in SVM and if no port VLAN is configured
*/
vlan_promisc = ice_is_vlan_promisc_allowed(vf) &&
!ice_is_dvm_ena(&pf->hw) &&
!ice_vf_is_port_vlan_ena(vf);
if (add_v) {
for (i = 0; i < vfl->num_elements; i++) {
u16 vid = vfl->vlan_id[i];
struct ice_vlan vlan;
if (ice_vf_has_max_vlans(vf, vsi)) {
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
vf->vf_id);
/* There is no need to let VF know about being
* not trusted, so we can just return success
* message here as well.
*/
goto error_param;
}
/* we add VLAN 0 by default for each VF so we can enable
* Tx VLAN anti-spoof without triggering MDD events so
* we don't need to add it again here
*/
if (!vid)
continue;
vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
status = vsi->inner_vlan_ops.add_vlan(vsi, &vlan);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Enable VLAN filtering on first non-zero VLAN */
if (!vlan_promisc && vid && !ice_is_dvm_ena(&pf->hw)) {
if (vf->spoofchk) {
status = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "Enable VLAN anti-spoofing on VLAN ID: %d failed error-%d\n",
vid, status);
goto error_param;
}
}
if (vsi->inner_vlan_ops.ena_rx_filtering(vsi)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
vid, status);
goto error_param;
}
} else if (vlan_promisc) {
status = ice_vf_ena_vlan_promisc(vsi, &vlan);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
vid, status);
}
}
}
} else {
/* In case of non_trusted VF, number of VLAN elements passed
* to PF for removal might be greater than number of VLANs
* filter programmed for that VF - So, use actual number of
* VLANS added earlier with add VLAN opcode. In order to avoid
* removing VLAN that doesn't exist, which result to sending
* erroneous failed message back to the VF
*/
int num_vf_vlan;
num_vf_vlan = vsi->num_vlan;
for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
u16 vid = vfl->vlan_id[i];
struct ice_vlan vlan;
/* we add VLAN 0 by default for each VF so we can enable
* Tx VLAN anti-spoof without triggering MDD events so
* we don't want a VIRTCHNL request to remove it
*/
if (!vid)
continue;
vlan = ICE_VLAN(ETH_P_8021Q, vid, 0);
status = vsi->inner_vlan_ops.del_vlan(vsi, &vlan);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Disable VLAN filtering when only VLAN 0 is left */
if (!ice_vsi_has_non_zero_vlans(vsi)) {
vsi->inner_vlan_ops.dis_tx_filtering(vsi);
vsi->inner_vlan_ops.dis_rx_filtering(vsi);
}
if (vlan_promisc)
ice_vf_dis_vlan_promisc(vsi, &vlan);
}
}
error_param:
/* send the response to the VF */
if (add_v)
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
NULL, 0);
else
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
NULL, 0);
}
/**
* ice_vc_add_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Add and program guest VLAN ID
*/
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, true);
}
/**
* ice_vc_remove_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove programmed guest VLAN ID
*/
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, false);
}
/**
* ice_vc_ena_vlan_stripping
* @vf: pointer to the VF info
*
* Enable VLAN header stripping for a given VF
*/
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
v_ret, NULL, 0);
}
/**
* ice_vc_dis_vlan_stripping
* @vf: pointer to the VF info
*
* Disable VLAN header stripping for a given VF
*/
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vsi->inner_vlan_ops.dis_stripping(vsi))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
v_ret, NULL, 0);
}
/**
* ice_vc_get_rss_hena - return the RSS HENA bits allowed by the hardware
* @vf: pointer to the VF info
*/
static int ice_vc_get_rss_hena(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_rss_hena *vrh = NULL;
int len = 0, ret;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
dev_err(ice_pf_to_dev(vf->pf), "RSS not supported by PF\n");
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
len = sizeof(struct virtchnl_rss_hena);
vrh = kzalloc(len, GFP_KERNEL);
if (!vrh) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
len = 0;
goto err;
}
vrh->hena = ICE_DEFAULT_RSS_HENA;
err:
/* send the response back to the VF */
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_RSS_HENA_CAPS, v_ret,
(u8 *)vrh, len);
kfree(vrh);
return ret;
}
/**
* ice_vc_set_rss_hena - set RSS HENA bits for the VF
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*/
static int ice_vc_set_rss_hena(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_rss_hena *vrh = (struct virtchnl_rss_hena *)msg;
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
int status;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
dev_err(dev, "RSS not supported by PF\n");
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
/* clear all previously programmed RSS configuration to allow VF drivers
* the ability to customize the RSS configuration and/or completely
* disable RSS
*/
status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
if (status && !vrh->hena) {
/* only report failure to clear the current RSS configuration if
* that was clearly the VF's intention (i.e. vrh->hena = 0)
*/
v_ret = ice_err_to_virt_err(status);
goto err;
} else if (status) {
/* allow the VF to update the RSS configuration even on failure
* to clear the current RSS confguration in an attempt to keep
* RSS in a working state
*/
dev_warn(dev, "Failed to clear the RSS configuration for VF %u\n",
vf->vf_id);
}
if (vrh->hena) {
status = ice_add_avf_rss_cfg(&pf->hw, vsi->idx, vrh->hena);
v_ret = ice_err_to_virt_err(status);
}
/* send the response to the VF */
err:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_SET_RSS_HENA, v_ret,
NULL, 0);
}
/**
* ice_vc_query_rxdid - query RXDID supported by DDP package
* @vf: pointer to VF info
*
* Called from VF to query a bitmap of supported flexible
* descriptor RXDIDs of a DDP package.
*/
static int ice_vc_query_rxdid(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_supported_rxdids *rxdid = NULL;
struct ice_hw *hw = &vf->pf->hw;
struct ice_pf *pf = vf->pf;
int len = 0;
int ret, i;
u32 regval;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
if (!(vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_FLEX_DESC)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
len = sizeof(struct virtchnl_supported_rxdids);
rxdid = kzalloc(len, GFP_KERNEL);
if (!rxdid) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
len = 0;
goto err;
}
/* Read flexiflag registers to determine whether the
* corresponding RXDID is configured and supported or not.
* Since Legacy 16byte descriptor format is not supported,
* start from Legacy 32byte descriptor.
*/
for (i = ICE_RXDID_LEGACY_1; i < ICE_FLEX_DESC_RXDID_MAX_NUM; i++) {
regval = rd32(hw, GLFLXP_RXDID_FLAGS(i, 0));
if ((regval >> GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
& GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M)
rxdid->supported_rxdids |= BIT(i);
}
pf->supported_rxdids = rxdid->supported_rxdids;
err:
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_SUPPORTED_RXDIDS,
v_ret, (u8 *)rxdid, len);
kfree(rxdid);
return ret;
}
/**
* ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
* @vf: VF to enable/disable VLAN stripping for on initialization
*
* Set the default for VLAN stripping based on whether a port VLAN is configured
* and the current VLAN mode of the device.
*/
static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
{
struct ice_vsi *vsi = ice_get_vf_vsi(vf);
if (!vsi)
return -EINVAL;
/* don't modify stripping if port VLAN is configured in SVM since the
* port VLAN is based on the inner/single VLAN in SVM
*/
if (ice_vf_is_port_vlan_ena(vf) && !ice_is_dvm_ena(&vsi->back->hw))
return 0;
if (ice_vf_vlan_offload_ena(vf->driver_caps))
return vsi->inner_vlan_ops.ena_stripping(vsi, ETH_P_8021Q);
else
return vsi->inner_vlan_ops.dis_stripping(vsi);
}
static u16 ice_vc_get_max_vlan_fltrs(struct ice_vf *vf)
{
if (vf->trusted)
return VLAN_N_VID;
else
return ICE_MAX_VLAN_PER_VF;
}
/**
* ice_vf_outer_vlan_not_allowed - check if outer VLAN can be used
* @vf: VF that being checked for
*
* When the device is in double VLAN mode, check whether or not the outer VLAN
* is allowed.
*/
static bool ice_vf_outer_vlan_not_allowed(struct ice_vf *vf)
{
if (ice_vf_is_port_vlan_ena(vf))
return true;
return false;
}
/**
* ice_vc_set_dvm_caps - set VLAN capabilities when the device is in DVM
* @vf: VF that capabilities are being set for
* @caps: VLAN capabilities to populate
*
* Determine VLAN capabilities support based on whether a port VLAN is
* configured. If a port VLAN is configured then the VF should use the inner
* filtering/offload capabilities since the port VLAN is using the outer VLAN
* capabilies.
*/
static void
ice_vc_set_dvm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
{
struct virtchnl_vlan_supported_caps *supported_caps;
if (ice_vf_outer_vlan_not_allowed(vf)) {
/* until support for inner VLAN filtering is added when a port
* VLAN is configured, only support software offloaded inner
* VLANs when a port VLAN is confgured in DVM
*/
supported_caps = &caps->filtering.filtering_support;
supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps = &caps->offloads.stripping_support;
supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps = &caps->offloads.insertion_support;
supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
caps->offloads.ethertype_match =
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
} else {
supported_caps = &caps->filtering.filtering_support;
supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps->outer = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_ETHERTYPE_88A8 |
VIRTCHNL_VLAN_ETHERTYPE_9100 |
VIRTCHNL_VLAN_ETHERTYPE_AND;
caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_ETHERTYPE_88A8 |
VIRTCHNL_VLAN_ETHERTYPE_9100;
supported_caps = &caps->offloads.stripping_support;
supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_ETHERTYPE_88A8 |
VIRTCHNL_VLAN_ETHERTYPE_9100 |
VIRTCHNL_VLAN_ETHERTYPE_XOR |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2;
supported_caps = &caps->offloads.insertion_support;
supported_caps->inner = VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_ETHERTYPE_88A8 |
VIRTCHNL_VLAN_ETHERTYPE_9100 |
VIRTCHNL_VLAN_ETHERTYPE_XOR |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2;
caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
caps->offloads.ethertype_match =
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
}
caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
}
/**
* ice_vc_set_svm_caps - set VLAN capabilities when the device is in SVM
* @vf: VF that capabilities are being set for
* @caps: VLAN capabilities to populate
*
* Determine VLAN capabilities support based on whether a port VLAN is
* configured. If a port VLAN is configured then the VF does not have any VLAN
* filtering or offload capabilities since the port VLAN is using the inner VLAN
* capabilities in single VLAN mode (SVM). Otherwise allow the VF to use inner
* VLAN fitlering and offload capabilities.
*/
static void
ice_vc_set_svm_caps(struct ice_vf *vf, struct virtchnl_vlan_caps *caps)
{
struct virtchnl_vlan_supported_caps *supported_caps;
if (ice_vf_is_port_vlan_ena(vf)) {
supported_caps = &caps->filtering.filtering_support;
supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps = &caps->offloads.stripping_support;
supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps = &caps->offloads.insertion_support;
supported_caps->inner = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
caps->offloads.ethertype_init = VIRTCHNL_VLAN_UNSUPPORTED;
caps->offloads.ethertype_match = VIRTCHNL_VLAN_UNSUPPORTED;
caps->filtering.max_filters = 0;
} else {
supported_caps = &caps->filtering.filtering_support;
supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
caps->filtering.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
supported_caps = &caps->offloads.stripping_support;
supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
supported_caps = &caps->offloads.insertion_support;
supported_caps->inner = VIRTCHNL_VLAN_ETHERTYPE_8100 |
VIRTCHNL_VLAN_TOGGLE |
VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1;
supported_caps->outer = VIRTCHNL_VLAN_UNSUPPORTED;
caps->offloads.ethertype_init = VIRTCHNL_VLAN_ETHERTYPE_8100;
caps->offloads.ethertype_match =
VIRTCHNL_ETHERTYPE_STRIPPING_MATCHES_INSERTION;
caps->filtering.max_filters = ice_vc_get_max_vlan_fltrs(vf);
}
}
/**
* ice_vc_get_offload_vlan_v2_caps - determine VF's VLAN capabilities
* @vf: VF to determine VLAN capabilities for
*
* This will only be called if the VF and PF successfully negotiated
* VIRTCHNL_VF_OFFLOAD_VLAN_V2.
*
* Set VLAN capabilities based on the current VLAN mode and whether a port VLAN
* is configured or not.
*/
static int ice_vc_get_offload_vlan_v2_caps(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_caps *caps = NULL;
int err, len = 0;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
caps = kzalloc(sizeof(*caps), GFP_KERNEL);
if (!caps) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
goto out;
}
len = sizeof(*caps);
if (ice_is_dvm_ena(&vf->pf->hw))
ice_vc_set_dvm_caps(vf, caps);
else
ice_vc_set_svm_caps(vf, caps);
/* store negotiated caps to prevent invalid VF messages */
memcpy(&vf->vlan_v2_caps, caps, sizeof(*caps));
out:
err = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS,
v_ret, (u8 *)caps, len);
kfree(caps);
return err;
}
/**
* ice_vc_validate_vlan_tpid - validate VLAN TPID
* @filtering_caps: negotiated/supported VLAN filtering capabilities
* @tpid: VLAN TPID used for validation
*
* Convert the VLAN TPID to a VIRTCHNL_VLAN_ETHERTYPE_* and then compare against
* the negotiated/supported filtering caps to see if the VLAN TPID is valid.
*/
static bool ice_vc_validate_vlan_tpid(u16 filtering_caps, u16 tpid)
{
enum virtchnl_vlan_support vlan_ethertype = VIRTCHNL_VLAN_UNSUPPORTED;
switch (tpid) {
case ETH_P_8021Q:
vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_8100;
break;
case ETH_P_8021AD:
vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_88A8;
break;
case ETH_P_QINQ1:
vlan_ethertype = VIRTCHNL_VLAN_ETHERTYPE_9100;
break;
}
if (!(filtering_caps & vlan_ethertype))
return false;
return true;
}
/**
* ice_vc_is_valid_vlan - validate the virtchnl_vlan
* @vc_vlan: virtchnl_vlan to validate
*
* If the VLAN TCI and VLAN TPID are 0, then this filter is invalid, so return
* false. Otherwise return true.
*/
static bool ice_vc_is_valid_vlan(struct virtchnl_vlan *vc_vlan)
{
if (!vc_vlan->tci || !vc_vlan->tpid)
return false;
return true;
}
/**
* ice_vc_validate_vlan_filter_list - validate the filter list from the VF
* @vfc: negotiated/supported VLAN filtering capabilities
* @vfl: VLAN filter list from VF to validate
*
* Validate all of the filters in the VLAN filter list from the VF. If any of
* the checks fail then return false. Otherwise return true.
*/
static bool
ice_vc_validate_vlan_filter_list(struct virtchnl_vlan_filtering_caps *vfc,
struct virtchnl_vlan_filter_list_v2 *vfl)
{
u16 i;
if (!vfl->num_elements)
return false;
for (i = 0; i < vfl->num_elements; i++) {
struct virtchnl_vlan_supported_caps *filtering_support =
&vfc->filtering_support;
struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
struct virtchnl_vlan *outer = &vlan_fltr->outer;
struct virtchnl_vlan *inner = &vlan_fltr->inner;
if ((ice_vc_is_valid_vlan(outer) &&
filtering_support->outer == VIRTCHNL_VLAN_UNSUPPORTED) ||
(ice_vc_is_valid_vlan(inner) &&
filtering_support->inner == VIRTCHNL_VLAN_UNSUPPORTED))
return false;
if ((outer->tci_mask &&
!(filtering_support->outer & VIRTCHNL_VLAN_FILTER_MASK)) ||
(inner->tci_mask &&
!(filtering_support->inner & VIRTCHNL_VLAN_FILTER_MASK)))
return false;
if (((outer->tci & VLAN_PRIO_MASK) &&
!(filtering_support->outer & VIRTCHNL_VLAN_PRIO)) ||
((inner->tci & VLAN_PRIO_MASK) &&
!(filtering_support->inner & VIRTCHNL_VLAN_PRIO)))
return false;
if ((ice_vc_is_valid_vlan(outer) &&
!ice_vc_validate_vlan_tpid(filtering_support->outer,
outer->tpid)) ||
(ice_vc_is_valid_vlan(inner) &&
!ice_vc_validate_vlan_tpid(filtering_support->inner,
inner->tpid)))
return false;
}
return true;
}
/**
* ice_vc_to_vlan - transform from struct virtchnl_vlan to struct ice_vlan
* @vc_vlan: struct virtchnl_vlan to transform
*/
static struct ice_vlan ice_vc_to_vlan(struct virtchnl_vlan *vc_vlan)
{
struct ice_vlan vlan = { 0 };
vlan.prio = (vc_vlan->tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
vlan.vid = vc_vlan->tci & VLAN_VID_MASK;
vlan.tpid = vc_vlan->tpid;
return vlan;
}
/**
* ice_vc_vlan_action - action to perform on the virthcnl_vlan
* @vsi: VF's VSI used to perform the action
* @vlan_action: function to perform the action with (i.e. add/del)
* @vlan: VLAN filter to perform the action with
*/
static int
ice_vc_vlan_action(struct ice_vsi *vsi,
int (*vlan_action)(struct ice_vsi *, struct ice_vlan *),
struct ice_vlan *vlan)
{
int err;
err = vlan_action(vsi, vlan);
if (err)
return err;
return 0;
}
/**
* ice_vc_del_vlans - delete VLAN(s) from the virtchnl filter list
* @vf: VF used to delete the VLAN(s)
* @vsi: VF's VSI used to delete the VLAN(s)
* @vfl: virthchnl filter list used to delete the filters
*/
static int
ice_vc_del_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
struct virtchnl_vlan_filter_list_v2 *vfl)
{
bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
int err;
u16 i;
for (i = 0; i < vfl->num_elements; i++) {
struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
struct virtchnl_vlan *vc_vlan;
vc_vlan = &vlan_fltr->outer;
if (ice_vc_is_valid_vlan(vc_vlan)) {
struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
err = ice_vc_vlan_action(vsi,
vsi->outer_vlan_ops.del_vlan,
&vlan);
if (err)
return err;
if (vlan_promisc)
ice_vf_dis_vlan_promisc(vsi, &vlan);
/* Disable VLAN filtering when only VLAN 0 is left */
if (!ice_vsi_has_non_zero_vlans(vsi) && ice_is_dvm_ena(&vsi->back->hw)) {
err = vsi->outer_vlan_ops.dis_tx_filtering(vsi);
if (err)
return err;
}
}
vc_vlan = &vlan_fltr->inner;
if (ice_vc_is_valid_vlan(vc_vlan)) {
struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
err = ice_vc_vlan_action(vsi,
vsi->inner_vlan_ops.del_vlan,
&vlan);
if (err)
return err;
/* no support for VLAN promiscuous on inner VLAN unless
* we are in Single VLAN Mode (SVM)
*/
if (!ice_is_dvm_ena(&vsi->back->hw)) {
if (vlan_promisc)
ice_vf_dis_vlan_promisc(vsi, &vlan);
/* Disable VLAN filtering when only VLAN 0 is left */
if (!ice_vsi_has_non_zero_vlans(vsi)) {
err = vsi->inner_vlan_ops.dis_tx_filtering(vsi);
if (err)
return err;
}
}
}
}
return 0;
}
/**
* ice_vc_remove_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_DEL_VLAN_V2
* @vf: VF the message was received from
* @msg: message received from the VF
*/
static int ice_vc_remove_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_vlan_filter_list_v2 *vfl =
(struct virtchnl_vlan_filter_list_v2 *)msg;
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_vsi *vsi;
if (!ice_vc_validate_vlan_filter_list(&vf->vlan_v2_caps.filtering,
vfl)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (ice_vc_del_vlans(vf, vsi, vfl))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN_V2, v_ret, NULL,
0);
}
/**
* ice_vc_add_vlans - add VLAN(s) from the virtchnl filter list
* @vf: VF used to add the VLAN(s)
* @vsi: VF's VSI used to add the VLAN(s)
* @vfl: virthchnl filter list used to add the filters
*/
static int
ice_vc_add_vlans(struct ice_vf *vf, struct ice_vsi *vsi,
struct virtchnl_vlan_filter_list_v2 *vfl)
{
bool vlan_promisc = ice_is_vlan_promisc_allowed(vf);
int err;
u16 i;
for (i = 0; i < vfl->num_elements; i++) {
struct virtchnl_vlan_filter *vlan_fltr = &vfl->filters[i];
struct virtchnl_vlan *vc_vlan;
vc_vlan = &vlan_fltr->outer;
if (ice_vc_is_valid_vlan(vc_vlan)) {
struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
err = ice_vc_vlan_action(vsi,
vsi->outer_vlan_ops.add_vlan,
&vlan);
if (err)
return err;
if (vlan_promisc) {
err = ice_vf_ena_vlan_promisc(vsi, &vlan);
if (err)
return err;
}
/* Enable VLAN filtering on first non-zero VLAN */
if (vf->spoofchk && vlan.vid && ice_is_dvm_ena(&vsi->back->hw)) {
err = vsi->outer_vlan_ops.ena_tx_filtering(vsi);
if (err)
return err;
}
}
vc_vlan = &vlan_fltr->inner;
if (ice_vc_is_valid_vlan(vc_vlan)) {
struct ice_vlan vlan = ice_vc_to_vlan(vc_vlan);
err = ice_vc_vlan_action(vsi,
vsi->inner_vlan_ops.add_vlan,
&vlan);
if (err)
return err;
/* no support for VLAN promiscuous on inner VLAN unless
* we are in Single VLAN Mode (SVM)
*/
if (!ice_is_dvm_ena(&vsi->back->hw)) {
if (vlan_promisc) {
err = ice_vf_ena_vlan_promisc(vsi, &vlan);
if (err)
return err;
}
/* Enable VLAN filtering on first non-zero VLAN */
if (vf->spoofchk && vlan.vid) {
err = vsi->inner_vlan_ops.ena_tx_filtering(vsi);
if (err)
return err;
}
}
}
}
return 0;
}
/**
* ice_vc_validate_add_vlan_filter_list - validate add filter list from the VF
* @vsi: VF VSI used to get number of existing VLAN filters
* @vfc: negotiated/supported VLAN filtering capabilities
* @vfl: VLAN filter list from VF to validate
*
* Validate all of the filters in the VLAN filter list from the VF during the
* VIRTCHNL_OP_ADD_VLAN_V2 opcode. If any of the checks fail then return false.
* Otherwise return true.
*/
static bool
ice_vc_validate_add_vlan_filter_list(struct ice_vsi *vsi,
struct virtchnl_vlan_filtering_caps *vfc,
struct virtchnl_vlan_filter_list_v2 *vfl)
{
u16 num_requested_filters = ice_vsi_num_non_zero_vlans(vsi) +
vfl->num_elements;
if (num_requested_filters > vfc->max_filters)
return false;
return ice_vc_validate_vlan_filter_list(vfc, vfl);
}
/**
* ice_vc_add_vlan_v2_msg - virtchnl handler for VIRTCHNL_OP_ADD_VLAN_V2
* @vf: VF the message was received from
* @msg: message received from the VF
*/
static int ice_vc_add_vlan_v2_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_filter_list_v2 *vfl =
(struct virtchnl_vlan_filter_list_v2 *)msg;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, vfl->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_validate_add_vlan_filter_list(vsi,
&vf->vlan_v2_caps.filtering,
vfl)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (ice_vc_add_vlans(vf, vsi, vfl))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN_V2, v_ret, NULL,
0);
}
/**
* ice_vc_valid_vlan_setting - validate VLAN setting
* @negotiated_settings: negotiated VLAN settings during VF init
* @ethertype_setting: ethertype(s) requested for the VLAN setting
*/
static bool
ice_vc_valid_vlan_setting(u32 negotiated_settings, u32 ethertype_setting)
{
if (ethertype_setting && !(negotiated_settings & ethertype_setting))
return false;
/* only allow a single VIRTCHNL_VLAN_ETHERTYPE if
* VIRTHCNL_VLAN_ETHERTYPE_AND is not negotiated/supported
*/
if (!(negotiated_settings & VIRTCHNL_VLAN_ETHERTYPE_AND) &&
hweight32(ethertype_setting) > 1)
return false;
/* ability to modify the VLAN setting was not negotiated */
if (!(negotiated_settings & VIRTCHNL_VLAN_TOGGLE))
return false;
return true;
}
/**
* ice_vc_valid_vlan_setting_msg - validate the VLAN setting message
* @caps: negotiated VLAN settings during VF init
* @msg: message to validate
*
* Used to validate any VLAN virtchnl message sent as a
* virtchnl_vlan_setting structure. Validates the message against the
* negotiated/supported caps during VF driver init.
*/
static bool
ice_vc_valid_vlan_setting_msg(struct virtchnl_vlan_supported_caps *caps,
struct virtchnl_vlan_setting *msg)
{
if ((!msg->outer_ethertype_setting &&
!msg->inner_ethertype_setting) ||
(!caps->outer && !caps->inner))
return false;
if (msg->outer_ethertype_setting &&
!ice_vc_valid_vlan_setting(caps->outer,
msg->outer_ethertype_setting))
return false;
if (msg->inner_ethertype_setting &&
!ice_vc_valid_vlan_setting(caps->inner,
msg->inner_ethertype_setting))
return false;
return true;
}
/**
* ice_vc_get_tpid - transform from VIRTCHNL_VLAN_ETHERTYPE_* to VLAN TPID
* @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* used to get VLAN TPID
* @tpid: VLAN TPID to populate
*/
static int ice_vc_get_tpid(u32 ethertype_setting, u16 *tpid)
{
switch (ethertype_setting) {
case VIRTCHNL_VLAN_ETHERTYPE_8100:
*tpid = ETH_P_8021Q;
break;
case VIRTCHNL_VLAN_ETHERTYPE_88A8:
*tpid = ETH_P_8021AD;
break;
case VIRTCHNL_VLAN_ETHERTYPE_9100:
*tpid = ETH_P_QINQ1;
break;
default:
*tpid = 0;
return -EINVAL;
}
return 0;
}
/**
* ice_vc_ena_vlan_offload - enable VLAN offload based on the ethertype_setting
* @vsi: VF's VSI used to enable the VLAN offload
* @ena_offload: function used to enable the VLAN offload
* @ethertype_setting: VIRTCHNL_VLAN_ETHERTYPE_* to enable offloads for
*/
static int
ice_vc_ena_vlan_offload(struct ice_vsi *vsi,
int (*ena_offload)(struct ice_vsi *vsi, u16 tpid),
u32 ethertype_setting)
{
u16 tpid;
int err;
err = ice_vc_get_tpid(ethertype_setting, &tpid);
if (err)
return err;
err = ena_offload(vsi, tpid);
if (err)
return err;
return 0;
}
#define ICE_L2TSEL_QRX_CONTEXT_REG_IDX 3
#define ICE_L2TSEL_BIT_OFFSET 23
enum ice_l2tsel {
ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND,
ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1,
};
/**
* ice_vsi_update_l2tsel - update l2tsel field for all Rx rings on this VSI
* @vsi: VSI used to update l2tsel on
* @l2tsel: l2tsel setting requested
*
* Use the l2tsel setting to update all of the Rx queue context bits for l2tsel.
* This will modify which descriptor field the first offloaded VLAN will be
* stripped into.
*/
static void ice_vsi_update_l2tsel(struct ice_vsi *vsi, enum ice_l2tsel l2tsel)
{
struct ice_hw *hw = &vsi->back->hw;
u32 l2tsel_bit;
int i;
if (l2tsel == ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND)
l2tsel_bit = 0;
else
l2tsel_bit = BIT(ICE_L2TSEL_BIT_OFFSET);
for (i = 0; i < vsi->alloc_rxq; i++) {
u16 pfq = vsi->rxq_map[i];
u32 qrx_context_offset;
u32 regval;
qrx_context_offset =
QRX_CONTEXT(ICE_L2TSEL_QRX_CONTEXT_REG_IDX, pfq);
regval = rd32(hw, qrx_context_offset);
regval &= ~BIT(ICE_L2TSEL_BIT_OFFSET);
regval |= l2tsel_bit;
wr32(hw, qrx_context_offset, regval);
}
}
/**
* ice_vc_ena_vlan_stripping_v2_msg
* @vf: VF the message was received from
* @msg: message received from the VF
*
* virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2
*/
static int ice_vc_ena_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_supported_caps *stripping_support;
struct virtchnl_vlan_setting *strip_msg =
(struct virtchnl_vlan_setting *)msg;
u32 ethertype_setting;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = strip_msg->outer_ethertype_setting;
if (ethertype_setting) {
if (ice_vc_ena_vlan_offload(vsi,
vsi->outer_vlan_ops.ena_stripping,
ethertype_setting)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
} else {
enum ice_l2tsel l2tsel =
ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG2_2ND;
/* PF tells the VF that the outer VLAN tag is always
* extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
* inner is always extracted to
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
* support outer stripping so the first tag always ends
* up in L2TAG2_2ND and the second/inner tag, if
* enabled, is extracted in L2TAG1.
*/
ice_vsi_update_l2tsel(vsi, l2tsel);
}
}
ethertype_setting = strip_msg->inner_ethertype_setting;
if (ethertype_setting &&
ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_stripping,
ethertype_setting)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2,
v_ret, NULL, 0);
}
/**
* ice_vc_dis_vlan_stripping_v2_msg
* @vf: VF the message was received from
* @msg: message received from the VF
*
* virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2
*/
static int ice_vc_dis_vlan_stripping_v2_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_supported_caps *stripping_support;
struct virtchnl_vlan_setting *strip_msg =
(struct virtchnl_vlan_setting *)msg;
u32 ethertype_setting;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, strip_msg->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
stripping_support = &vf->vlan_v2_caps.offloads.stripping_support;
if (!ice_vc_valid_vlan_setting_msg(stripping_support, strip_msg)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = strip_msg->outer_ethertype_setting;
if (ethertype_setting) {
if (vsi->outer_vlan_ops.dis_stripping(vsi)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
} else {
enum ice_l2tsel l2tsel =
ICE_L2TSEL_EXTRACT_FIRST_TAG_L2TAG1;
/* PF tells the VF that the outer VLAN tag is always
* extracted to VIRTCHNL_VLAN_TAG_LOCATION_L2TAG2_2 and
* inner is always extracted to
* VIRTCHNL_VLAN_TAG_LOCATION_L2TAG1. This is needed to
* support inner stripping while outer stripping is
* disabled so that the first and only tag is extracted
* in L2TAG1.
*/
ice_vsi_update_l2tsel(vsi, l2tsel);
}
}
ethertype_setting = strip_msg->inner_ethertype_setting;
if (ethertype_setting && vsi->inner_vlan_ops.dis_stripping(vsi)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2,
v_ret, NULL, 0);
}
/**
* ice_vc_ena_vlan_insertion_v2_msg
* @vf: VF the message was received from
* @msg: message received from the VF
*
* virthcnl handler for VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2
*/
static int ice_vc_ena_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_supported_caps *insertion_support;
struct virtchnl_vlan_setting *insertion_msg =
(struct virtchnl_vlan_setting *)msg;
u32 ethertype_setting;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = insertion_msg->outer_ethertype_setting;
if (ethertype_setting &&
ice_vc_ena_vlan_offload(vsi, vsi->outer_vlan_ops.ena_insertion,
ethertype_setting)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = insertion_msg->inner_ethertype_setting;
if (ethertype_setting &&
ice_vc_ena_vlan_offload(vsi, vsi->inner_vlan_ops.ena_insertion,
ethertype_setting)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2,
v_ret, NULL, 0);
}
/**
* ice_vc_dis_vlan_insertion_v2_msg
* @vf: VF the message was received from
* @msg: message received from the VF
*
* virthcnl handler for VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2
*/
static int ice_vc_dis_vlan_insertion_v2_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_supported_caps *insertion_support;
struct virtchnl_vlan_setting *insertion_msg =
(struct virtchnl_vlan_setting *)msg;
u32 ethertype_setting;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
if (!ice_vc_isvalid_vsi_id(vf, insertion_msg->vport_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
insertion_support = &vf->vlan_v2_caps.offloads.insertion_support;
if (!ice_vc_valid_vlan_setting_msg(insertion_support, insertion_msg)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = insertion_msg->outer_ethertype_setting;
if (ethertype_setting && vsi->outer_vlan_ops.dis_insertion(vsi)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
ethertype_setting = insertion_msg->inner_ethertype_setting;
if (ethertype_setting && vsi->inner_vlan_ops.dis_insertion(vsi)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto out;
}
out:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2,
v_ret, NULL, 0);
}
static const struct ice_virtchnl_ops ice_virtchnl_dflt_ops = {
.get_ver_msg = ice_vc_get_ver_msg,
.get_vf_res_msg = ice_vc_get_vf_res_msg,
.reset_vf = ice_vc_reset_vf_msg,
.add_mac_addr_msg = ice_vc_add_mac_addr_msg,
.del_mac_addr_msg = ice_vc_del_mac_addr_msg,
.cfg_qs_msg = ice_vc_cfg_qs_msg,
.ena_qs_msg = ice_vc_ena_qs_msg,
.dis_qs_msg = ice_vc_dis_qs_msg,
.request_qs_msg = ice_vc_request_qs_msg,
.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
.config_rss_key = ice_vc_config_rss_key,
.config_rss_lut = ice_vc_config_rss_lut,
.get_stats_msg = ice_vc_get_stats_msg,
.cfg_promiscuous_mode_msg = ice_vc_cfg_promiscuous_mode_msg,
.add_vlan_msg = ice_vc_add_vlan_msg,
.remove_vlan_msg = ice_vc_remove_vlan_msg,
.query_rxdid = ice_vc_query_rxdid,
.get_rss_hena = ice_vc_get_rss_hena,
.set_rss_hena_msg = ice_vc_set_rss_hena,
.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
};
/**
* ice_virtchnl_set_dflt_ops - Switch to default virtchnl ops
* @vf: the VF to switch ops
*/
void ice_virtchnl_set_dflt_ops(struct ice_vf *vf)
{
vf->virtchnl_ops = &ice_virtchnl_dflt_ops;
}
/**
* ice_vc_repr_add_mac
* @vf: pointer to VF
* @msg: virtchannel message
*
* When port representors are created, we do not add MAC rule
* to firmware, we store it so that PF could report same
* MAC as VF.
*/
static int ice_vc_repr_add_mac(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_ether_addr_list *al =
(struct virtchnl_ether_addr_list *)msg;
struct ice_vsi *vsi;
struct ice_pf *pf;
int i;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
!ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
pf = vf->pf;
vsi = ice_get_vf_vsi(vf);
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
for (i = 0; i < al->num_elements; i++) {
u8 *mac_addr = al->list[i].addr;
int result;
if (!is_unicast_ether_addr(mac_addr) ||
ether_addr_equal(mac_addr, vf->hw_lan_addr))
continue;
if (vf->pf_set_mac) {
dev_err(ice_pf_to_dev(pf), "VF attempting to override administratively set MAC address\n");
v_ret = VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
goto handle_mac_exit;
}
result = ice_eswitch_add_vf_mac_rule(pf, vf, mac_addr);
if (result) {
dev_err(ice_pf_to_dev(pf), "Failed to add MAC %pM for VF %d\n, error %d\n",
mac_addr, vf->vf_id, result);
goto handle_mac_exit;
}
ice_vfhw_mac_add(vf, &al->list[i]);
vf->num_mac++;
break;
}
handle_mac_exit:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_ETH_ADDR,
v_ret, NULL, 0);
}
/**
* ice_vc_repr_del_mac - response with success for deleting MAC
* @vf: pointer to VF
* @msg: virtchannel message
*
* Respond with success to not break normal VF flow.
* For legacy VF driver try to update cached MAC address.
*/
static int
ice_vc_repr_del_mac(struct ice_vf __always_unused *vf, u8 __always_unused *msg)
{
struct virtchnl_ether_addr_list *al =
(struct virtchnl_ether_addr_list *)msg;
ice_update_legacy_cached_mac(vf, &al->list[0]);
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_ETH_ADDR,
VIRTCHNL_STATUS_SUCCESS, NULL, 0);
}
static int
ice_vc_repr_cfg_promiscuous_mode(struct ice_vf *vf, u8 __always_unused *msg)
{
dev_dbg(ice_pf_to_dev(vf->pf),
"Can't config promiscuous mode in switchdev mode for VF %d\n",
vf->vf_id);
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
NULL, 0);
}
static const struct ice_virtchnl_ops ice_virtchnl_repr_ops = {
.get_ver_msg = ice_vc_get_ver_msg,
.get_vf_res_msg = ice_vc_get_vf_res_msg,
.reset_vf = ice_vc_reset_vf_msg,
.add_mac_addr_msg = ice_vc_repr_add_mac,
.del_mac_addr_msg = ice_vc_repr_del_mac,
.cfg_qs_msg = ice_vc_cfg_qs_msg,
.ena_qs_msg = ice_vc_ena_qs_msg,
.dis_qs_msg = ice_vc_dis_qs_msg,
.request_qs_msg = ice_vc_request_qs_msg,
.cfg_irq_map_msg = ice_vc_cfg_irq_map_msg,
.config_rss_key = ice_vc_config_rss_key,
.config_rss_lut = ice_vc_config_rss_lut,
.get_stats_msg = ice_vc_get_stats_msg,
.cfg_promiscuous_mode_msg = ice_vc_repr_cfg_promiscuous_mode,
.add_vlan_msg = ice_vc_add_vlan_msg,
.remove_vlan_msg = ice_vc_remove_vlan_msg,
.query_rxdid = ice_vc_query_rxdid,
.get_rss_hena = ice_vc_get_rss_hena,
.set_rss_hena_msg = ice_vc_set_rss_hena,
.ena_vlan_stripping = ice_vc_ena_vlan_stripping,
.dis_vlan_stripping = ice_vc_dis_vlan_stripping,
.handle_rss_cfg_msg = ice_vc_handle_rss_cfg,
.add_fdir_fltr_msg = ice_vc_add_fdir_fltr,
.del_fdir_fltr_msg = ice_vc_del_fdir_fltr,
.get_offload_vlan_v2_caps = ice_vc_get_offload_vlan_v2_caps,
.add_vlan_v2_msg = ice_vc_add_vlan_v2_msg,
.remove_vlan_v2_msg = ice_vc_remove_vlan_v2_msg,
.ena_vlan_stripping_v2_msg = ice_vc_ena_vlan_stripping_v2_msg,
.dis_vlan_stripping_v2_msg = ice_vc_dis_vlan_stripping_v2_msg,
.ena_vlan_insertion_v2_msg = ice_vc_ena_vlan_insertion_v2_msg,
.dis_vlan_insertion_v2_msg = ice_vc_dis_vlan_insertion_v2_msg,
};
/**
* ice_virtchnl_set_repr_ops - Switch to representor virtchnl ops
* @vf: the VF to switch ops
*/
void ice_virtchnl_set_repr_ops(struct ice_vf *vf)
{
vf->virtchnl_ops = &ice_virtchnl_repr_ops;
}
/**
* ice_vc_process_vf_msg - Process request from VF
* @pf: pointer to the PF structure
* @event: pointer to the AQ event
*
* called from the common asq/arq handler to
* process request from VF
*/
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
{
u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
s16 vf_id = le16_to_cpu(event->desc.retval);
const struct ice_virtchnl_ops *ops;
u16 msglen = event->msg_len;
u8 *msg = event->msg_buf;
struct ice_vf *vf = NULL;
struct device *dev;
int err = 0;
dev = ice_pf_to_dev(pf);
vf = ice_get_vf_by_id(pf, vf_id);
if (!vf) {
dev_err(dev, "Unable to locate VF for message from VF ID %d, opcode %d, len %d\n",
vf_id, v_opcode, msglen);
return;
}
mutex_lock(&vf->cfg_lock);
/* Check if VF is disabled. */
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
err = -EPERM;
goto error_handler;
}
ops = vf->virtchnl_ops;
/* Perform basic checks on the msg */
err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
if (err) {
if (err == VIRTCHNL_STATUS_ERR_PARAM)
err = -EPERM;
else
err = -EINVAL;
}
error_handler:
if (err) {
ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
NULL, 0);
dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
vf_id, v_opcode, msglen, err);
goto finish;
}
if (!ice_vc_is_opcode_allowed(vf, v_opcode)) {
ice_vc_send_msg_to_vf(vf, v_opcode,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, NULL,
0);
goto finish;
}
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
err = ops->get_ver_msg(vf, msg);
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
err = ops->get_vf_res_msg(vf, msg);
if (ice_vf_init_vlan_stripping(vf))
dev_dbg(dev, "Failed to initialize VLAN stripping for VF %d\n",
vf->vf_id);
ice_vc_notify_vf_link_state(vf);
break;
case VIRTCHNL_OP_RESET_VF:
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
ops->reset_vf(vf);
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
err = ops->add_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_ETH_ADDR:
err = ops->del_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
err = ops->cfg_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
err = ops->ena_qs_msg(vf, msg);
ice_vc_notify_vf_link_state(vf);
break;
case VIRTCHNL_OP_DISABLE_QUEUES:
err = ops->dis_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
err = ops->request_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
err = ops->cfg_irq_map_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
err = ops->config_rss_key(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
err = ops->config_rss_lut(vf, msg);
break;
case VIRTCHNL_OP_GET_STATS:
err = ops->get_stats_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
err = ops->cfg_promiscuous_mode_msg(vf, msg);
break;
case VIRTCHNL_OP_ADD_VLAN:
err = ops->add_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_VLAN:
err = ops->remove_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_GET_SUPPORTED_RXDIDS:
err = ops->query_rxdid(vf);
break;
case VIRTCHNL_OP_GET_RSS_HENA_CAPS:
err = ops->get_rss_hena(vf);
break;
case VIRTCHNL_OP_SET_RSS_HENA:
err = ops->set_rss_hena_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
err = ops->ena_vlan_stripping(vf);
break;
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
err = ops->dis_vlan_stripping(vf);
break;
case VIRTCHNL_OP_ADD_FDIR_FILTER:
err = ops->add_fdir_fltr_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_FDIR_FILTER:
err = ops->del_fdir_fltr_msg(vf, msg);
break;
case VIRTCHNL_OP_ADD_RSS_CFG:
err = ops->handle_rss_cfg_msg(vf, msg, true);
break;
case VIRTCHNL_OP_DEL_RSS_CFG:
err = ops->handle_rss_cfg_msg(vf, msg, false);
break;
case VIRTCHNL_OP_GET_OFFLOAD_VLAN_V2_CAPS:
err = ops->get_offload_vlan_v2_caps(vf);
break;
case VIRTCHNL_OP_ADD_VLAN_V2:
err = ops->add_vlan_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_VLAN_V2:
err = ops->remove_vlan_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING_V2:
err = ops->ena_vlan_stripping_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING_V2:
err = ops->dis_vlan_stripping_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_VLAN_INSERTION_V2:
err = ops->ena_vlan_insertion_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_DISABLE_VLAN_INSERTION_V2:
err = ops->dis_vlan_insertion_v2_msg(vf, msg);
break;
case VIRTCHNL_OP_UNKNOWN:
default:
dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
vf_id);
err = ice_vc_send_msg_to_vf(vf, v_opcode,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
NULL, 0);
break;
}
if (err) {
/* Helper function cares less about error return values here
* as it is busy with pending work.
*/
dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
vf_id, v_opcode, err);
}
finish:
mutex_unlock(&vf->cfg_lock);
ice_put_vf(vf);
}