linux-zen-desktop/drivers/net/ethernet/tehuti/tehuti.c

2458 lines
66 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Tehuti Networks(R) Network Driver
* ethtool interface implementation
* Copyright (C) 2007 Tehuti Networks Ltd. All rights reserved
*/
/*
* RX HW/SW interaction overview
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There are 2 types of RX communication channels between driver and NIC.
* 1) RX Free Fifo - RXF - holds descriptors of empty buffers to accept incoming
* traffic. This Fifo is filled by SW and is readen by HW. Each descriptor holds
* info about buffer's location, size and ID. An ID field is used to identify a
* buffer when it's returned with data via RXD Fifo (see below)
* 2) RX Data Fifo - RXD - holds descriptors of full buffers. This Fifo is
* filled by HW and is readen by SW. Each descriptor holds status and ID.
* HW pops descriptor from RXF Fifo, stores ID, fills buffer with incoming data,
* via dma moves it into host memory, builds new RXD descriptor with same ID,
* pushes it into RXD Fifo and raises interrupt to indicate new RX data.
*
* Current NIC configuration (registers + firmware) makes NIC use 2 RXF Fifos.
* One holds 1.5K packets and another - 26K packets. Depending on incoming
* packet size, HW desides on a RXF Fifo to pop buffer from. When packet is
* filled with data, HW builds new RXD descriptor for it and push it into single
* RXD Fifo.
*
* RX SW Data Structures
* ~~~~~~~~~~~~~~~~~~~~~
* skb db - used to keep track of all skbs owned by SW and their dma addresses.
* For RX case, ownership lasts from allocating new empty skb for RXF until
* accepting full skb from RXD and passing it to OS. Each RXF Fifo has its own
* skb db. Implemented as array with bitmask.
* fifo - keeps info about fifo's size and location, relevant HW registers,
* usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
* Implemented as simple struct.
*
* RX SW Execution Flow
* ~~~~~~~~~~~~~~~~~~~~
* Upon initialization (ifconfig up) driver creates RX fifos and initializes
* relevant registers. At the end of init phase, driver enables interrupts.
* NIC sees that there is no RXF buffers and raises
* RD_INTR interrupt, isr fills skbs and Rx begins.
* Driver has two receive operation modes:
* NAPI - interrupt-driven mixed with polling
* interrupt-driven only
*
* Interrupt-driven only flow is following. When buffer is ready, HW raises
* interrupt and isr is called. isr collects all available packets
* (bdx_rx_receive), refills skbs (bdx_rx_alloc_skbs) and exit.
* Rx buffer allocation note
* ~~~~~~~~~~~~~~~~~~~~~~~~~
* Driver cares to feed such amount of RxF descriptors that respective amount of
* RxD descriptors can not fill entire RxD fifo. The main reason is lack of
* overflow check in Bordeaux for RxD fifo free/used size.
* FIXME: this is NOT fully implemented, more work should be done
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include "tehuti.h"
static const struct pci_device_id bdx_pci_tbl[] = {
{ PCI_VDEVICE(TEHUTI, 0x3009), },
{ PCI_VDEVICE(TEHUTI, 0x3010), },
{ PCI_VDEVICE(TEHUTI, 0x3014), },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, bdx_pci_tbl);
/* Definitions needed by ISR or NAPI functions */
static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f);
static void bdx_tx_cleanup(struct bdx_priv *priv);
static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget);
/* Definitions needed by FW loading */
static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size);
/* Definitions needed by hw_start */
static int bdx_tx_init(struct bdx_priv *priv);
static int bdx_rx_init(struct bdx_priv *priv);
/* Definitions needed by bdx_close */
static void bdx_rx_free(struct bdx_priv *priv);
static void bdx_tx_free(struct bdx_priv *priv);
/* Definitions needed by bdx_probe */
static void bdx_set_ethtool_ops(struct net_device *netdev);
/*************************************************************************
* Print Info *
*************************************************************************/
static void print_hw_id(struct pci_dev *pdev)
{
struct pci_nic *nic = pci_get_drvdata(pdev);
u16 pci_link_status = 0;
u16 pci_ctrl = 0;
pci_read_config_word(pdev, PCI_LINK_STATUS_REG, &pci_link_status);
pci_read_config_word(pdev, PCI_DEV_CTRL_REG, &pci_ctrl);
pr_info("%s%s\n", BDX_NIC_NAME,
nic->port_num == 1 ? "" : ", 2-Port");
pr_info("srom 0x%x fpga %d build %u lane# %d max_pl 0x%x mrrs 0x%x\n",
readl(nic->regs + SROM_VER), readl(nic->regs + FPGA_VER) & 0xFFF,
readl(nic->regs + FPGA_SEED),
GET_LINK_STATUS_LANES(pci_link_status),
GET_DEV_CTRL_MAXPL(pci_ctrl), GET_DEV_CTRL_MRRS(pci_ctrl));
}
static void print_fw_id(struct pci_nic *nic)
{
pr_info("fw 0x%x\n", readl(nic->regs + FW_VER));
}
static void print_eth_id(struct net_device *ndev)
{
netdev_info(ndev, "%s, Port %c\n",
BDX_NIC_NAME, (ndev->if_port == 0) ? 'A' : 'B');
}
/*************************************************************************
* Code *
*************************************************************************/
#define bdx_enable_interrupts(priv) \
do { WRITE_REG(priv, regIMR, IR_RUN); } while (0)
#define bdx_disable_interrupts(priv) \
do { WRITE_REG(priv, regIMR, 0); } while (0)
/**
* bdx_fifo_init - create TX/RX descriptor fifo for host-NIC communication.
* @priv: NIC private structure
* @f: fifo to initialize
* @fsz_type: fifo size type: 0-4KB, 1-8KB, 2-16KB, 3-32KB
* @reg_CFG0: offsets of registers relative to base address
* @reg_CFG1: offsets of registers relative to base address
* @reg_RPTR: offsets of registers relative to base address
* @reg_WPTR: offsets of registers relative to base address
*
* 1K extra space is allocated at the end of the fifo to simplify
* processing of descriptors that wraps around fifo's end
*
* Returns 0 on success, negative value on failure
*
*/
static int
bdx_fifo_init(struct bdx_priv *priv, struct fifo *f, int fsz_type,
u16 reg_CFG0, u16 reg_CFG1, u16 reg_RPTR, u16 reg_WPTR)
{
u16 memsz = FIFO_SIZE * (1 << fsz_type);
memset(f, 0, sizeof(struct fifo));
/* dma_alloc_coherent gives us 4k-aligned memory */
f->va = dma_alloc_coherent(&priv->pdev->dev, memsz + FIFO_EXTRA_SPACE,
&f->da, GFP_ATOMIC);
if (!f->va) {
pr_err("dma_alloc_coherent failed\n");
RET(-ENOMEM);
}
f->reg_CFG0 = reg_CFG0;
f->reg_CFG1 = reg_CFG1;
f->reg_RPTR = reg_RPTR;
f->reg_WPTR = reg_WPTR;
f->rptr = 0;
f->wptr = 0;
f->memsz = memsz;
f->size_mask = memsz - 1;
WRITE_REG(priv, reg_CFG0, (u32) ((f->da & TX_RX_CFG0_BASE) | fsz_type));
WRITE_REG(priv, reg_CFG1, H32_64(f->da));
RET(0);
}
/**
* bdx_fifo_free - free all resources used by fifo
* @priv: NIC private structure
* @f: fifo to release
*/
static void bdx_fifo_free(struct bdx_priv *priv, struct fifo *f)
{
ENTER;
if (f->va) {
dma_free_coherent(&priv->pdev->dev,
f->memsz + FIFO_EXTRA_SPACE, f->va, f->da);
f->va = NULL;
}
RET();
}
/**
* bdx_link_changed - notifies OS about hw link state.
* @priv: hw adapter structure
*/
static void bdx_link_changed(struct bdx_priv *priv)
{
u32 link = READ_REG(priv, regMAC_LNK_STAT) & MAC_LINK_STAT;
if (!link) {
if (netif_carrier_ok(priv->ndev)) {
netif_stop_queue(priv->ndev);
netif_carrier_off(priv->ndev);
netdev_err(priv->ndev, "Link Down\n");
}
} else {
if (!netif_carrier_ok(priv->ndev)) {
netif_wake_queue(priv->ndev);
netif_carrier_on(priv->ndev);
netdev_err(priv->ndev, "Link Up\n");
}
}
}
static void bdx_isr_extra(struct bdx_priv *priv, u32 isr)
{
if (isr & IR_RX_FREE_0) {
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
DBG("RX_FREE_0\n");
}
if (isr & IR_LNKCHG0)
bdx_link_changed(priv);
if (isr & IR_PCIE_LINK)
netdev_err(priv->ndev, "PCI-E Link Fault\n");
if (isr & IR_PCIE_TOUT)
netdev_err(priv->ndev, "PCI-E Time Out\n");
}
/**
* bdx_isr_napi - Interrupt Service Routine for Bordeaux NIC
* @irq: interrupt number
* @dev: network device
*
* Return IRQ_NONE if it was not our interrupt, IRQ_HANDLED - otherwise
*
* It reads ISR register to know interrupt reasons, and proceed them one by one.
* Reasons of interest are:
* RX_DESC - new packet has arrived and RXD fifo holds its descriptor
* RX_FREE - number of free Rx buffers in RXF fifo gets low
* TX_FREE - packet was transmited and RXF fifo holds its descriptor
*/
static irqreturn_t bdx_isr_napi(int irq, void *dev)
{
struct net_device *ndev = dev;
struct bdx_priv *priv = netdev_priv(ndev);
u32 isr;
ENTER;
isr = (READ_REG(priv, regISR) & IR_RUN);
if (unlikely(!isr)) {
bdx_enable_interrupts(priv);
return IRQ_NONE; /* Not our interrupt */
}
if (isr & IR_EXTRA)
bdx_isr_extra(priv, isr);
if (isr & (IR_RX_DESC_0 | IR_TX_FREE_0)) {
if (likely(napi_schedule_prep(&priv->napi))) {
__napi_schedule(&priv->napi);
RET(IRQ_HANDLED);
} else {
/* NOTE: we get here if intr has slipped into window
* between these lines in bdx_poll:
* bdx_enable_interrupts(priv);
* return 0;
* currently intrs are disabled (since we read ISR),
* and we have failed to register next poll.
* so we read the regs to trigger chip
* and allow further interupts. */
READ_REG(priv, regTXF_WPTR_0);
READ_REG(priv, regRXD_WPTR_0);
}
}
bdx_enable_interrupts(priv);
RET(IRQ_HANDLED);
}
static int bdx_poll(struct napi_struct *napi, int budget)
{
struct bdx_priv *priv = container_of(napi, struct bdx_priv, napi);
int work_done;
ENTER;
bdx_tx_cleanup(priv);
work_done = bdx_rx_receive(priv, &priv->rxd_fifo0, budget);
if ((work_done < budget) ||
(priv->napi_stop++ >= 30)) {
DBG("rx poll is done. backing to isr-driven\n");
/* from time to time we exit to let NAPI layer release
* device lock and allow waiting tasks (eg rmmod) to advance) */
priv->napi_stop = 0;
napi_complete_done(napi, work_done);
bdx_enable_interrupts(priv);
}
return work_done;
}
/**
* bdx_fw_load - loads firmware to NIC
* @priv: NIC private structure
*
* Firmware is loaded via TXD fifo, so it must be initialized first.
* Firware must be loaded once per NIC not per PCI device provided by NIC (NIC
* can have few of them). So all drivers use semaphore register to choose one
* that will actually load FW to NIC.
*/
static int bdx_fw_load(struct bdx_priv *priv)
{
const struct firmware *fw = NULL;
int master, i;
int rc;
ENTER;
master = READ_REG(priv, regINIT_SEMAPHORE);
if (!READ_REG(priv, regINIT_STATUS) && master) {
rc = request_firmware(&fw, "tehuti/bdx.bin", &priv->pdev->dev);
if (rc)
goto out;
bdx_tx_push_desc_safe(priv, (char *)fw->data, fw->size);
mdelay(100);
}
for (i = 0; i < 200; i++) {
if (READ_REG(priv, regINIT_STATUS)) {
rc = 0;
goto out;
}
mdelay(2);
}
rc = -EIO;
out:
if (master)
WRITE_REG(priv, regINIT_SEMAPHORE, 1);
release_firmware(fw);
if (rc) {
netdev_err(priv->ndev, "firmware loading failed\n");
if (rc == -EIO)
DBG("VPC = 0x%x VIC = 0x%x INIT_STATUS = 0x%x i=%d\n",
READ_REG(priv, regVPC),
READ_REG(priv, regVIC),
READ_REG(priv, regINIT_STATUS), i);
RET(rc);
} else {
DBG("%s: firmware loading success\n", priv->ndev->name);
RET(0);
}
}
static void bdx_restore_mac(struct net_device *ndev, struct bdx_priv *priv)
{
u32 val;
ENTER;
DBG("mac0=%x mac1=%x mac2=%x\n",
READ_REG(priv, regUNC_MAC0_A),
READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
val = (ndev->dev_addr[0] << 8) | (ndev->dev_addr[1]);
WRITE_REG(priv, regUNC_MAC2_A, val);
val = (ndev->dev_addr[2] << 8) | (ndev->dev_addr[3]);
WRITE_REG(priv, regUNC_MAC1_A, val);
val = (ndev->dev_addr[4] << 8) | (ndev->dev_addr[5]);
WRITE_REG(priv, regUNC_MAC0_A, val);
DBG("mac0=%x mac1=%x mac2=%x\n",
READ_REG(priv, regUNC_MAC0_A),
READ_REG(priv, regUNC_MAC1_A), READ_REG(priv, regUNC_MAC2_A));
RET();
}
/**
* bdx_hw_start - inits registers and starts HW's Rx and Tx engines
* @priv: NIC private structure
*/
static int bdx_hw_start(struct bdx_priv *priv)
{
int rc = -EIO;
struct net_device *ndev = priv->ndev;
ENTER;
bdx_link_changed(priv);
/* 10G overall max length (vlan, eth&ip header, ip payload, crc) */
WRITE_REG(priv, regFRM_LENGTH, 0X3FE0);
WRITE_REG(priv, regPAUSE_QUANT, 0x96);
WRITE_REG(priv, regRX_FIFO_SECTION, 0x800010);
WRITE_REG(priv, regTX_FIFO_SECTION, 0xE00010);
WRITE_REG(priv, regRX_FULLNESS, 0);
WRITE_REG(priv, regTX_FULLNESS, 0);
WRITE_REG(priv, regCTRLST,
regCTRLST_BASE | regCTRLST_RX_ENA | regCTRLST_TX_ENA);
WRITE_REG(priv, regVGLB, 0);
WRITE_REG(priv, regMAX_FRAME_A,
priv->rxf_fifo0.m.pktsz & MAX_FRAME_AB_VAL);
DBG("RDINTCM=%08x\n", priv->rdintcm); /*NOTE: test script uses this */
WRITE_REG(priv, regRDINTCM0, priv->rdintcm);
WRITE_REG(priv, regRDINTCM2, 0); /*cpu_to_le32(rcm.val)); */
DBG("TDINTCM=%08x\n", priv->tdintcm); /*NOTE: test script uses this */
WRITE_REG(priv, regTDINTCM0, priv->tdintcm); /* old val = 0x300064 */
/* Enable timer interrupt once in 2 secs. */
/*WRITE_REG(priv, regGTMR0, ((GTMR_SEC * 2) & GTMR_DATA)); */
bdx_restore_mac(priv->ndev, priv);
WRITE_REG(priv, regGMAC_RXF_A, GMAC_RX_FILTER_OSEN |
GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB);
#define BDX_IRQ_TYPE ((priv->nic->irq_type == IRQ_MSI) ? 0 : IRQF_SHARED)
rc = request_irq(priv->pdev->irq, bdx_isr_napi, BDX_IRQ_TYPE,
ndev->name, ndev);
if (rc)
goto err_irq;
bdx_enable_interrupts(priv);
RET(0);
err_irq:
RET(rc);
}
static void bdx_hw_stop(struct bdx_priv *priv)
{
ENTER;
bdx_disable_interrupts(priv);
free_irq(priv->pdev->irq, priv->ndev);
netif_carrier_off(priv->ndev);
netif_stop_queue(priv->ndev);
RET();
}
static int bdx_hw_reset_direct(void __iomem *regs)
{
u32 val, i;
ENTER;
/* reset sequences: read, write 1, read, write 0 */
val = readl(regs + regCLKPLL);
writel((val | CLKPLL_SFTRST) + 0x8, regs + regCLKPLL);
udelay(50);
val = readl(regs + regCLKPLL);
writel(val & ~CLKPLL_SFTRST, regs + regCLKPLL);
/* check that the PLLs are locked and reset ended */
for (i = 0; i < 70; i++, mdelay(10))
if ((readl(regs + regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
/* do any PCI-E read transaction */
readl(regs + regRXD_CFG0_0);
return 0;
}
pr_err("HW reset failed\n");
return 1; /* failure */
}
static int bdx_hw_reset(struct bdx_priv *priv)
{
u32 val, i;
ENTER;
if (priv->port == 0) {
/* reset sequences: read, write 1, read, write 0 */
val = READ_REG(priv, regCLKPLL);
WRITE_REG(priv, regCLKPLL, (val | CLKPLL_SFTRST) + 0x8);
udelay(50);
val = READ_REG(priv, regCLKPLL);
WRITE_REG(priv, regCLKPLL, val & ~CLKPLL_SFTRST);
}
/* check that the PLLs are locked and reset ended */
for (i = 0; i < 70; i++, mdelay(10))
if ((READ_REG(priv, regCLKPLL) & CLKPLL_LKD) == CLKPLL_LKD) {
/* do any PCI-E read transaction */
READ_REG(priv, regRXD_CFG0_0);
return 0;
}
pr_err("HW reset failed\n");
return 1; /* failure */
}
static int bdx_sw_reset(struct bdx_priv *priv)
{
int i;
ENTER;
/* 1. load MAC (obsolete) */
/* 2. disable Rx (and Tx) */
WRITE_REG(priv, regGMAC_RXF_A, 0);
mdelay(100);
/* 3. disable port */
WRITE_REG(priv, regDIS_PORT, 1);
/* 4. disable queue */
WRITE_REG(priv, regDIS_QU, 1);
/* 5. wait until hw is disabled */
for (i = 0; i < 50; i++) {
if (READ_REG(priv, regRST_PORT) & 1)
break;
mdelay(10);
}
if (i == 50)
netdev_err(priv->ndev, "SW reset timeout. continuing anyway\n");
/* 6. disable intrs */
WRITE_REG(priv, regRDINTCM0, 0);
WRITE_REG(priv, regTDINTCM0, 0);
WRITE_REG(priv, regIMR, 0);
READ_REG(priv, regISR);
/* 7. reset queue */
WRITE_REG(priv, regRST_QU, 1);
/* 8. reset port */
WRITE_REG(priv, regRST_PORT, 1);
/* 9. zero all read and write pointers */
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
WRITE_REG(priv, i, 0);
/* 10. unseet port disable */
WRITE_REG(priv, regDIS_PORT, 0);
/* 11. unset queue disable */
WRITE_REG(priv, regDIS_QU, 0);
/* 12. unset queue reset */
WRITE_REG(priv, regRST_QU, 0);
/* 13. unset port reset */
WRITE_REG(priv, regRST_PORT, 0);
/* 14. enable Rx */
/* skiped. will be done later */
/* 15. save MAC (obsolete) */
for (i = regTXD_WPTR_0; i <= regTXF_RPTR_3; i += 0x10)
DBG("%x = %x\n", i, READ_REG(priv, i) & TXF_WPTR_WR_PTR);
RET(0);
}
/* bdx_reset - performs right type of reset depending on hw type */
static int bdx_reset(struct bdx_priv *priv)
{
ENTER;
RET((priv->pdev->device == 0x3009)
? bdx_hw_reset(priv)
: bdx_sw_reset(priv));
}
/**
* bdx_close - Disables a network interface
* @ndev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
static int bdx_close(struct net_device *ndev)
{
struct bdx_priv *priv = NULL;
ENTER;
priv = netdev_priv(ndev);
napi_disable(&priv->napi);
bdx_reset(priv);
bdx_hw_stop(priv);
bdx_rx_free(priv);
bdx_tx_free(priv);
RET(0);
}
/**
* bdx_open - Called when a network interface is made active
* @ndev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog timer is started,
* and the stack is notified that the interface is ready.
**/
static int bdx_open(struct net_device *ndev)
{
struct bdx_priv *priv;
int rc;
ENTER;
priv = netdev_priv(ndev);
bdx_reset(priv);
if (netif_running(ndev))
netif_stop_queue(priv->ndev);
if ((rc = bdx_tx_init(priv)) ||
(rc = bdx_rx_init(priv)) ||
(rc = bdx_fw_load(priv)))
goto err;
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
rc = bdx_hw_start(priv);
if (rc)
goto err;
napi_enable(&priv->napi);
print_fw_id(priv->nic);
RET(0);
err:
bdx_close(ndev);
RET(rc);
}
static int bdx_range_check(struct bdx_priv *priv, u32 offset)
{
return (offset > (u32) (BDX_REGS_SIZE / priv->nic->port_num)) ?
-EINVAL : 0;
}
static int bdx_siocdevprivate(struct net_device *ndev, struct ifreq *ifr,
void __user *udata, int cmd)
{
struct bdx_priv *priv = netdev_priv(ndev);
u32 data[3];
int error;
ENTER;
DBG("jiffies=%ld cmd=%d\n", jiffies, cmd);
if (cmd != SIOCDEVPRIVATE) {
error = copy_from_user(data, udata, sizeof(data));
if (error) {
pr_err("can't copy from user\n");
RET(-EFAULT);
}
DBG("%d 0x%x 0x%x\n", data[0], data[1], data[2]);
} else {
return -EOPNOTSUPP;
}
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
switch (data[0]) {
case BDX_OP_READ:
error = bdx_range_check(priv, data[1]);
if (error < 0)
return error;
data[2] = READ_REG(priv, data[1]);
DBG("read_reg(0x%x)=0x%x (dec %d)\n", data[1], data[2],
data[2]);
error = copy_to_user(udata, data, sizeof(data));
if (error)
RET(-EFAULT);
break;
case BDX_OP_WRITE:
error = bdx_range_check(priv, data[1]);
if (error < 0)
return error;
WRITE_REG(priv, data[1], data[2]);
DBG("write_reg(0x%x, 0x%x)\n", data[1], data[2]);
break;
default:
RET(-EOPNOTSUPP);
}
return 0;
}
/**
* __bdx_vlan_rx_vid - private helper for adding/killing VLAN vid
* @ndev: network device
* @vid: VLAN vid
* @enable: enable or disable vlan
*
* Passes VLAN filter table to hardware
*/
static void __bdx_vlan_rx_vid(struct net_device *ndev, uint16_t vid, int enable)
{
struct bdx_priv *priv = netdev_priv(ndev);
u32 reg, bit, val;
ENTER;
DBG2("vid=%d value=%d\n", (int)vid, enable);
if (unlikely(vid >= 4096)) {
pr_err("invalid VID: %u (> 4096)\n", vid);
RET();
}
reg = regVLAN_0 + (vid / 32) * 4;
bit = 1 << vid % 32;
val = READ_REG(priv, reg);
DBG2("reg=%x, val=%x, bit=%d\n", reg, val, bit);
if (enable)
val |= bit;
else
val &= ~bit;
DBG2("new val %x\n", val);
WRITE_REG(priv, reg, val);
RET();
}
/**
* bdx_vlan_rx_add_vid - kernel hook for adding VLAN vid to hw filtering table
* @ndev: network device
* @proto: unused
* @vid: VLAN vid to add
*/
static int bdx_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
__bdx_vlan_rx_vid(ndev, vid, 1);
return 0;
}
/**
* bdx_vlan_rx_kill_vid - kernel hook for killing VLAN vid in hw filtering table
* @ndev: network device
* @proto: unused
* @vid: VLAN vid to kill
*/
static int bdx_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
__bdx_vlan_rx_vid(ndev, vid, 0);
return 0;
}
/**
* bdx_change_mtu - Change the Maximum Transfer Unit
* @ndev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
*/
static int bdx_change_mtu(struct net_device *ndev, int new_mtu)
{
ENTER;
ndev->mtu = new_mtu;
if (netif_running(ndev)) {
bdx_close(ndev);
bdx_open(ndev);
}
RET(0);
}
static void bdx_setmulti(struct net_device *ndev)
{
struct bdx_priv *priv = netdev_priv(ndev);
u32 rxf_val =
GMAC_RX_FILTER_AM | GMAC_RX_FILTER_AB | GMAC_RX_FILTER_OSEN;
int i;
ENTER;
/* IMF - imperfect (hash) rx multicat filter */
/* PMF - perfect rx multicat filter */
/* FIXME: RXE(OFF) */
if (ndev->flags & IFF_PROMISC) {
rxf_val |= GMAC_RX_FILTER_PRM;
} else if (ndev->flags & IFF_ALLMULTI) {
/* set IMF to accept all multicast frmaes */
for (i = 0; i < MAC_MCST_HASH_NUM; i++)
WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, ~0);
} else if (!netdev_mc_empty(ndev)) {
u8 hash;
struct netdev_hw_addr *ha;
u32 reg, val;
/* set IMF to deny all multicast frames */
for (i = 0; i < MAC_MCST_HASH_NUM; i++)
WRITE_REG(priv, regRX_MCST_HASH0 + i * 4, 0);
/* set PMF to deny all multicast frames */
for (i = 0; i < MAC_MCST_NUM; i++) {
WRITE_REG(priv, regRX_MAC_MCST0 + i * 8, 0);
WRITE_REG(priv, regRX_MAC_MCST1 + i * 8, 0);
}
/* use PMF to accept first MAC_MCST_NUM (15) addresses */
/* TBD: sort addresses and write them in ascending order
* into RX_MAC_MCST regs. we skip this phase now and accept ALL
* multicast frames throu IMF */
/* accept the rest of addresses throu IMF */
netdev_for_each_mc_addr(ha, ndev) {
hash = 0;
for (i = 0; i < ETH_ALEN; i++)
hash ^= ha->addr[i];
reg = regRX_MCST_HASH0 + ((hash >> 5) << 2);
val = READ_REG(priv, reg);
val |= (1 << (hash % 32));
WRITE_REG(priv, reg, val);
}
} else {
DBG("only own mac %d\n", netdev_mc_count(ndev));
rxf_val |= GMAC_RX_FILTER_AB;
}
WRITE_REG(priv, regGMAC_RXF_A, rxf_val);
/* enable RX */
/* FIXME: RXE(ON) */
RET();
}
static int bdx_set_mac(struct net_device *ndev, void *p)
{
struct bdx_priv *priv = netdev_priv(ndev);
struct sockaddr *addr = p;
ENTER;
/*
if (netif_running(dev))
return -EBUSY
*/
eth_hw_addr_set(ndev, addr->sa_data);
bdx_restore_mac(ndev, priv);
RET(0);
}
static int bdx_read_mac(struct bdx_priv *priv)
{
u16 macAddress[3], i;
u8 addr[ETH_ALEN];
ENTER;
macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
macAddress[2] = READ_REG(priv, regUNC_MAC0_A);
macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
macAddress[1] = READ_REG(priv, regUNC_MAC1_A);
macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
macAddress[0] = READ_REG(priv, regUNC_MAC2_A);
for (i = 0; i < 3; i++) {
addr[i * 2 + 1] = macAddress[i];
addr[i * 2] = macAddress[i] >> 8;
}
eth_hw_addr_set(priv->ndev, addr);
RET(0);
}
static u64 bdx_read_l2stat(struct bdx_priv *priv, int reg)
{
u64 val;
val = READ_REG(priv, reg);
val |= ((u64) READ_REG(priv, reg + 8)) << 32;
return val;
}
/*Do the statistics-update work*/
static void bdx_update_stats(struct bdx_priv *priv)
{
struct bdx_stats *stats = &priv->hw_stats;
u64 *stats_vector = (u64 *) stats;
int i;
int addr;
/*Fill HW structure */
addr = 0x7200;
/*First 12 statistics - 0x7200 - 0x72B0 */
for (i = 0; i < 12; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x72C0);
/* 0x72C0-0x72E0 RSRV */
addr = 0x72F0;
for (; i < 16; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x7330);
/* 0x7330-0x7360 RSRV */
addr = 0x7370;
for (; i < 19; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x73A0);
/* 0x73A0-0x73B0 RSRV */
addr = 0x73C0;
for (; i < 23; i++) {
stats_vector[i] = bdx_read_l2stat(priv, addr);
addr += 0x10;
}
BDX_ASSERT(addr != 0x7400);
BDX_ASSERT((sizeof(struct bdx_stats) / sizeof(u64)) != i);
}
static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
u16 rxd_vlan);
static void print_rxfd(struct rxf_desc *rxfd);
/*************************************************************************
* Rx DB *
*************************************************************************/
static void bdx_rxdb_destroy(struct rxdb *db)
{
vfree(db);
}
static struct rxdb *bdx_rxdb_create(int nelem)
{
struct rxdb *db;
int i;
db = vmalloc(sizeof(struct rxdb)
+ (nelem * sizeof(int))
+ (nelem * sizeof(struct rx_map)));
if (likely(db != NULL)) {
db->stack = (int *)(db + 1);
db->elems = (void *)(db->stack + nelem);
db->nelem = nelem;
db->top = nelem;
for (i = 0; i < nelem; i++)
db->stack[i] = nelem - i - 1; /* to make first allocs
close to db struct*/
}
return db;
}
static inline int bdx_rxdb_alloc_elem(struct rxdb *db)
{
BDX_ASSERT(db->top <= 0);
return db->stack[--(db->top)];
}
static inline void *bdx_rxdb_addr_elem(struct rxdb *db, int n)
{
BDX_ASSERT((n < 0) || (n >= db->nelem));
return db->elems + n;
}
static inline int bdx_rxdb_available(struct rxdb *db)
{
return db->top;
}
static inline void bdx_rxdb_free_elem(struct rxdb *db, int n)
{
BDX_ASSERT((n >= db->nelem) || (n < 0));
db->stack[(db->top)++] = n;
}
/*************************************************************************
* Rx Init *
*************************************************************************/
/**
* bdx_rx_init - initialize RX all related HW and SW resources
* @priv: NIC private structure
*
* Returns 0 on success, negative value on failure
*
* It creates rxf and rxd fifos, update relevant HW registers, preallocate
* skb for rx. It assumes that Rx is desabled in HW
* funcs are grouped for better cache usage
*
* RxD fifo is smaller than RxF fifo by design. Upon high load, RxD will be
* filled and packets will be dropped by nic without getting into host or
* cousing interrupt. Anyway, in that condition, host has no chance to process
* all packets, but dropping in nic is cheaper, since it takes 0 cpu cycles
*/
/* TBD: ensure proper packet size */
static int bdx_rx_init(struct bdx_priv *priv)
{
ENTER;
if (bdx_fifo_init(priv, &priv->rxd_fifo0.m, priv->rxd_size,
regRXD_CFG0_0, regRXD_CFG1_0,
regRXD_RPTR_0, regRXD_WPTR_0))
goto err_mem;
if (bdx_fifo_init(priv, &priv->rxf_fifo0.m, priv->rxf_size,
regRXF_CFG0_0, regRXF_CFG1_0,
regRXF_RPTR_0, regRXF_WPTR_0))
goto err_mem;
priv->rxdb = bdx_rxdb_create(priv->rxf_fifo0.m.memsz /
sizeof(struct rxf_desc));
if (!priv->rxdb)
goto err_mem;
priv->rxf_fifo0.m.pktsz = priv->ndev->mtu + VLAN_ETH_HLEN;
return 0;
err_mem:
netdev_err(priv->ndev, "Rx init failed\n");
return -ENOMEM;
}
/**
* bdx_rx_free_skbs - frees and unmaps all skbs allocated for the fifo
* @priv: NIC private structure
* @f: RXF fifo
*/
static void bdx_rx_free_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
{
struct rx_map *dm;
struct rxdb *db = priv->rxdb;
u16 i;
ENTER;
DBG("total=%d free=%d busy=%d\n", db->nelem, bdx_rxdb_available(db),
db->nelem - bdx_rxdb_available(db));
while (bdx_rxdb_available(db) > 0) {
i = bdx_rxdb_alloc_elem(db);
dm = bdx_rxdb_addr_elem(db, i);
dm->dma = 0;
}
for (i = 0; i < db->nelem; i++) {
dm = bdx_rxdb_addr_elem(db, i);
if (dm->dma) {
dma_unmap_single(&priv->pdev->dev, dm->dma,
f->m.pktsz, DMA_FROM_DEVICE);
dev_kfree_skb(dm->skb);
}
}
}
/**
* bdx_rx_free - release all Rx resources
* @priv: NIC private structure
*
* It assumes that Rx is desabled in HW
*/
static void bdx_rx_free(struct bdx_priv *priv)
{
ENTER;
if (priv->rxdb) {
bdx_rx_free_skbs(priv, &priv->rxf_fifo0);
bdx_rxdb_destroy(priv->rxdb);
priv->rxdb = NULL;
}
bdx_fifo_free(priv, &priv->rxf_fifo0.m);
bdx_fifo_free(priv, &priv->rxd_fifo0.m);
RET();
}
/*************************************************************************
* Rx Engine *
*************************************************************************/
/**
* bdx_rx_alloc_skbs - fill rxf fifo with new skbs
* @priv: nic's private structure
* @f: RXF fifo that needs skbs
*
* It allocates skbs, build rxf descs and push it (rxf descr) into rxf fifo.
* skb's virtual and physical addresses are stored in skb db.
* To calculate free space, func uses cached values of RPTR and WPTR
* When needed, it also updates RPTR and WPTR.
*/
/* TBD: do not update WPTR if no desc were written */
static void bdx_rx_alloc_skbs(struct bdx_priv *priv, struct rxf_fifo *f)
{
struct sk_buff *skb;
struct rxf_desc *rxfd;
struct rx_map *dm;
int dno, delta, idx;
struct rxdb *db = priv->rxdb;
ENTER;
dno = bdx_rxdb_available(db) - 1;
while (dno > 0) {
skb = netdev_alloc_skb(priv->ndev, f->m.pktsz + NET_IP_ALIGN);
if (!skb)
break;
skb_reserve(skb, NET_IP_ALIGN);
idx = bdx_rxdb_alloc_elem(db);
dm = bdx_rxdb_addr_elem(db, idx);
dm->dma = dma_map_single(&priv->pdev->dev, skb->data,
f->m.pktsz, DMA_FROM_DEVICE);
dm->skb = skb;
rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
rxfd->va_lo = idx;
rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
print_rxfd(rxfd);
f->m.wptr += sizeof(struct rxf_desc);
delta = f->m.wptr - f->m.memsz;
if (unlikely(delta >= 0)) {
f->m.wptr = delta;
if (delta > 0) {
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
DBG("wrapped descriptor\n");
}
}
dno--;
}
/*TBD: to do - delayed rxf wptr like in txd */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
RET();
}
static inline void
NETIF_RX_MUX(struct bdx_priv *priv, u32 rxd_val1, u16 rxd_vlan,
struct sk_buff *skb)
{
ENTER;
DBG("rxdd->flags.bits.vtag=%d\n", GET_RXD_VTAG(rxd_val1));
if (GET_RXD_VTAG(rxd_val1)) {
DBG("%s: vlan rcv vlan '%x' vtag '%x'\n",
priv->ndev->name,
GET_RXD_VLAN_ID(rxd_vlan),
GET_RXD_VTAG(rxd_val1));
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), GET_RXD_VLAN_TCI(rxd_vlan));
}
netif_receive_skb(skb);
}
static void bdx_recycle_skb(struct bdx_priv *priv, struct rxd_desc *rxdd)
{
struct rxf_desc *rxfd;
struct rx_map *dm;
struct rxf_fifo *f;
struct rxdb *db;
int delta;
ENTER;
DBG("priv=%p rxdd=%p\n", priv, rxdd);
f = &priv->rxf_fifo0;
db = priv->rxdb;
DBG("db=%p f=%p\n", db, f);
dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
DBG("dm=%p\n", dm);
rxfd = (struct rxf_desc *)(f->m.va + f->m.wptr);
rxfd->info = CPU_CHIP_SWAP32(0x10003); /* INFO=1 BC=3 */
rxfd->va_lo = rxdd->va_lo;
rxfd->pa_lo = CPU_CHIP_SWAP32(L32_64(dm->dma));
rxfd->pa_hi = CPU_CHIP_SWAP32(H32_64(dm->dma));
rxfd->len = CPU_CHIP_SWAP32(f->m.pktsz);
print_rxfd(rxfd);
f->m.wptr += sizeof(struct rxf_desc);
delta = f->m.wptr - f->m.memsz;
if (unlikely(delta >= 0)) {
f->m.wptr = delta;
if (delta > 0) {
memcpy(f->m.va, f->m.va + f->m.memsz, delta);
DBG("wrapped descriptor\n");
}
}
RET();
}
/**
* bdx_rx_receive - receives full packets from RXD fifo and pass them to OS
* NOTE: a special treatment is given to non-continuous descriptors
* that start near the end, wraps around and continue at the beginning. a second
* part is copied right after the first, and then descriptor is interpreted as
* normal. fifo has an extra space to allow such operations
* @priv: nic's private structure
* @f: RXF fifo that needs skbs
* @budget: maximum number of packets to receive
*/
/* TBD: replace memcpy func call by explicite inline asm */
static int bdx_rx_receive(struct bdx_priv *priv, struct rxd_fifo *f, int budget)
{
struct net_device *ndev = priv->ndev;
struct sk_buff *skb, *skb2;
struct rxd_desc *rxdd;
struct rx_map *dm;
struct rxf_fifo *rxf_fifo;
int tmp_len, size;
int done = 0;
int max_done = BDX_MAX_RX_DONE;
struct rxdb *db = NULL;
/* Unmarshalled descriptor - copy of descriptor in host order */
u32 rxd_val1;
u16 len;
u16 rxd_vlan;
ENTER;
max_done = budget;
f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_WR_PTR;
size = f->m.wptr - f->m.rptr;
if (size < 0)
size = f->m.memsz + size; /* size is negative :-) */
while (size > 0) {
rxdd = (struct rxd_desc *)(f->m.va + f->m.rptr);
rxd_val1 = CPU_CHIP_SWAP32(rxdd->rxd_val1);
len = CPU_CHIP_SWAP16(rxdd->len);
rxd_vlan = CPU_CHIP_SWAP16(rxdd->rxd_vlan);
print_rxdd(rxdd, rxd_val1, len, rxd_vlan);
tmp_len = GET_RXD_BC(rxd_val1) << 3;
BDX_ASSERT(tmp_len <= 0);
size -= tmp_len;
if (size < 0) /* test for partially arrived descriptor */
break;
f->m.rptr += tmp_len;
tmp_len = f->m.rptr - f->m.memsz;
if (unlikely(tmp_len >= 0)) {
f->m.rptr = tmp_len;
if (tmp_len > 0) {
DBG("wrapped desc rptr=%d tmp_len=%d\n",
f->m.rptr, tmp_len);
memcpy(f->m.va + f->m.memsz, f->m.va, tmp_len);
}
}
if (unlikely(GET_RXD_ERR(rxd_val1))) {
DBG("rxd_err = 0x%x\n", GET_RXD_ERR(rxd_val1));
ndev->stats.rx_errors++;
bdx_recycle_skb(priv, rxdd);
continue;
}
rxf_fifo = &priv->rxf_fifo0;
db = priv->rxdb;
dm = bdx_rxdb_addr_elem(db, rxdd->va_lo);
skb = dm->skb;
if (len < BDX_COPYBREAK &&
(skb2 = netdev_alloc_skb(priv->ndev, len + NET_IP_ALIGN))) {
skb_reserve(skb2, NET_IP_ALIGN);
/*skb_put(skb2, len); */
dma_sync_single_for_cpu(&priv->pdev->dev, dm->dma,
rxf_fifo->m.pktsz,
DMA_FROM_DEVICE);
memcpy(skb2->data, skb->data, len);
bdx_recycle_skb(priv, rxdd);
skb = skb2;
} else {
dma_unmap_single(&priv->pdev->dev, dm->dma,
rxf_fifo->m.pktsz, DMA_FROM_DEVICE);
bdx_rxdb_free_elem(db, rxdd->va_lo);
}
ndev->stats.rx_bytes += len;
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, ndev);
/* Non-IP packets aren't checksum-offloaded */
if (GET_RXD_PKT_ID(rxd_val1) == 0)
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
NETIF_RX_MUX(priv, rxd_val1, rxd_vlan, skb);
if (++done >= max_done)
break;
}
ndev->stats.rx_packets += done;
/* FIXME: do smth to minimize pci accesses */
WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
bdx_rx_alloc_skbs(priv, &priv->rxf_fifo0);
RET(done);
}
/*************************************************************************
* Debug / Temprorary Code *
*************************************************************************/
static void print_rxdd(struct rxd_desc *rxdd, u32 rxd_val1, u16 len,
u16 rxd_vlan)
{
DBG("ERROR: rxdd bc %d rxfq %d to %d type %d err %d rxp %d pkt_id %d vtag %d len %d vlan_id %d cfi %d prio %d va_lo %d va_hi %d\n",
GET_RXD_BC(rxd_val1), GET_RXD_RXFQ(rxd_val1), GET_RXD_TO(rxd_val1),
GET_RXD_TYPE(rxd_val1), GET_RXD_ERR(rxd_val1),
GET_RXD_RXP(rxd_val1), GET_RXD_PKT_ID(rxd_val1),
GET_RXD_VTAG(rxd_val1), len, GET_RXD_VLAN_ID(rxd_vlan),
GET_RXD_CFI(rxd_vlan), GET_RXD_PRIO(rxd_vlan), rxdd->va_lo,
rxdd->va_hi);
}
static void print_rxfd(struct rxf_desc *rxfd)
{
DBG("=== RxF desc CHIP ORDER/ENDIANNESS =============\n"
"info 0x%x va_lo %u pa_lo 0x%x pa_hi 0x%x len 0x%x\n",
rxfd->info, rxfd->va_lo, rxfd->pa_lo, rxfd->pa_hi, rxfd->len);
}
/*
* TX HW/SW interaction overview
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* There are 2 types of TX communication channels between driver and NIC.
* 1) TX Free Fifo - TXF - holds ack descriptors for sent packets
* 2) TX Data Fifo - TXD - holds descriptors of full buffers.
*
* Currently NIC supports TSO, checksuming and gather DMA
* UFO and IP fragmentation is on the way
*
* RX SW Data Structures
* ~~~~~~~~~~~~~~~~~~~~~
* txdb - used to keep track of all skbs owned by SW and their dma addresses.
* For TX case, ownership lasts from geting packet via hard_xmit and until HW
* acknowledges sent by TXF descriptors.
* Implemented as cyclic buffer.
* fifo - keeps info about fifo's size and location, relevant HW registers,
* usage and skb db. Each RXD and RXF Fifo has its own fifo structure.
* Implemented as simple struct.
*
* TX SW Execution Flow
* ~~~~~~~~~~~~~~~~~~~~
* OS calls driver's hard_xmit method with packet to sent.
* Driver creates DMA mappings, builds TXD descriptors and kicks HW
* by updating TXD WPTR.
* When packet is sent, HW write us TXF descriptor and SW frees original skb.
* To prevent TXD fifo overflow without reading HW registers every time,
* SW deploys "tx level" technique.
* Upon strart up, tx level is initialized to TXD fifo length.
* For every sent packet, SW gets its TXD descriptor sizei
* (from precalculated array) and substructs it from tx level.
* The size is also stored in txdb. When TXF ack arrives, SW fetch size of
* original TXD descriptor from txdb and adds it to tx level.
* When Tx level drops under some predefined treshhold, the driver
* stops the TX queue. When TX level rises above that level,
* the tx queue is enabled again.
*
* This technique avoids eccessive reading of RPTR and WPTR registers.
* As our benchmarks shows, it adds 1.5 Gbit/sec to NIS's throuput.
*/
/**
* __bdx_tx_db_ptr_next - helper function, increment read/write pointer + wrap
* @db: tx data base
* @pptr: read or write pointer
*/
static inline void __bdx_tx_db_ptr_next(struct txdb *db, struct tx_map **pptr)
{
BDX_ASSERT(db == NULL || pptr == NULL); /* sanity */
BDX_ASSERT(*pptr != db->rptr && /* expect either read */
*pptr != db->wptr); /* or write pointer */
BDX_ASSERT(*pptr < db->start || /* pointer has to be */
*pptr >= db->end); /* in range */
++*pptr;
if (unlikely(*pptr == db->end))
*pptr = db->start;
}
/**
* bdx_tx_db_inc_rptr - increment read pointer
* @db: tx data base
*/
static inline void bdx_tx_db_inc_rptr(struct txdb *db)
{
BDX_ASSERT(db->rptr == db->wptr); /* can't read from empty db */
__bdx_tx_db_ptr_next(db, &db->rptr);
}
/**
* bdx_tx_db_inc_wptr - increment write pointer
* @db: tx data base
*/
static inline void bdx_tx_db_inc_wptr(struct txdb *db)
{
__bdx_tx_db_ptr_next(db, &db->wptr);
BDX_ASSERT(db->rptr == db->wptr); /* we can not get empty db as
a result of write */
}
/**
* bdx_tx_db_init - creates and initializes tx db
* @d: tx data base
* @sz_type: size of tx fifo
*
* Returns 0 on success, error code otherwise
*/
static int bdx_tx_db_init(struct txdb *d, int sz_type)
{
int memsz = FIFO_SIZE * (1 << (sz_type + 1));
d->start = vmalloc(memsz);
if (!d->start)
return -ENOMEM;
/*
* In order to differentiate between db is empty and db is full
* states at least one element should always be empty in order to
* avoid rptr == wptr which means db is empty
*/
d->size = memsz / sizeof(struct tx_map) - 1;
d->end = d->start + d->size + 1; /* just after last element */
/* all dbs are created equally empty */
d->rptr = d->start;
d->wptr = d->start;
return 0;
}
/**
* bdx_tx_db_close - closes tx db and frees all memory
* @d: tx data base
*/
static void bdx_tx_db_close(struct txdb *d)
{
BDX_ASSERT(d == NULL);
vfree(d->start);
d->start = NULL;
}
/*************************************************************************
* Tx Engine *
*************************************************************************/
/* sizes of tx desc (including padding if needed) as function
* of skb's frag number */
static struct {
u16 bytes;
u16 qwords; /* qword = 64 bit */
} txd_sizes[MAX_SKB_FRAGS + 1];
/**
* bdx_tx_map_skb - creates and stores dma mappings for skb's data blocks
* @priv: NIC private structure
* @skb: socket buffer to map
* @txdd: TX descriptor to use
*
* It makes dma mappings for skb's data blocks and writes them to PBL of
* new tx descriptor. It also stores them in the tx db, so they could be
* unmaped after data was sent. It is reponsibility of a caller to make
* sure that there is enough space in the tx db. Last element holds pointer
* to skb itself and marked with zero length
*/
static inline void
bdx_tx_map_skb(struct bdx_priv *priv, struct sk_buff *skb,
struct txd_desc *txdd)
{
struct txdb *db = &priv->txdb;
struct pbl *pbl = &txdd->pbl[0];
int nr_frags = skb_shinfo(skb)->nr_frags;
int i;
db->wptr->len = skb_headlen(skb);
db->wptr->addr.dma = dma_map_single(&priv->pdev->dev, skb->data,
db->wptr->len, DMA_TO_DEVICE);
pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
DBG("=== pbl len: 0x%x ================\n", pbl->len);
DBG("=== pbl pa_lo: 0x%x ================\n", pbl->pa_lo);
DBG("=== pbl pa_hi: 0x%x ================\n", pbl->pa_hi);
bdx_tx_db_inc_wptr(db);
for (i = 0; i < nr_frags; i++) {
const skb_frag_t *frag;
frag = &skb_shinfo(skb)->frags[i];
db->wptr->len = skb_frag_size(frag);
db->wptr->addr.dma = skb_frag_dma_map(&priv->pdev->dev, frag,
0, skb_frag_size(frag),
DMA_TO_DEVICE);
pbl++;
pbl->len = CPU_CHIP_SWAP32(db->wptr->len);
pbl->pa_lo = CPU_CHIP_SWAP32(L32_64(db->wptr->addr.dma));
pbl->pa_hi = CPU_CHIP_SWAP32(H32_64(db->wptr->addr.dma));
bdx_tx_db_inc_wptr(db);
}
/* add skb clean up info. */
db->wptr->len = -txd_sizes[nr_frags].bytes;
db->wptr->addr.skb = skb;
bdx_tx_db_inc_wptr(db);
}
/* init_txd_sizes - precalculate sizes of descriptors for skbs up to 16 frags
* number of frags is used as index to fetch correct descriptors size,
* instead of calculating it each time */
static void __init init_txd_sizes(void)
{
int i, lwords;
/* 7 - is number of lwords in txd with one phys buffer
* 3 - is number of lwords used for every additional phys buffer */
for (i = 0; i < MAX_SKB_FRAGS + 1; i++) {
lwords = 7 + (i * 3);
if (lwords & 1)
lwords++; /* pad it with 1 lword */
txd_sizes[i].qwords = lwords >> 1;
txd_sizes[i].bytes = lwords << 2;
}
}
/* bdx_tx_init - initialize all Tx related stuff.
* Namely, TXD and TXF fifos, database etc */
static int bdx_tx_init(struct bdx_priv *priv)
{
if (bdx_fifo_init(priv, &priv->txd_fifo0.m, priv->txd_size,
regTXD_CFG0_0,
regTXD_CFG1_0, regTXD_RPTR_0, regTXD_WPTR_0))
goto err_mem;
if (bdx_fifo_init(priv, &priv->txf_fifo0.m, priv->txf_size,
regTXF_CFG0_0,
regTXF_CFG1_0, regTXF_RPTR_0, regTXF_WPTR_0))
goto err_mem;
/* The TX db has to keep mappings for all packets sent (on TxD)
* and not yet reclaimed (on TxF) */
if (bdx_tx_db_init(&priv->txdb, max(priv->txd_size, priv->txf_size)))
goto err_mem;
priv->tx_level = BDX_MAX_TX_LEVEL;
#ifdef BDX_DELAY_WPTR
priv->tx_update_mark = priv->tx_level - 1024;
#endif
return 0;
err_mem:
netdev_err(priv->ndev, "Tx init failed\n");
return -ENOMEM;
}
/**
* bdx_tx_space - calculates available space in TX fifo
* @priv: NIC private structure
*
* Returns available space in TX fifo in bytes
*/
static inline int bdx_tx_space(struct bdx_priv *priv)
{
struct txd_fifo *f = &priv->txd_fifo0;
int fsize;
f->m.rptr = READ_REG(priv, f->m.reg_RPTR) & TXF_WPTR_WR_PTR;
fsize = f->m.rptr - f->m.wptr;
if (fsize <= 0)
fsize = f->m.memsz + fsize;
return fsize;
}
/**
* bdx_tx_transmit - send packet to NIC
* @skb: packet to send
* @ndev: network device assigned to NIC
* Return codes:
* o NETDEV_TX_OK everything ok.
* o NETDEV_TX_BUSY Cannot transmit packet, try later
* Usually a bug, means queue start/stop flow control is broken in
* the driver. Note: the driver must NOT put the skb in its DMA ring.
*/
static netdev_tx_t bdx_tx_transmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct bdx_priv *priv = netdev_priv(ndev);
struct txd_fifo *f = &priv->txd_fifo0;
int txd_checksum = 7; /* full checksum */
int txd_lgsnd = 0;
int txd_vlan_id = 0;
int txd_vtag = 0;
int txd_mss = 0;
int nr_frags = skb_shinfo(skb)->nr_frags;
struct txd_desc *txdd;
int len;
unsigned long flags;
ENTER;
local_irq_save(flags);
spin_lock(&priv->tx_lock);
/* build tx descriptor */
BDX_ASSERT(f->m.wptr >= f->m.memsz); /* started with valid wptr */
txdd = (struct txd_desc *)(f->m.va + f->m.wptr);
if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL))
txd_checksum = 0;
if (skb_shinfo(skb)->gso_size) {
txd_mss = skb_shinfo(skb)->gso_size;
txd_lgsnd = 1;
DBG("skb %p skb len %d gso size = %d\n", skb, skb->len,
txd_mss);
}
if (skb_vlan_tag_present(skb)) {
/*Cut VLAN ID to 12 bits */
txd_vlan_id = skb_vlan_tag_get(skb) & BITS_MASK(12);
txd_vtag = 1;
}
txdd->length = CPU_CHIP_SWAP16(skb->len);
txdd->mss = CPU_CHIP_SWAP16(txd_mss);
txdd->txd_val1 =
CPU_CHIP_SWAP32(TXD_W1_VAL
(txd_sizes[nr_frags].qwords, txd_checksum, txd_vtag,
txd_lgsnd, txd_vlan_id));
DBG("=== TxD desc =====================\n");
DBG("=== w1: 0x%x ================\n", txdd->txd_val1);
DBG("=== w2: mss 0x%x len 0x%x\n", txdd->mss, txdd->length);
bdx_tx_map_skb(priv, skb, txdd);
/* increment TXD write pointer. In case of
fifo wrapping copy reminder of the descriptor
to the beginning */
f->m.wptr += txd_sizes[nr_frags].bytes;
len = f->m.wptr - f->m.memsz;
if (unlikely(len >= 0)) {
f->m.wptr = len;
if (len > 0) {
BDX_ASSERT(len > f->m.memsz);
memcpy(f->m.va, f->m.va + f->m.memsz, len);
}
}
BDX_ASSERT(f->m.wptr >= f->m.memsz); /* finished with valid wptr */
priv->tx_level -= txd_sizes[nr_frags].bytes;
BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
#ifdef BDX_DELAY_WPTR
if (priv->tx_level > priv->tx_update_mark) {
/* Force memory writes to complete before letting h/w
know there are new descriptors to fetch.
(might be needed on platforms like IA64)
wmb(); */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
} else {
if (priv->tx_noupd++ > BDX_NO_UPD_PACKETS) {
priv->tx_noupd = 0;
WRITE_REG(priv, f->m.reg_WPTR,
f->m.wptr & TXF_WPTR_WR_PTR);
}
}
#else
/* Force memory writes to complete before letting h/w
know there are new descriptors to fetch.
(might be needed on platforms like IA64)
wmb(); */
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
#endif
#ifdef BDX_LLTX
netif_trans_update(ndev); /* NETIF_F_LLTX driver :( */
#endif
ndev->stats.tx_packets++;
ndev->stats.tx_bytes += skb->len;
if (priv->tx_level < BDX_MIN_TX_LEVEL) {
DBG("%s: %s: TX Q STOP level %d\n",
BDX_DRV_NAME, ndev->name, priv->tx_level);
netif_stop_queue(ndev);
}
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
/**
* bdx_tx_cleanup - clean TXF fifo, run in the context of IRQ.
* @priv: bdx adapter
*
* It scans TXF fifo for descriptors, frees DMA mappings and reports to OS
* that those packets were sent
*/
static void bdx_tx_cleanup(struct bdx_priv *priv)
{
struct txf_fifo *f = &priv->txf_fifo0;
struct txdb *db = &priv->txdb;
int tx_level = 0;
ENTER;
f->m.wptr = READ_REG(priv, f->m.reg_WPTR) & TXF_WPTR_MASK;
BDX_ASSERT(f->m.rptr >= f->m.memsz); /* started with valid rptr */
while (f->m.wptr != f->m.rptr) {
f->m.rptr += BDX_TXF_DESC_SZ;
f->m.rptr &= f->m.size_mask;
/* unmap all the fragments */
/* first has to come tx_maps containing dma */
BDX_ASSERT(db->rptr->len == 0);
do {
BDX_ASSERT(db->rptr->addr.dma == 0);
dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
db->rptr->len, DMA_TO_DEVICE);
bdx_tx_db_inc_rptr(db);
} while (db->rptr->len > 0);
tx_level -= db->rptr->len; /* '-' koz len is negative */
/* now should come skb pointer - free it */
dev_consume_skb_irq(db->rptr->addr.skb);
bdx_tx_db_inc_rptr(db);
}
/* let h/w know which TXF descriptors were cleaned */
BDX_ASSERT((f->m.wptr & TXF_WPTR_WR_PTR) >= f->m.memsz);
WRITE_REG(priv, f->m.reg_RPTR, f->m.rptr & TXF_WPTR_WR_PTR);
/* We reclaimed resources, so in case the Q is stopped by xmit callback,
* we resume the transmission and use tx_lock to synchronize with xmit.*/
spin_lock(&priv->tx_lock);
priv->tx_level += tx_level;
BDX_ASSERT(priv->tx_level <= 0 || priv->tx_level > BDX_MAX_TX_LEVEL);
#ifdef BDX_DELAY_WPTR
if (priv->tx_noupd) {
priv->tx_noupd = 0;
WRITE_REG(priv, priv->txd_fifo0.m.reg_WPTR,
priv->txd_fifo0.m.wptr & TXF_WPTR_WR_PTR);
}
#endif
if (unlikely(netif_queue_stopped(priv->ndev) &&
netif_carrier_ok(priv->ndev) &&
(priv->tx_level >= BDX_MIN_TX_LEVEL))) {
DBG("%s: %s: TX Q WAKE level %d\n",
BDX_DRV_NAME, priv->ndev->name, priv->tx_level);
netif_wake_queue(priv->ndev);
}
spin_unlock(&priv->tx_lock);
}
/**
* bdx_tx_free_skbs - frees all skbs from TXD fifo.
* @priv: NIC private structure
*
* It gets called when OS stops this dev, eg upon "ifconfig down" or rmmod
*/
static void bdx_tx_free_skbs(struct bdx_priv *priv)
{
struct txdb *db = &priv->txdb;
ENTER;
while (db->rptr != db->wptr) {
if (likely(db->rptr->len))
dma_unmap_page(&priv->pdev->dev, db->rptr->addr.dma,
db->rptr->len, DMA_TO_DEVICE);
else
dev_kfree_skb(db->rptr->addr.skb);
bdx_tx_db_inc_rptr(db);
}
RET();
}
/* bdx_tx_free - frees all Tx resources */
static void bdx_tx_free(struct bdx_priv *priv)
{
ENTER;
bdx_tx_free_skbs(priv);
bdx_fifo_free(priv, &priv->txd_fifo0.m);
bdx_fifo_free(priv, &priv->txf_fifo0.m);
bdx_tx_db_close(&priv->txdb);
}
/**
* bdx_tx_push_desc - push descriptor to TxD fifo
* @priv: NIC private structure
* @data: desc's data
* @size: desc's size
*
* Pushes desc to TxD fifo and overlaps it if needed.
* NOTE: this func does not check for available space. this is responsibility
* of the caller. Neither does it check that data size is smaller than
* fifo size.
*/
static void bdx_tx_push_desc(struct bdx_priv *priv, void *data, int size)
{
struct txd_fifo *f = &priv->txd_fifo0;
int i = f->m.memsz - f->m.wptr;
if (size == 0)
return;
if (i > size) {
memcpy(f->m.va + f->m.wptr, data, size);
f->m.wptr += size;
} else {
memcpy(f->m.va + f->m.wptr, data, i);
f->m.wptr = size - i;
memcpy(f->m.va, data + i, f->m.wptr);
}
WRITE_REG(priv, f->m.reg_WPTR, f->m.wptr & TXF_WPTR_WR_PTR);
}
/**
* bdx_tx_push_desc_safe - push descriptor to TxD fifo in a safe way
* @priv: NIC private structure
* @data: desc's data
* @size: desc's size
*
* NOTE: this func does check for available space and, if necessary, waits for
* NIC to read existing data before writing new one.
*/
static void bdx_tx_push_desc_safe(struct bdx_priv *priv, void *data, int size)
{
int timer = 0;
ENTER;
while (size > 0) {
/* we substruct 8 because when fifo is full rptr == wptr
which also means that fifo is empty, we can understand
the difference, but could hw do the same ??? :) */
int avail = bdx_tx_space(priv) - 8;
if (avail <= 0) {
if (timer++ > 300) { /* prevent endless loop */
DBG("timeout while writing desc to TxD fifo\n");
break;
}
udelay(50); /* give hw a chance to clean fifo */
continue;
}
avail = min(avail, size);
DBG("about to push %d bytes starting %p size %d\n", avail,
data, size);
bdx_tx_push_desc(priv, data, avail);
size -= avail;
data += avail;
}
RET();
}
static const struct net_device_ops bdx_netdev_ops = {
.ndo_open = bdx_open,
.ndo_stop = bdx_close,
.ndo_start_xmit = bdx_tx_transmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_siocdevprivate = bdx_siocdevprivate,
.ndo_set_rx_mode = bdx_setmulti,
.ndo_change_mtu = bdx_change_mtu,
.ndo_set_mac_address = bdx_set_mac,
.ndo_vlan_rx_add_vid = bdx_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = bdx_vlan_rx_kill_vid,
};
/**
* bdx_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in bdx_pci_tbl
*
* Returns 0 on success, negative on failure
*
* bdx_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
*
* functions and their order used as explained in
* /usr/src/linux/Documentation/DMA-{API,mapping}.txt
*
*/
/* TBD: netif_msg should be checked and implemented. I disable it for now */
static int
bdx_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *ndev;
struct bdx_priv *priv;
unsigned long pciaddr;
u32 regionSize;
struct pci_nic *nic;
int err, port;
ENTER;
nic = vmalloc(sizeof(*nic));
if (!nic)
RET(-ENOMEM);
/************** pci *****************/
err = pci_enable_device(pdev);
if (err) /* it triggers interrupt, dunno why. */
goto err_pci; /* it's not a problem though */
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (err) {
pr_err("No usable DMA configuration, aborting\n");
goto err_dma;
}
err = pci_request_regions(pdev, BDX_DRV_NAME);
if (err)
goto err_dma;
pci_set_master(pdev);
pciaddr = pci_resource_start(pdev, 0);
if (!pciaddr) {
err = -EIO;
pr_err("no MMIO resource\n");
goto err_out_res;
}
regionSize = pci_resource_len(pdev, 0);
if (regionSize < BDX_REGS_SIZE) {
err = -EIO;
pr_err("MMIO resource (%x) too small\n", regionSize);
goto err_out_res;
}
nic->regs = ioremap(pciaddr, regionSize);
if (!nic->regs) {
err = -EIO;
pr_err("ioremap failed\n");
goto err_out_res;
}
if (pdev->irq < 2) {
err = -EIO;
pr_err("invalid irq (%d)\n", pdev->irq);
goto err_out_iomap;
}
pci_set_drvdata(pdev, nic);
if (pdev->device == 0x3014)
nic->port_num = 2;
else
nic->port_num = 1;
print_hw_id(pdev);
bdx_hw_reset_direct(nic->regs);
nic->irq_type = IRQ_INTX;
#ifdef BDX_MSI
if ((readl(nic->regs + FPGA_VER) & 0xFFF) >= 378) {
err = pci_enable_msi(pdev);
if (err)
pr_err("Can't enable msi. error is %d\n", err);
else
nic->irq_type = IRQ_MSI;
} else
DBG("HW does not support MSI\n");
#endif
/************** netdev **************/
for (port = 0; port < nic->port_num; port++) {
ndev = alloc_etherdev(sizeof(struct bdx_priv));
if (!ndev) {
err = -ENOMEM;
goto err_out_iomap;
}
ndev->netdev_ops = &bdx_netdev_ops;
ndev->tx_queue_len = BDX_NDEV_TXQ_LEN;
bdx_set_ethtool_ops(ndev); /* ethtool interface */
/* these fields are used for info purposes only
* so we can have them same for all ports of the board */
ndev->if_port = port;
ndev->features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_TSO |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_RXCSUM |
NETIF_F_HIGHDMA;
ndev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
NETIF_F_TSO | NETIF_F_HW_VLAN_CTAG_TX;
/************** priv ****************/
priv = nic->priv[port] = netdev_priv(ndev);
priv->pBdxRegs = nic->regs + port * 0x8000;
priv->port = port;
priv->pdev = pdev;
priv->ndev = ndev;
priv->nic = nic;
priv->msg_enable = BDX_DEF_MSG_ENABLE;
netif_napi_add(ndev, &priv->napi, bdx_poll);
if ((readl(nic->regs + FPGA_VER) & 0xFFF) == 308) {
DBG("HW statistics not supported\n");
priv->stats_flag = 0;
} else {
priv->stats_flag = 1;
}
/* Initialize fifo sizes. */
priv->txd_size = 2;
priv->txf_size = 2;
priv->rxd_size = 2;
priv->rxf_size = 3;
/* Initialize the initial coalescing registers. */
priv->rdintcm = INT_REG_VAL(0x20, 1, 4, 12);
priv->tdintcm = INT_REG_VAL(0x20, 1, 0, 12);
/* ndev->xmit_lock spinlock is not used.
* Private priv->tx_lock is used for synchronization
* between transmit and TX irq cleanup. In addition
* set multicast list callback has to use priv->tx_lock.
*/
#ifdef BDX_LLTX
ndev->features |= NETIF_F_LLTX;
#endif
/* MTU range: 60 - 16384 */
ndev->min_mtu = ETH_ZLEN;
ndev->max_mtu = BDX_MAX_MTU;
spin_lock_init(&priv->tx_lock);
/*bdx_hw_reset(priv); */
if (bdx_read_mac(priv)) {
pr_err("load MAC address failed\n");
err = -EFAULT;
goto err_out_iomap;
}
SET_NETDEV_DEV(ndev, &pdev->dev);
err = register_netdev(ndev);
if (err) {
pr_err("register_netdev failed\n");
goto err_out_free;
}
netif_carrier_off(ndev);
netif_stop_queue(ndev);
print_eth_id(ndev);
}
RET(0);
err_out_free:
free_netdev(ndev);
err_out_iomap:
iounmap(nic->regs);
err_out_res:
pci_release_regions(pdev);
err_dma:
pci_disable_device(pdev);
err_pci:
vfree(nic);
RET(err);
}
/****************** Ethtool interface *********************/
/* get strings for statistics counters */
static const char
bdx_stat_names[][ETH_GSTRING_LEN] = {
"InUCast", /* 0x7200 */
"InMCast", /* 0x7210 */
"InBCast", /* 0x7220 */
"InPkts", /* 0x7230 */
"InErrors", /* 0x7240 */
"InDropped", /* 0x7250 */
"FrameTooLong", /* 0x7260 */
"FrameSequenceErrors", /* 0x7270 */
"InVLAN", /* 0x7280 */
"InDroppedDFE", /* 0x7290 */
"InDroppedIntFull", /* 0x72A0 */
"InFrameAlignErrors", /* 0x72B0 */
/* 0x72C0-0x72E0 RSRV */
"OutUCast", /* 0x72F0 */
"OutMCast", /* 0x7300 */
"OutBCast", /* 0x7310 */
"OutPkts", /* 0x7320 */
/* 0x7330-0x7360 RSRV */
"OutVLAN", /* 0x7370 */
"InUCastOctects", /* 0x7380 */
"OutUCastOctects", /* 0x7390 */
/* 0x73A0-0x73B0 RSRV */
"InBCastOctects", /* 0x73C0 */
"OutBCastOctects", /* 0x73D0 */
"InOctects", /* 0x73E0 */
"OutOctects", /* 0x73F0 */
};
/*
* bdx_get_link_ksettings - get device-specific settings
* @netdev
* @ecmd
*/
static int bdx_get_link_ksettings(struct net_device *netdev,
struct ethtool_link_ksettings *ecmd)
{
ethtool_link_ksettings_zero_link_mode(ecmd, supported);
ethtool_link_ksettings_add_link_mode(ecmd, supported,
10000baseT_Full);
ethtool_link_ksettings_add_link_mode(ecmd, supported, FIBRE);
ethtool_link_ksettings_zero_link_mode(ecmd, advertising);
ethtool_link_ksettings_add_link_mode(ecmd, advertising,
10000baseT_Full);
ethtool_link_ksettings_add_link_mode(ecmd, advertising, FIBRE);
ecmd->base.speed = SPEED_10000;
ecmd->base.duplex = DUPLEX_FULL;
ecmd->base.port = PORT_FIBRE;
ecmd->base.autoneg = AUTONEG_DISABLE;
return 0;
}
/*
* bdx_get_drvinfo - report driver information
* @netdev
* @drvinfo
*/
static void
bdx_get_drvinfo(struct net_device *netdev, struct ethtool_drvinfo *drvinfo)
{
struct bdx_priv *priv = netdev_priv(netdev);
strscpy(drvinfo->driver, BDX_DRV_NAME, sizeof(drvinfo->driver));
strscpy(drvinfo->version, BDX_DRV_VERSION, sizeof(drvinfo->version));
strscpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
strscpy(drvinfo->bus_info, pci_name(priv->pdev),
sizeof(drvinfo->bus_info));
}
/*
* bdx_get_coalesce - get interrupt coalescing parameters
* @netdev
* @ecoal
*/
static int bdx_get_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ecoal,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
u32 rdintcm;
u32 tdintcm;
struct bdx_priv *priv = netdev_priv(netdev);
rdintcm = priv->rdintcm;
tdintcm = priv->tdintcm;
/* PCK_TH measures in multiples of FIFO bytes
We translate to packets */
ecoal->rx_coalesce_usecs = GET_INT_COAL(rdintcm) * INT_COAL_MULT;
ecoal->rx_max_coalesced_frames =
((GET_PCK_TH(rdintcm) * PCK_TH_MULT) / sizeof(struct rxf_desc));
ecoal->tx_coalesce_usecs = GET_INT_COAL(tdintcm) * INT_COAL_MULT;
ecoal->tx_max_coalesced_frames =
((GET_PCK_TH(tdintcm) * PCK_TH_MULT) / BDX_TXF_DESC_SZ);
/* adaptive parameters ignored */
return 0;
}
/*
* bdx_set_coalesce - set interrupt coalescing parameters
* @netdev
* @ecoal
*/
static int bdx_set_coalesce(struct net_device *netdev,
struct ethtool_coalesce *ecoal,
struct kernel_ethtool_coalesce *kernel_coal,
struct netlink_ext_ack *extack)
{
u32 rdintcm;
u32 tdintcm;
struct bdx_priv *priv = netdev_priv(netdev);
int rx_coal;
int tx_coal;
int rx_max_coal;
int tx_max_coal;
/* Check for valid input */
rx_coal = ecoal->rx_coalesce_usecs / INT_COAL_MULT;
tx_coal = ecoal->tx_coalesce_usecs / INT_COAL_MULT;
rx_max_coal = ecoal->rx_max_coalesced_frames;
tx_max_coal = ecoal->tx_max_coalesced_frames;
/* Translate from packets to multiples of FIFO bytes */
rx_max_coal =
(((rx_max_coal * sizeof(struct rxf_desc)) + PCK_TH_MULT - 1)
/ PCK_TH_MULT);
tx_max_coal =
(((tx_max_coal * BDX_TXF_DESC_SZ) + PCK_TH_MULT - 1)
/ PCK_TH_MULT);
if ((rx_coal > 0x7FFF) || (tx_coal > 0x7FFF) ||
(rx_max_coal > 0xF) || (tx_max_coal > 0xF))
return -EINVAL;
rdintcm = INT_REG_VAL(rx_coal, GET_INT_COAL_RC(priv->rdintcm),
GET_RXF_TH(priv->rdintcm), rx_max_coal);
tdintcm = INT_REG_VAL(tx_coal, GET_INT_COAL_RC(priv->tdintcm), 0,
tx_max_coal);
priv->rdintcm = rdintcm;
priv->tdintcm = tdintcm;
WRITE_REG(priv, regRDINTCM0, rdintcm);
WRITE_REG(priv, regTDINTCM0, tdintcm);
return 0;
}
/* Convert RX fifo size to number of pending packets */
static inline int bdx_rx_fifo_size_to_packets(int rx_size)
{
return (FIFO_SIZE * (1 << rx_size)) / sizeof(struct rxf_desc);
}
/* Convert TX fifo size to number of pending packets */
static inline int bdx_tx_fifo_size_to_packets(int tx_size)
{
return (FIFO_SIZE * (1 << tx_size)) / BDX_TXF_DESC_SZ;
}
/*
* bdx_get_ringparam - report ring sizes
* @netdev
* @ring
* @kernel_ring
* @extack
*/
static void
bdx_get_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct bdx_priv *priv = netdev_priv(netdev);
/*max_pending - the maximum-sized FIFO we allow */
ring->rx_max_pending = bdx_rx_fifo_size_to_packets(3);
ring->tx_max_pending = bdx_tx_fifo_size_to_packets(3);
ring->rx_pending = bdx_rx_fifo_size_to_packets(priv->rxf_size);
ring->tx_pending = bdx_tx_fifo_size_to_packets(priv->txd_size);
}
/*
* bdx_set_ringparam - set ring sizes
* @netdev
* @ring
* @kernel_ring
* @extack
*/
static int
bdx_set_ringparam(struct net_device *netdev, struct ethtool_ringparam *ring,
struct kernel_ethtool_ringparam *kernel_ring,
struct netlink_ext_ack *extack)
{
struct bdx_priv *priv = netdev_priv(netdev);
int rx_size = 0;
int tx_size = 0;
for (; rx_size < 4; rx_size++) {
if (bdx_rx_fifo_size_to_packets(rx_size) >= ring->rx_pending)
break;
}
if (rx_size == 4)
rx_size = 3;
for (; tx_size < 4; tx_size++) {
if (bdx_tx_fifo_size_to_packets(tx_size) >= ring->tx_pending)
break;
}
if (tx_size == 4)
tx_size = 3;
/*Is there anything to do? */
if ((rx_size == priv->rxf_size) &&
(tx_size == priv->txd_size))
return 0;
priv->rxf_size = rx_size;
if (rx_size > 1)
priv->rxd_size = rx_size - 1;
else
priv->rxd_size = rx_size;
priv->txf_size = priv->txd_size = tx_size;
if (netif_running(netdev)) {
bdx_close(netdev);
bdx_open(netdev);
}
return 0;
}
/*
* bdx_get_strings - return a set of strings that describe the requested objects
* @netdev
* @data
*/
static void bdx_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(data, *bdx_stat_names, sizeof(bdx_stat_names));
break;
}
}
/*
* bdx_get_sset_count - return number of statistics or tests
* @netdev
*/
static int bdx_get_sset_count(struct net_device *netdev, int stringset)
{
struct bdx_priv *priv = netdev_priv(netdev);
switch (stringset) {
case ETH_SS_STATS:
BDX_ASSERT(ARRAY_SIZE(bdx_stat_names)
!= sizeof(struct bdx_stats) / sizeof(u64));
return (priv->stats_flag) ? ARRAY_SIZE(bdx_stat_names) : 0;
}
return -EINVAL;
}
/*
* bdx_get_ethtool_stats - return device's hardware L2 statistics
* @netdev
* @stats
* @data
*/
static void bdx_get_ethtool_stats(struct net_device *netdev,
struct ethtool_stats *stats, u64 *data)
{
struct bdx_priv *priv = netdev_priv(netdev);
if (priv->stats_flag) {
/* Update stats from HW */
bdx_update_stats(priv);
/* Copy data to user buffer */
memcpy(data, &priv->hw_stats, sizeof(priv->hw_stats));
}
}
/*
* bdx_set_ethtool_ops - ethtool interface implementation
* @netdev
*/
static void bdx_set_ethtool_ops(struct net_device *netdev)
{
static const struct ethtool_ops bdx_ethtool_ops = {
.supported_coalesce_params = ETHTOOL_COALESCE_USECS |
ETHTOOL_COALESCE_MAX_FRAMES,
.get_drvinfo = bdx_get_drvinfo,
.get_link = ethtool_op_get_link,
.get_coalesce = bdx_get_coalesce,
.set_coalesce = bdx_set_coalesce,
.get_ringparam = bdx_get_ringparam,
.set_ringparam = bdx_set_ringparam,
.get_strings = bdx_get_strings,
.get_sset_count = bdx_get_sset_count,
.get_ethtool_stats = bdx_get_ethtool_stats,
.get_link_ksettings = bdx_get_link_ksettings,
};
netdev->ethtool_ops = &bdx_ethtool_ops;
}
/**
* bdx_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* bdx_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. The could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void bdx_remove(struct pci_dev *pdev)
{
struct pci_nic *nic = pci_get_drvdata(pdev);
struct net_device *ndev;
int port;
for (port = 0; port < nic->port_num; port++) {
ndev = nic->priv[port]->ndev;
unregister_netdev(ndev);
free_netdev(ndev);
}
/*bdx_hw_reset_direct(nic->regs); */
#ifdef BDX_MSI
if (nic->irq_type == IRQ_MSI)
pci_disable_msi(pdev);
#endif
iounmap(nic->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
vfree(nic);
RET();
}
static struct pci_driver bdx_pci_driver = {
.name = BDX_DRV_NAME,
.id_table = bdx_pci_tbl,
.probe = bdx_probe,
.remove = bdx_remove,
};
/*
* print_driver_id - print parameters of the driver build
*/
static void __init print_driver_id(void)
{
pr_info("%s, %s\n", BDX_DRV_DESC, BDX_DRV_VERSION);
pr_info("Options: hw_csum %s\n", BDX_MSI_STRING);
}
static int __init bdx_module_init(void)
{
ENTER;
init_txd_sizes();
print_driver_id();
RET(pci_register_driver(&bdx_pci_driver));
}
module_init(bdx_module_init);
static void __exit bdx_module_exit(void)
{
ENTER;
pci_unregister_driver(&bdx_pci_driver);
RET();
}
module_exit(bdx_module_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(BDX_DRV_DESC);
MODULE_FIRMWARE("tehuti/bdx.bin");