linux-zen-desktop/drivers/net/wireless/ath/ath10k/pci.c

3856 lines
96 KiB
C
Raw Normal View History

2023-08-30 17:31:07 +02:00
// SPDX-License-Identifier: ISC
/*
* Copyright (c) 2005-2011 Atheros Communications Inc.
* Copyright (c) 2011-2017 Qualcomm Atheros, Inc.
*/
#include <linux/pci.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/bitops.h>
#include "core.h"
#include "debug.h"
#include "coredump.h"
#include "targaddrs.h"
#include "bmi.h"
#include "hif.h"
#include "htc.h"
#include "ce.h"
#include "pci.h"
enum ath10k_pci_reset_mode {
ATH10K_PCI_RESET_AUTO = 0,
ATH10K_PCI_RESET_WARM_ONLY = 1,
};
static unsigned int ath10k_pci_irq_mode = ATH10K_PCI_IRQ_AUTO;
static unsigned int ath10k_pci_reset_mode = ATH10K_PCI_RESET_AUTO;
module_param_named(irq_mode, ath10k_pci_irq_mode, uint, 0644);
MODULE_PARM_DESC(irq_mode, "0: auto, 1: legacy, 2: msi (default: 0)");
module_param_named(reset_mode, ath10k_pci_reset_mode, uint, 0644);
MODULE_PARM_DESC(reset_mode, "0: auto, 1: warm only (default: 0)");
/* how long wait to wait for target to initialise, in ms */
#define ATH10K_PCI_TARGET_WAIT 3000
#define ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS 3
/* Maximum number of bytes that can be handled atomically by
* diag read and write.
*/
#define ATH10K_DIAG_TRANSFER_LIMIT 0x5000
#define QCA99X0_PCIE_BAR0_START_REG 0x81030
#define QCA99X0_CPU_MEM_ADDR_REG 0x4d00c
#define QCA99X0_CPU_MEM_DATA_REG 0x4d010
static const struct pci_device_id ath10k_pci_id_table[] = {
/* PCI-E QCA988X V2 (Ubiquiti branded) */
{ PCI_VDEVICE(UBIQUITI, QCA988X_2_0_DEVICE_ID_UBNT) },
{ PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */
{ PCI_VDEVICE(ATHEROS, QCA6164_2_1_DEVICE_ID) }, /* PCI-E QCA6164 V2.1 */
{ PCI_VDEVICE(ATHEROS, QCA6174_2_1_DEVICE_ID) }, /* PCI-E QCA6174 V2.1 */
{ PCI_VDEVICE(ATHEROS, QCA99X0_2_0_DEVICE_ID) }, /* PCI-E QCA99X0 V2 */
{ PCI_VDEVICE(ATHEROS, QCA9888_2_0_DEVICE_ID) }, /* PCI-E QCA9888 V2 */
{ PCI_VDEVICE(ATHEROS, QCA9984_1_0_DEVICE_ID) }, /* PCI-E QCA9984 V1 */
{ PCI_VDEVICE(ATHEROS, QCA9377_1_0_DEVICE_ID) }, /* PCI-E QCA9377 V1 */
{ PCI_VDEVICE(ATHEROS, QCA9887_1_0_DEVICE_ID) }, /* PCI-E QCA9887 */
{0}
};
static const struct ath10k_pci_supp_chip ath10k_pci_supp_chips[] = {
/* QCA988X pre 2.0 chips are not supported because they need some nasty
* hacks. ath10k doesn't have them and these devices crash horribly
* because of that.
*/
{ QCA988X_2_0_DEVICE_ID_UBNT, QCA988X_HW_2_0_CHIP_ID_REV },
{ QCA988X_2_0_DEVICE_ID, QCA988X_HW_2_0_CHIP_ID_REV },
{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
{ QCA6164_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_1_CHIP_ID_REV },
{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_2_2_CHIP_ID_REV },
{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_0_CHIP_ID_REV },
{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_1_CHIP_ID_REV },
{ QCA6174_2_1_DEVICE_ID, QCA6174_HW_3_2_CHIP_ID_REV },
{ QCA99X0_2_0_DEVICE_ID, QCA99X0_HW_2_0_CHIP_ID_REV },
{ QCA9984_1_0_DEVICE_ID, QCA9984_HW_1_0_CHIP_ID_REV },
{ QCA9888_2_0_DEVICE_ID, QCA9888_HW_2_0_CHIP_ID_REV },
{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_0_CHIP_ID_REV },
{ QCA9377_1_0_DEVICE_ID, QCA9377_HW_1_1_CHIP_ID_REV },
{ QCA9887_1_0_DEVICE_ID, QCA9887_HW_1_0_CHIP_ID_REV },
};
static void ath10k_pci_buffer_cleanup(struct ath10k *ar);
static int ath10k_pci_cold_reset(struct ath10k *ar);
static int ath10k_pci_safe_chip_reset(struct ath10k *ar);
static int ath10k_pci_init_irq(struct ath10k *ar);
static int ath10k_pci_deinit_irq(struct ath10k *ar);
static int ath10k_pci_request_irq(struct ath10k *ar);
static void ath10k_pci_free_irq(struct ath10k *ar);
static int ath10k_pci_bmi_wait(struct ath10k *ar,
struct ath10k_ce_pipe *tx_pipe,
struct ath10k_ce_pipe *rx_pipe,
struct bmi_xfer *xfer);
static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar);
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state);
static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state);
static const struct ce_attr pci_host_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 16,
.src_sz_max = 256,
.dest_nentries = 0,
.send_cb = ath10k_pci_htc_tx_cb,
},
/* CE1: target->host HTT + HTC control */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 512,
.recv_cb = ath10k_pci_htt_htc_rx_cb,
},
/* CE2: target->host WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 128,
.recv_cb = ath10k_pci_htc_rx_cb,
},
/* CE3: host->target WMI */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 32,
.src_sz_max = 2048,
.dest_nentries = 0,
.send_cb = ath10k_pci_htc_tx_cb,
},
/* CE4: host->target HTT */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR,
.src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES,
.src_sz_max = 256,
.dest_nentries = 0,
.send_cb = ath10k_pci_htt_tx_cb,
},
/* CE5: target->host HTT (HIF->HTT) */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 512,
.dest_nentries = 512,
.recv_cb = ath10k_pci_htt_rx_cb,
},
/* CE6: target autonomous hif_memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE7: ce_diag, the Diagnostic Window */
{
.flags = CE_ATTR_FLAGS | CE_ATTR_POLL,
.src_nentries = 2,
.src_sz_max = DIAG_TRANSFER_LIMIT,
.dest_nentries = 2,
},
/* CE8: target->host pktlog */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 2048,
.dest_nentries = 128,
.recv_cb = ath10k_pci_pktlog_rx_cb,
},
/* CE9 target autonomous qcache memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE10: target autonomous hif memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
/* CE11: target autonomous hif memcpy */
{
.flags = CE_ATTR_FLAGS,
.src_nentries = 0,
.src_sz_max = 0,
.dest_nentries = 0,
},
};
/* Target firmware's Copy Engine configuration. */
static const struct ce_pipe_config pci_target_ce_config_wlan[] = {
/* CE0: host->target HTC control and raw streams */
{
.pipenum = __cpu_to_le32(0),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(256),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE1: target->host HTT + HTC control */
{
.pipenum = __cpu_to_le32(1),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE2: target->host WMI */
{
.pipenum = __cpu_to_le32(2),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(64),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE3: host->target WMI */
{
.pipenum = __cpu_to_le32(3),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE4: host->target HTT */
{
.pipenum = __cpu_to_le32(4),
.pipedir = __cpu_to_le32(PIPEDIR_OUT),
.nentries = __cpu_to_le32(256),
.nbytes_max = __cpu_to_le32(256),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* NB: 50% of src nentries, since tx has 2 frags */
/* CE5: target->host HTT (HIF->HTT) */
{
.pipenum = __cpu_to_le32(5),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(512),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE6: Reserved for target autonomous hif_memcpy */
{
.pipenum = __cpu_to_le32(6),
.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(4096),
.flags = __cpu_to_le32(CE_ATTR_FLAGS),
.reserved = __cpu_to_le32(0),
},
/* CE7 used only by Host */
{
.pipenum = __cpu_to_le32(7),
.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
.nentries = __cpu_to_le32(0),
.nbytes_max = __cpu_to_le32(0),
.flags = __cpu_to_le32(0),
.reserved = __cpu_to_le32(0),
},
/* CE8 target->host packtlog */
{
.pipenum = __cpu_to_le32(8),
.pipedir = __cpu_to_le32(PIPEDIR_IN),
.nentries = __cpu_to_le32(64),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
.reserved = __cpu_to_le32(0),
},
/* CE9 target autonomous qcache memcpy */
{
.pipenum = __cpu_to_le32(9),
.pipedir = __cpu_to_le32(PIPEDIR_INOUT),
.nentries = __cpu_to_le32(32),
.nbytes_max = __cpu_to_le32(2048),
.flags = __cpu_to_le32(CE_ATTR_FLAGS | CE_ATTR_DIS_INTR),
.reserved = __cpu_to_le32(0),
},
/* It not necessary to send target wlan configuration for CE10 & CE11
* as these CEs are not actively used in target.
*/
};
/*
* Map from service/endpoint to Copy Engine.
* This table is derived from the CE_PCI TABLE, above.
* It is passed to the Target at startup for use by firmware.
*/
static const struct ce_service_to_pipe pci_target_service_to_ce_map_wlan[] = {
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VO),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BK),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_BE),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_DATA_VI),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(3),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_WMI_CONTROL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(2),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_RSVD_CTRL),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(0),
},
{ /* not used */
__cpu_to_le32(ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(1),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_OUT), /* out = UL = host -> target */
__cpu_to_le32(4),
},
{
__cpu_to_le32(ATH10K_HTC_SVC_ID_HTT_DATA_MSG),
__cpu_to_le32(PIPEDIR_IN), /* in = DL = target -> host */
__cpu_to_le32(5),
},
/* (Additions here) */
{ /* must be last */
__cpu_to_le32(0),
__cpu_to_le32(0),
__cpu_to_le32(0),
},
};
static bool ath10k_pci_is_awake(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 val = ioread32(ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
RTC_STATE_ADDRESS);
return RTC_STATE_V_GET(val) == RTC_STATE_V_ON;
}
static void __ath10k_pci_wake(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
lockdep_assert_held(&ar_pci->ps_lock);
ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake reg refcount %lu awake %d\n",
ar_pci->ps_wake_refcount, ar_pci->ps_awake);
iowrite32(PCIE_SOC_WAKE_V_MASK,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
}
static void __ath10k_pci_sleep(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
lockdep_assert_held(&ar_pci->ps_lock);
ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep reg refcount %lu awake %d\n",
ar_pci->ps_wake_refcount, ar_pci->ps_awake);
iowrite32(PCIE_SOC_WAKE_RESET,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ar_pci->ps_awake = false;
}
static int ath10k_pci_wake_wait(struct ath10k *ar)
{
int tot_delay = 0;
int curr_delay = 5;
while (tot_delay < PCIE_WAKE_TIMEOUT) {
if (ath10k_pci_is_awake(ar)) {
if (tot_delay > PCIE_WAKE_LATE_US)
ath10k_warn(ar, "device wakeup took %d ms which is unusually long, otherwise it works normally.\n",
tot_delay / 1000);
return 0;
}
udelay(curr_delay);
tot_delay += curr_delay;
if (curr_delay < 50)
curr_delay += 5;
}
return -ETIMEDOUT;
}
static int ath10k_pci_force_wake(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
int ret = 0;
if (ar_pci->pci_ps)
return ret;
spin_lock_irqsave(&ar_pci->ps_lock, flags);
if (!ar_pci->ps_awake) {
iowrite32(PCIE_SOC_WAKE_V_MASK,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ret = ath10k_pci_wake_wait(ar);
if (ret == 0)
ar_pci->ps_awake = true;
}
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
return ret;
}
static void ath10k_pci_force_sleep(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
spin_lock_irqsave(&ar_pci->ps_lock, flags);
iowrite32(PCIE_SOC_WAKE_RESET,
ar_pci->mem + PCIE_LOCAL_BASE_ADDRESS +
PCIE_SOC_WAKE_ADDRESS);
ar_pci->ps_awake = false;
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}
static int ath10k_pci_wake(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
int ret = 0;
if (ar_pci->pci_ps == 0)
return ret;
spin_lock_irqsave(&ar_pci->ps_lock, flags);
ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps wake refcount %lu awake %d\n",
ar_pci->ps_wake_refcount, ar_pci->ps_awake);
/* This function can be called very frequently. To avoid excessive
* CPU stalls for MMIO reads use a cache var to hold the device state.
*/
if (!ar_pci->ps_awake) {
__ath10k_pci_wake(ar);
ret = ath10k_pci_wake_wait(ar);
if (ret == 0)
ar_pci->ps_awake = true;
}
if (ret == 0) {
ar_pci->ps_wake_refcount++;
WARN_ON(ar_pci->ps_wake_refcount == 0);
}
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
return ret;
}
static void ath10k_pci_sleep(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
if (ar_pci->pci_ps == 0)
return;
spin_lock_irqsave(&ar_pci->ps_lock, flags);
ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps sleep refcount %lu awake %d\n",
ar_pci->ps_wake_refcount, ar_pci->ps_awake);
if (WARN_ON(ar_pci->ps_wake_refcount == 0))
goto skip;
ar_pci->ps_wake_refcount--;
mod_timer(&ar_pci->ps_timer, jiffies +
msecs_to_jiffies(ATH10K_PCI_SLEEP_GRACE_PERIOD_MSEC));
skip:
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}
static void ath10k_pci_ps_timer(struct timer_list *t)
{
struct ath10k_pci *ar_pci = from_timer(ar_pci, t, ps_timer);
struct ath10k *ar = ar_pci->ar;
unsigned long flags;
spin_lock_irqsave(&ar_pci->ps_lock, flags);
ath10k_dbg(ar, ATH10K_DBG_PCI_PS, "pci ps timer refcount %lu awake %d\n",
ar_pci->ps_wake_refcount, ar_pci->ps_awake);
if (ar_pci->ps_wake_refcount > 0)
goto skip;
__ath10k_pci_sleep(ar);
skip:
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}
static void ath10k_pci_sleep_sync(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
if (ar_pci->pci_ps == 0) {
ath10k_pci_force_sleep(ar);
return;
}
del_timer_sync(&ar_pci->ps_timer);
spin_lock_irqsave(&ar_pci->ps_lock, flags);
WARN_ON(ar_pci->ps_wake_refcount > 0);
__ath10k_pci_sleep(ar);
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}
static void ath10k_bus_pci_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
if (unlikely(offset + sizeof(value) > ar_pci->mem_len)) {
ath10k_warn(ar, "refusing to write mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
offset, offset + sizeof(value), ar_pci->mem_len);
return;
}
ret = ath10k_pci_wake(ar);
if (ret) {
ath10k_warn(ar, "failed to wake target for write32 of 0x%08x at 0x%08x: %d\n",
value, offset, ret);
return;
}
iowrite32(value, ar_pci->mem + offset);
ath10k_pci_sleep(ar);
}
static u32 ath10k_bus_pci_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 val;
int ret;
if (unlikely(offset + sizeof(val) > ar_pci->mem_len)) {
ath10k_warn(ar, "refusing to read mmio out of bounds at 0x%08x - 0x%08zx (max 0x%08zx)\n",
offset, offset + sizeof(val), ar_pci->mem_len);
return 0;
}
ret = ath10k_pci_wake(ar);
if (ret) {
ath10k_warn(ar, "failed to wake target for read32 at 0x%08x: %d\n",
offset, ret);
return 0xffffffff;
}
val = ioread32(ar_pci->mem + offset);
ath10k_pci_sleep(ar);
return val;
}
inline void ath10k_pci_write32(struct ath10k *ar, u32 offset, u32 value)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
ce->bus_ops->write32(ar, offset, value);
}
inline u32 ath10k_pci_read32(struct ath10k *ar, u32 offset)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
return ce->bus_ops->read32(ar, offset);
}
u32 ath10k_pci_soc_read32(struct ath10k *ar, u32 addr)
{
return ath10k_pci_read32(ar, RTC_SOC_BASE_ADDRESS + addr);
}
void ath10k_pci_soc_write32(struct ath10k *ar, u32 addr, u32 val)
{
ath10k_pci_write32(ar, RTC_SOC_BASE_ADDRESS + addr, val);
}
u32 ath10k_pci_reg_read32(struct ath10k *ar, u32 addr)
{
return ath10k_pci_read32(ar, PCIE_LOCAL_BASE_ADDRESS + addr);
}
void ath10k_pci_reg_write32(struct ath10k *ar, u32 addr, u32 val)
{
ath10k_pci_write32(ar, PCIE_LOCAL_BASE_ADDRESS + addr, val);
}
bool ath10k_pci_irq_pending(struct ath10k *ar)
{
u32 cause;
/* Check if the shared legacy irq is for us */
cause = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_CAUSE_ADDRESS);
if (cause & (PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL))
return true;
return false;
}
void ath10k_pci_disable_and_clear_legacy_irq(struct ath10k *ar)
{
/* IMPORTANT: INTR_CLR register has to be set after
* INTR_ENABLE is set to 0, otherwise interrupt can not be
* really cleared.
*/
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
0);
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_CLR_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
/* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer.
*/
(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS);
}
void ath10k_pci_enable_legacy_irq(struct ath10k *ar)
{
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
/* IMPORTANT: this extra read transaction is required to
* flush the posted write buffer.
*/
(void)ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
PCIE_INTR_ENABLE_ADDRESS);
}
static inline const char *ath10k_pci_get_irq_method(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_MSI)
return "msi";
return "legacy";
}
static int __ath10k_pci_rx_post_buf(struct ath10k_pci_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
struct sk_buff *skb;
dma_addr_t paddr;
int ret;
skb = dev_alloc_skb(pipe->buf_sz);
if (!skb)
return -ENOMEM;
WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb");
paddr = dma_map_single(ar->dev, skb->data,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(ar->dev, paddr))) {
ath10k_warn(ar, "failed to dma map pci rx buf\n");
dev_kfree_skb_any(skb);
return -EIO;
}
ATH10K_SKB_RXCB(skb)->paddr = paddr;
spin_lock_bh(&ce->ce_lock);
ret = ce_pipe->ops->ce_rx_post_buf(ce_pipe, skb, paddr);
spin_unlock_bh(&ce->ce_lock);
if (ret) {
dma_unmap_single(ar->dev, paddr, skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
return ret;
}
return 0;
}
static void ath10k_pci_rx_post_pipe(struct ath10k_pci_pipe *pipe)
{
struct ath10k *ar = pipe->hif_ce_state;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_ce_pipe *ce_pipe = pipe->ce_hdl;
int ret, num;
if (pipe->buf_sz == 0)
return;
if (!ce_pipe->dest_ring)
return;
spin_lock_bh(&ce->ce_lock);
num = __ath10k_ce_rx_num_free_bufs(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
while (num >= 0) {
ret = __ath10k_pci_rx_post_buf(pipe);
if (ret) {
if (ret == -ENOSPC)
break;
ath10k_warn(ar, "failed to post pci rx buf: %d\n", ret);
mod_timer(&ar_pci->rx_post_retry, jiffies +
ATH10K_PCI_RX_POST_RETRY_MS);
break;
}
num--;
}
}
void ath10k_pci_rx_post(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_pci_rx_post_pipe(&ar_pci->pipe_info[i]);
}
void ath10k_pci_rx_replenish_retry(struct timer_list *t)
{
struct ath10k_pci *ar_pci = from_timer(ar_pci, t, rx_post_retry);
struct ath10k *ar = ar_pci->ar;
ath10k_pci_rx_post(ar);
}
static u32 ath10k_pci_qca988x_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
u32 val = 0, region = addr & 0xfffff;
val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
& 0x7ff) << 21;
val |= 0x100000 | region;
return val;
}
/* Refactor from ath10k_pci_qca988x_targ_cpu_to_ce_addr.
* Support to access target space below 1M for qca6174 and qca9377.
* If target space is below 1M, the bit[20] of converted CE addr is 0.
* Otherwise bit[20] of converted CE addr is 1.
*/
static u32 ath10k_pci_qca6174_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
u32 val = 0, region = addr & 0xfffff;
val = (ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS)
& 0x7ff) << 21;
val |= ((addr >= 0x100000) ? 0x100000 : 0) | region;
return val;
}
static u32 ath10k_pci_qca99x0_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
u32 val = 0, region = addr & 0xfffff;
val = ath10k_pci_read32(ar, PCIE_BAR_REG_ADDRESS);
val |= 0x100000 | region;
return val;
}
static u32 ath10k_pci_targ_cpu_to_ce_addr(struct ath10k *ar, u32 addr)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (WARN_ON_ONCE(!ar_pci->targ_cpu_to_ce_addr))
return -ENOTSUPP;
return ar_pci->targ_cpu_to_ce_addr(ar, addr);
}
/*
* Diagnostic read/write access is provided for startup/config/debug usage.
* Caller must guarantee proper alignment, when applicable, and single user
* at any moment.
*/
static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data,
int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 *buf;
unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
struct ath10k_ce_pipe *ce_diag;
/* Host buffer address in CE space */
u32 ce_data;
dma_addr_t ce_data_base = 0;
void *data_buf;
int i;
mutex_lock(&ar_pci->ce_diag_mutex);
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed from Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
GFP_ATOMIC);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
/* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from Target CPU virtual address space
* to CE address space
*/
address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
remaining_bytes = nbytes;
ce_data = ce_data_base;
while (remaining_bytes) {
nbytes = min_t(unsigned int, remaining_bytes,
DIAG_TRANSFER_LIMIT);
ret = ath10k_ce_rx_post_buf(ce_diag, &ce_data, ce_data);
if (ret != 0)
goto done;
/* Request CE to send from Target(!) address to Host buffer */
ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0);
if (ret)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
udelay(DIAG_ACCESS_CE_WAIT_US);
i += DIAG_ACCESS_CE_WAIT_US;
if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
ret = -EBUSY;
goto done;
}
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
&completed_nbytes) != 0) {
udelay(DIAG_ACCESS_CE_WAIT_US);
i += DIAG_ACCESS_CE_WAIT_US;
if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (*buf != ce_data) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
memcpy(data, data_buf, nbytes);
address += nbytes;
data += nbytes;
}
done:
if (data_buf)
dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
ce_data_base);
mutex_unlock(&ar_pci->ce_diag_mutex);
return ret;
}
static int ath10k_pci_diag_read32(struct ath10k *ar, u32 address, u32 *value)
{
__le32 val = 0;
int ret;
ret = ath10k_pci_diag_read_mem(ar, address, &val, sizeof(val));
*value = __le32_to_cpu(val);
return ret;
}
static int __ath10k_pci_diag_read_hi(struct ath10k *ar, void *dest,
u32 src, u32 len)
{
u32 host_addr, addr;
int ret;
host_addr = host_interest_item_address(src);
ret = ath10k_pci_diag_read32(ar, host_addr, &addr);
if (ret != 0) {
ath10k_warn(ar, "failed to get memcpy hi address for firmware address %d: %d\n",
src, ret);
return ret;
}
ret = ath10k_pci_diag_read_mem(ar, addr, dest, len);
if (ret != 0) {
ath10k_warn(ar, "failed to memcpy firmware memory from %d (%d B): %d\n",
addr, len, ret);
return ret;
}
return 0;
}
#define ath10k_pci_diag_read_hi(ar, dest, src, len) \
__ath10k_pci_diag_read_hi(ar, dest, HI_ITEM(src), len)
int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address,
const void *data, int nbytes)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret = 0;
u32 *buf;
unsigned int completed_nbytes, alloc_nbytes, remaining_bytes;
struct ath10k_ce_pipe *ce_diag;
void *data_buf;
dma_addr_t ce_data_base = 0;
int i;
mutex_lock(&ar_pci->ce_diag_mutex);
ce_diag = ar_pci->ce_diag;
/*
* Allocate a temporary bounce buffer to hold caller's data
* to be DMA'ed to Target. This guarantees
* 1) 4-byte alignment
* 2) Buffer in DMA-able space
*/
alloc_nbytes = min_t(unsigned int, nbytes, DIAG_TRANSFER_LIMIT);
data_buf = dma_alloc_coherent(ar->dev, alloc_nbytes, &ce_data_base,
GFP_ATOMIC);
if (!data_buf) {
ret = -ENOMEM;
goto done;
}
/*
* The address supplied by the caller is in the
* Target CPU virtual address space.
*
* In order to use this address with the diagnostic CE,
* convert it from
* Target CPU virtual address space
* to
* CE address space
*/
address = ath10k_pci_targ_cpu_to_ce_addr(ar, address);
remaining_bytes = nbytes;
while (remaining_bytes) {
/* FIXME: check cast */
nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT);
/* Copy caller's data to allocated DMA buf */
memcpy(data_buf, data, nbytes);
/* Set up to receive directly into Target(!) address */
ret = ath10k_ce_rx_post_buf(ce_diag, &address, address);
if (ret != 0)
goto done;
/*
* Request CE to send caller-supplied data that
* was copied to bounce buffer to Target(!) address.
*/
ret = ath10k_ce_send(ce_diag, NULL, ce_data_base, nbytes, 0, 0);
if (ret != 0)
goto done;
i = 0;
while (ath10k_ce_completed_send_next(ce_diag, NULL) != 0) {
udelay(DIAG_ACCESS_CE_WAIT_US);
i += DIAG_ACCESS_CE_WAIT_US;
if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
ret = -EBUSY;
goto done;
}
}
i = 0;
while (ath10k_ce_completed_recv_next(ce_diag, (void **)&buf,
&completed_nbytes) != 0) {
udelay(DIAG_ACCESS_CE_WAIT_US);
i += DIAG_ACCESS_CE_WAIT_US;
if (i > DIAG_ACCESS_CE_TIMEOUT_US) {
ret = -EBUSY;
goto done;
}
}
if (nbytes != completed_nbytes) {
ret = -EIO;
goto done;
}
if (*buf != address) {
ret = -EIO;
goto done;
}
remaining_bytes -= nbytes;
address += nbytes;
data += nbytes;
}
done:
if (data_buf) {
dma_free_coherent(ar->dev, alloc_nbytes, data_buf,
ce_data_base);
}
if (ret != 0)
ath10k_warn(ar, "failed to write diag value at 0x%x: %d\n",
address, ret);
mutex_unlock(&ar_pci->ce_diag_mutex);
return ret;
}
static int ath10k_pci_diag_write32(struct ath10k *ar, u32 address, u32 value)
{
__le32 val = __cpu_to_le32(value);
return ath10k_pci_diag_write_mem(ar, address, &val, sizeof(val));
}
/* Called by lower (CE) layer when a send to Target completes. */
static void ath10k_pci_htc_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff_head list;
struct sk_buff *skb;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
/* no need to call tx completion for NULL pointers */
if (skb == NULL)
continue;
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list)))
ath10k_htc_tx_completion_handler(ar, skb);
}
static void ath10k_pci_process_rx_cb(struct ath10k_ce_pipe *ce_state,
void (*callback)(struct ath10k *ar,
struct sk_buff *skb))
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
struct sk_buff *skb;
struct sk_buff_head list;
void *transfer_context;
unsigned int nbytes, max_nbytes;
__skb_queue_head_init(&list);
while (ath10k_ce_completed_recv_next(ce_state, &transfer_context,
&nbytes) == 0) {
skb = transfer_context;
max_nbytes = skb->len + skb_tailroom(skb);
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
if (unlikely(max_nbytes < nbytes)) {
ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
dev_kfree_skb_any(skb);
continue;
}
skb_put(skb, nbytes);
__skb_queue_tail(&list, skb);
}
while ((skb = __skb_dequeue(&list))) {
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
ce_state->id, skb->len);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
skb->data, skb->len);
callback(ar, skb);
}
ath10k_pci_rx_post_pipe(pipe_info);
}
static void ath10k_pci_process_htt_rx_cb(struct ath10k_ce_pipe *ce_state,
void (*callback)(struct ath10k *ar,
struct sk_buff *skb))
{
struct ath10k *ar = ce_state->ar;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id];
struct ath10k_ce_pipe *ce_pipe = pipe_info->ce_hdl;
struct sk_buff *skb;
struct sk_buff_head list;
void *transfer_context;
unsigned int nbytes, max_nbytes, nentries;
int orig_len;
/* No need to acquire ce_lock for CE5, since this is the only place CE5
* is processed other than init and deinit. Before releasing CE5
* buffers, interrupts are disabled. Thus CE5 access is serialized.
*/
__skb_queue_head_init(&list);
while (ath10k_ce_completed_recv_next_nolock(ce_state, &transfer_context,
&nbytes) == 0) {
skb = transfer_context;
max_nbytes = skb->len + skb_tailroom(skb);
if (unlikely(max_nbytes < nbytes)) {
ath10k_warn(ar, "rxed more than expected (nbytes %d, max %d)",
nbytes, max_nbytes);
continue;
}
dma_sync_single_for_cpu(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
max_nbytes, DMA_FROM_DEVICE);
skb_put(skb, nbytes);
__skb_queue_tail(&list, skb);
}
nentries = skb_queue_len(&list);
while ((skb = __skb_dequeue(&list))) {
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci rx ce pipe %d len %d\n",
ce_state->id, skb->len);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci rx: ",
skb->data, skb->len);
orig_len = skb->len;
callback(ar, skb);
skb_push(skb, orig_len - skb->len);
skb_reset_tail_pointer(skb);
skb_trim(skb, 0);
/*let device gain the buffer again*/
dma_sync_single_for_device(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
}
ath10k_ce_rx_update_write_idx(ce_pipe, nentries);
}
/* Called by lower (CE) layer when data is received from the Target. */
static void ath10k_pci_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
static void ath10k_pci_htt_htc_rx_cb(struct ath10k_ce_pipe *ce_state)
{
/* CE4 polling needs to be done whenever CE pipe which transports
* HTT Rx (target->host) is processed.
*/
ath10k_ce_per_engine_service(ce_state->ar, 4);
ath10k_pci_process_rx_cb(ce_state, ath10k_htc_rx_completion_handler);
}
/* Called by lower (CE) layer when data is received from the Target.
* Only 10.4 firmware uses separate CE to transfer pktlog data.
*/
static void ath10k_pci_pktlog_rx_cb(struct ath10k_ce_pipe *ce_state)
{
ath10k_pci_process_rx_cb(ce_state,
ath10k_htt_rx_pktlog_completion_handler);
}
/* Called by lower (CE) layer when a send to HTT Target completes. */
static void ath10k_pci_htt_tx_cb(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct sk_buff *skb;
while (ath10k_ce_completed_send_next(ce_state, (void **)&skb) == 0) {
/* no need to call tx completion for NULL pointers */
if (!skb)
continue;
dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr,
skb->len, DMA_TO_DEVICE);
ath10k_htt_hif_tx_complete(ar, skb);
}
}
static void ath10k_pci_htt_rx_deliver(struct ath10k *ar, struct sk_buff *skb)
{
skb_pull(skb, sizeof(struct ath10k_htc_hdr));
ath10k_htt_t2h_msg_handler(ar, skb);
}
/* Called by lower (CE) layer when HTT data is received from the Target. */
static void ath10k_pci_htt_rx_cb(struct ath10k_ce_pipe *ce_state)
{
/* CE4 polling needs to be done whenever CE pipe which transports
* HTT Rx (target->host) is processed.
*/
ath10k_ce_per_engine_service(ce_state->ar, 4);
ath10k_pci_process_htt_rx_cb(ce_state, ath10k_pci_htt_rx_deliver);
}
int ath10k_pci_hif_tx_sg(struct ath10k *ar, u8 pipe_id,
struct ath10k_hif_sg_item *items, int n_items)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
struct ath10k_pci_pipe *pci_pipe = &ar_pci->pipe_info[pipe_id];
struct ath10k_ce_pipe *ce_pipe = pci_pipe->ce_hdl;
struct ath10k_ce_ring *src_ring = ce_pipe->src_ring;
unsigned int nentries_mask;
unsigned int sw_index;
unsigned int write_index;
int err, i = 0;
spin_lock_bh(&ce->ce_lock);
nentries_mask = src_ring->nentries_mask;
sw_index = src_ring->sw_index;
write_index = src_ring->write_index;
if (unlikely(CE_RING_DELTA(nentries_mask,
write_index, sw_index - 1) < n_items)) {
err = -ENOBUFS;
goto err;
}
for (i = 0; i < n_items - 1; i++) {
ath10k_dbg(ar, ATH10K_DBG_PCI,
"pci tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
items[i].vaddr, items[i].len);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
CE_SEND_FLAG_GATHER);
if (err)
goto err;
}
/* `i` is equal to `n_items -1` after for() */
ath10k_dbg(ar, ATH10K_DBG_PCI,
"pci tx item %d paddr %pad len %d n_items %d\n",
i, &items[i].paddr, items[i].len, n_items);
ath10k_dbg_dump(ar, ATH10K_DBG_PCI_DUMP, NULL, "pci tx data: ",
items[i].vaddr, items[i].len);
err = ath10k_ce_send_nolock(ce_pipe,
items[i].transfer_context,
items[i].paddr,
items[i].len,
items[i].transfer_id,
0);
if (err)
goto err;
spin_unlock_bh(&ce->ce_lock);
return 0;
err:
for (; i > 0; i--)
__ath10k_ce_send_revert(ce_pipe);
spin_unlock_bh(&ce->ce_lock);
return err;
}
int ath10k_pci_hif_diag_read(struct ath10k *ar, u32 address, void *buf,
size_t buf_len)
{
return ath10k_pci_diag_read_mem(ar, address, buf, buf_len);
}
u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get free queue number\n");
return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl);
}
static void ath10k_pci_dump_registers(struct ath10k *ar,
struct ath10k_fw_crash_data *crash_data)
{
__le32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {};
int i, ret;
lockdep_assert_held(&ar->dump_mutex);
ret = ath10k_pci_diag_read_hi(ar, &reg_dump_values[0],
hi_failure_state,
REG_DUMP_COUNT_QCA988X * sizeof(__le32));
if (ret) {
ath10k_err(ar, "failed to read firmware dump area: %d\n", ret);
return;
}
BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4);
ath10k_err(ar, "firmware register dump:\n");
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4)
ath10k_err(ar, "[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n",
i,
__le32_to_cpu(reg_dump_values[i]),
__le32_to_cpu(reg_dump_values[i + 1]),
__le32_to_cpu(reg_dump_values[i + 2]),
__le32_to_cpu(reg_dump_values[i + 3]));
if (!crash_data)
return;
for (i = 0; i < REG_DUMP_COUNT_QCA988X; i++)
crash_data->registers[i] = reg_dump_values[i];
}
static int ath10k_pci_dump_memory_section(struct ath10k *ar,
const struct ath10k_mem_region *mem_region,
u8 *buf, size_t buf_len)
{
const struct ath10k_mem_section *cur_section, *next_section;
unsigned int count, section_size, skip_size;
int ret, i, j;
if (!mem_region || !buf)
return 0;
cur_section = &mem_region->section_table.sections[0];
if (mem_region->start > cur_section->start) {
ath10k_warn(ar, "incorrect memdump region 0x%x with section start address 0x%x.\n",
mem_region->start, cur_section->start);
return 0;
}
skip_size = cur_section->start - mem_region->start;
/* fill the gap between the first register section and register
* start address
*/
for (i = 0; i < skip_size; i++) {
*buf = ATH10K_MAGIC_NOT_COPIED;
buf++;
}
count = 0;
for (i = 0; cur_section != NULL; i++) {
section_size = cur_section->end - cur_section->start;
if (section_size <= 0) {
ath10k_warn(ar, "incorrect ramdump format with start address 0x%x and stop address 0x%x\n",
cur_section->start,
cur_section->end);
break;
}
if ((i + 1) == mem_region->section_table.size) {
/* last section */
next_section = NULL;
skip_size = 0;
} else {
next_section = cur_section + 1;
if (cur_section->end > next_section->start) {
ath10k_warn(ar, "next ramdump section 0x%x is smaller than current end address 0x%x\n",
next_section->start,
cur_section->end);
break;
}
skip_size = next_section->start - cur_section->end;
}
if (buf_len < (skip_size + section_size)) {
ath10k_warn(ar, "ramdump buffer is too small: %zu\n", buf_len);
break;
}
buf_len -= skip_size + section_size;
/* read section to dest memory */
ret = ath10k_pci_diag_read_mem(ar, cur_section->start,
buf, section_size);
if (ret) {
ath10k_warn(ar, "failed to read ramdump from section 0x%x: %d\n",
cur_section->start, ret);
break;
}
buf += section_size;
count += section_size;
/* fill in the gap between this section and the next */
for (j = 0; j < skip_size; j++) {
*buf = ATH10K_MAGIC_NOT_COPIED;
buf++;
}
count += skip_size;
if (!next_section)
/* this was the last section */
break;
cur_section = next_section;
}
return count;
}
static int ath10k_pci_set_ram_config(struct ath10k *ar, u32 config)
{
u32 val;
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
FW_RAM_CONFIG_ADDRESS, config);
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
FW_RAM_CONFIG_ADDRESS);
if (val != config) {
ath10k_warn(ar, "failed to set RAM config from 0x%x to 0x%x\n",
val, config);
return -EIO;
}
return 0;
}
/* Always returns the length */
static int ath10k_pci_dump_memory_sram(struct ath10k *ar,
const struct ath10k_mem_region *region,
u8 *buf)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 base_addr, i;
base_addr = ioread32(ar_pci->mem + QCA99X0_PCIE_BAR0_START_REG);
base_addr += region->start;
for (i = 0; i < region->len; i += 4) {
iowrite32(base_addr + i, ar_pci->mem + QCA99X0_CPU_MEM_ADDR_REG);
*(u32 *)(buf + i) = ioread32(ar_pci->mem + QCA99X0_CPU_MEM_DATA_REG);
}
return region->len;
}
/* if an error happened returns < 0, otherwise the length */
static int ath10k_pci_dump_memory_reg(struct ath10k *ar,
const struct ath10k_mem_region *region,
u8 *buf)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 i;
int ret;
mutex_lock(&ar->conf_mutex);
if (ar->state != ATH10K_STATE_ON) {
ath10k_warn(ar, "Skipping pci_dump_memory_reg invalid state\n");
ret = -EIO;
goto done;
}
for (i = 0; i < region->len; i += 4)
*(u32 *)(buf + i) = ioread32(ar_pci->mem + region->start + i);
ret = region->len;
done:
mutex_unlock(&ar->conf_mutex);
return ret;
}
/* if an error happened returns < 0, otherwise the length */
static int ath10k_pci_dump_memory_generic(struct ath10k *ar,
const struct ath10k_mem_region *current_region,
u8 *buf)
{
int ret;
if (current_region->section_table.size > 0)
/* Copy each section individually. */
return ath10k_pci_dump_memory_section(ar,
current_region,
buf,
current_region->len);
/* No individiual memory sections defined so we can
* copy the entire memory region.
*/
ret = ath10k_pci_diag_read_mem(ar,
current_region->start,
buf,
current_region->len);
if (ret) {
ath10k_warn(ar, "failed to copy ramdump region %s: %d\n",
current_region->name, ret);
return ret;
}
return current_region->len;
}
static void ath10k_pci_dump_memory(struct ath10k *ar,
struct ath10k_fw_crash_data *crash_data)
{
const struct ath10k_hw_mem_layout *mem_layout;
const struct ath10k_mem_region *current_region;
struct ath10k_dump_ram_data_hdr *hdr;
u32 count, shift;
size_t buf_len;
int ret, i;
u8 *buf;
lockdep_assert_held(&ar->dump_mutex);
if (!crash_data)
return;
mem_layout = ath10k_coredump_get_mem_layout(ar);
if (!mem_layout)
return;
current_region = &mem_layout->region_table.regions[0];
buf = crash_data->ramdump_buf;
buf_len = crash_data->ramdump_buf_len;
memset(buf, 0, buf_len);
for (i = 0; i < mem_layout->region_table.size; i++) {
count = 0;
if (current_region->len > buf_len) {
ath10k_warn(ar, "memory region %s size %d is larger that remaining ramdump buffer size %zu\n",
current_region->name,
current_region->len,
buf_len);
break;
}
/* To get IRAM dump, the host driver needs to switch target
* ram config from DRAM to IRAM.
*/
if (current_region->type == ATH10K_MEM_REGION_TYPE_IRAM1 ||
current_region->type == ATH10K_MEM_REGION_TYPE_IRAM2) {
shift = current_region->start >> 20;
ret = ath10k_pci_set_ram_config(ar, shift);
if (ret) {
ath10k_warn(ar, "failed to switch ram config to IRAM for section %s: %d\n",
current_region->name, ret);
break;
}
}
/* Reserve space for the header. */
hdr = (void *)buf;
buf += sizeof(*hdr);
buf_len -= sizeof(*hdr);
switch (current_region->type) {
case ATH10K_MEM_REGION_TYPE_IOSRAM:
count = ath10k_pci_dump_memory_sram(ar, current_region, buf);
break;
case ATH10K_MEM_REGION_TYPE_IOREG:
ret = ath10k_pci_dump_memory_reg(ar, current_region, buf);
if (ret < 0)
break;
count = ret;
break;
default:
ret = ath10k_pci_dump_memory_generic(ar, current_region, buf);
if (ret < 0)
break;
count = ret;
break;
}
hdr->region_type = cpu_to_le32(current_region->type);
hdr->start = cpu_to_le32(current_region->start);
hdr->length = cpu_to_le32(count);
if (count == 0)
/* Note: the header remains, just with zero length. */
break;
buf += count;
buf_len -= count;
current_region++;
}
}
static void ath10k_pci_fw_dump_work(struct work_struct *work)
{
struct ath10k_pci *ar_pci = container_of(work, struct ath10k_pci,
dump_work);
struct ath10k_fw_crash_data *crash_data;
struct ath10k *ar = ar_pci->ar;
char guid[UUID_STRING_LEN + 1];
mutex_lock(&ar->dump_mutex);
spin_lock_bh(&ar->data_lock);
ar->stats.fw_crash_counter++;
spin_unlock_bh(&ar->data_lock);
crash_data = ath10k_coredump_new(ar);
if (crash_data)
scnprintf(guid, sizeof(guid), "%pUl", &crash_data->guid);
else
scnprintf(guid, sizeof(guid), "n/a");
ath10k_err(ar, "firmware crashed! (guid %s)\n", guid);
ath10k_print_driver_info(ar);
ath10k_pci_dump_registers(ar, crash_data);
ath10k_ce_dump_registers(ar, crash_data);
ath10k_pci_dump_memory(ar, crash_data);
mutex_unlock(&ar->dump_mutex);
ath10k_core_start_recovery(ar);
}
static void ath10k_pci_fw_crashed_dump(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
queue_work(ar->workqueue, &ar_pci->dump_work);
}
void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe,
int force)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif send complete check\n");
if (!force) {
int resources;
/*
* Decide whether to actually poll for completions, or just
* wait for a later chance.
* If there seem to be plenty of resources left, then just wait
* since checking involves reading a CE register, which is a
* relatively expensive operation.
*/
resources = ath10k_pci_hif_get_free_queue_number(ar, pipe);
/*
* If at least 50% of the total resources are still available,
* don't bother checking again yet.
*/
if (resources > (ar_pci->attr[pipe].src_nentries >> 1))
return;
}
ath10k_ce_per_engine_service(ar, pipe);
}
static void ath10k_pci_rx_retry_sync(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
del_timer_sync(&ar_pci->rx_post_retry);
}
int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id,
u8 *ul_pipe, u8 *dl_pipe)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
const struct ce_service_to_pipe *entry;
bool ul_set = false, dl_set = false;
int i;
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif map service\n");
for (i = 0; i < ARRAY_SIZE(pci_target_service_to_ce_map_wlan); i++) {
entry = &ar_pci->serv_to_pipe[i];
if (__le32_to_cpu(entry->service_id) != service_id)
continue;
switch (__le32_to_cpu(entry->pipedir)) {
case PIPEDIR_NONE:
break;
case PIPEDIR_IN:
WARN_ON(dl_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
break;
case PIPEDIR_OUT:
WARN_ON(ul_set);
*ul_pipe = __le32_to_cpu(entry->pipenum);
ul_set = true;
break;
case PIPEDIR_INOUT:
WARN_ON(dl_set);
WARN_ON(ul_set);
*dl_pipe = __le32_to_cpu(entry->pipenum);
*ul_pipe = __le32_to_cpu(entry->pipenum);
dl_set = true;
ul_set = true;
break;
}
}
if (!ul_set || !dl_set)
return -ENOENT;
return 0;
}
void ath10k_pci_hif_get_default_pipe(struct ath10k *ar,
u8 *ul_pipe, u8 *dl_pipe)
{
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci hif get default pipe\n");
(void)ath10k_pci_hif_map_service_to_pipe(ar,
ATH10K_HTC_SVC_ID_RSVD_CTRL,
ul_pipe, dl_pipe);
}
void ath10k_pci_irq_msi_fw_mask(struct ath10k *ar)
{
u32 val;
switch (ar->hw_rev) {
case ATH10K_HW_QCA988X:
case ATH10K_HW_QCA9887:
case ATH10K_HW_QCA6174:
case ATH10K_HW_QCA9377:
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
CORE_CTRL_ADDRESS);
val &= ~CORE_CTRL_PCIE_REG_31_MASK;
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
CORE_CTRL_ADDRESS, val);
break;
case ATH10K_HW_QCA99X0:
case ATH10K_HW_QCA9984:
case ATH10K_HW_QCA9888:
case ATH10K_HW_QCA4019:
/* TODO: Find appropriate register configuration for QCA99X0
* to mask irq/MSI.
*/
break;
case ATH10K_HW_WCN3990:
break;
}
}
static void ath10k_pci_irq_msi_fw_unmask(struct ath10k *ar)
{
u32 val;
switch (ar->hw_rev) {
case ATH10K_HW_QCA988X:
case ATH10K_HW_QCA9887:
case ATH10K_HW_QCA6174:
case ATH10K_HW_QCA9377:
val = ath10k_pci_read32(ar, SOC_CORE_BASE_ADDRESS +
CORE_CTRL_ADDRESS);
val |= CORE_CTRL_PCIE_REG_31_MASK;
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS +
CORE_CTRL_ADDRESS, val);
break;
case ATH10K_HW_QCA99X0:
case ATH10K_HW_QCA9984:
case ATH10K_HW_QCA9888:
case ATH10K_HW_QCA4019:
/* TODO: Find appropriate register configuration for QCA99X0
* to unmask irq/MSI.
*/
break;
case ATH10K_HW_WCN3990:
break;
}
}
static void ath10k_pci_irq_disable(struct ath10k *ar)
{
ath10k_ce_disable_interrupts(ar);
ath10k_pci_disable_and_clear_legacy_irq(ar);
ath10k_pci_irq_msi_fw_mask(ar);
}
static void ath10k_pci_irq_sync(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
synchronize_irq(ar_pci->pdev->irq);
}
static void ath10k_pci_irq_enable(struct ath10k *ar)
{
ath10k_ce_enable_interrupts(ar);
ath10k_pci_enable_legacy_irq(ar);
ath10k_pci_irq_msi_fw_unmask(ar);
}
static int ath10k_pci_hif_start(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif start\n");
ath10k_core_napi_enable(ar);
ath10k_pci_irq_enable(ar);
ath10k_pci_rx_post(ar);
pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
ar_pci->link_ctl);
return 0;
}
static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
{
struct ath10k *ar;
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct sk_buff *skb;
int i;
ar = pci_pipe->hif_ce_state;
ce_pipe = pci_pipe->ce_hdl;
ce_ring = ce_pipe->dest_ring;
if (!ce_ring)
return;
if (!pci_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
dma_unmap_single(ar->dev, ATH10K_SKB_RXCB(skb)->paddr,
skb->len + skb_tailroom(skb),
DMA_FROM_DEVICE);
dev_kfree_skb_any(skb);
}
}
static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pci_pipe)
{
struct ath10k *ar;
struct ath10k_ce_pipe *ce_pipe;
struct ath10k_ce_ring *ce_ring;
struct sk_buff *skb;
int i;
ar = pci_pipe->hif_ce_state;
ce_pipe = pci_pipe->ce_hdl;
ce_ring = ce_pipe->src_ring;
if (!ce_ring)
return;
if (!pci_pipe->buf_sz)
return;
for (i = 0; i < ce_ring->nentries; i++) {
skb = ce_ring->per_transfer_context[i];
if (!skb)
continue;
ce_ring->per_transfer_context[i] = NULL;
ath10k_htc_tx_completion_handler(ar, skb);
}
}
/*
* Cleanup residual buffers for device shutdown:
* buffers that were enqueued for receive
* buffers that were to be sent
* Note: Buffers that had completed but which were
* not yet processed are on a completion queue. They
* are handled when the completion thread shuts down.
*/
static void ath10k_pci_buffer_cleanup(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int pipe_num;
for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) {
struct ath10k_pci_pipe *pipe_info;
pipe_info = &ar_pci->pipe_info[pipe_num];
ath10k_pci_rx_pipe_cleanup(pipe_info);
ath10k_pci_tx_pipe_cleanup(pipe_info);
}
}
void ath10k_pci_ce_deinit(struct ath10k *ar)
{
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_deinit_pipe(ar, i);
}
void ath10k_pci_flush(struct ath10k *ar)
{
ath10k_pci_rx_retry_sync(ar);
ath10k_pci_buffer_cleanup(ar);
}
static void ath10k_pci_hif_stop(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long flags;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif stop\n");
ath10k_pci_irq_disable(ar);
ath10k_pci_irq_sync(ar);
ath10k_core_napi_sync_disable(ar);
cancel_work_sync(&ar_pci->dump_work);
/* Most likely the device has HTT Rx ring configured. The only way to
* prevent the device from accessing (and possible corrupting) host
* memory is to reset the chip now.
*
* There's also no known way of masking MSI interrupts on the device.
* For ranged MSI the CE-related interrupts can be masked. However
* regardless how many MSI interrupts are assigned the first one
* is always used for firmware indications (crashes) and cannot be
* masked. To prevent the device from asserting the interrupt reset it
* before proceeding with cleanup.
*/
ath10k_pci_safe_chip_reset(ar);
ath10k_pci_flush(ar);
spin_lock_irqsave(&ar_pci->ps_lock, flags);
WARN_ON(ar_pci->ps_wake_refcount > 0);
spin_unlock_irqrestore(&ar_pci->ps_lock, flags);
}
int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar,
void *req, u32 req_len,
void *resp, u32 *resp_len)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG];
struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST];
struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl;
struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl;
dma_addr_t req_paddr = 0;
dma_addr_t resp_paddr = 0;
struct bmi_xfer xfer = {};
void *treq, *tresp = NULL;
int ret = 0;
might_sleep();
if (resp && !resp_len)
return -EINVAL;
if (resp && resp_len && *resp_len == 0)
return -EINVAL;
treq = kmemdup(req, req_len, GFP_KERNEL);
if (!treq)
return -ENOMEM;
req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE);
ret = dma_mapping_error(ar->dev, req_paddr);
if (ret) {
ret = -EIO;
goto err_dma;
}
if (resp && resp_len) {
tresp = kzalloc(*resp_len, GFP_KERNEL);
if (!tresp) {
ret = -ENOMEM;
goto err_req;
}
resp_paddr = dma_map_single(ar->dev, tresp, *resp_len,
DMA_FROM_DEVICE);
ret = dma_mapping_error(ar->dev, resp_paddr);
if (ret) {
ret = -EIO;
goto err_req;
}
xfer.wait_for_resp = true;
xfer.resp_len = 0;
ath10k_ce_rx_post_buf(ce_rx, &xfer, resp_paddr);
}
ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0);
if (ret)
goto err_resp;
ret = ath10k_pci_bmi_wait(ar, ce_tx, ce_rx, &xfer);
if (ret) {
dma_addr_t unused_buffer;
unsigned int unused_nbytes;
unsigned int unused_id;
ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer,
&unused_nbytes, &unused_id);
} else {
/* non-zero means we did not time out */
ret = 0;
}
err_resp:
if (resp) {
dma_addr_t unused_buffer;
ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer);
dma_unmap_single(ar->dev, resp_paddr,
*resp_len, DMA_FROM_DEVICE);
}
err_req:
dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE);
if (ret == 0 && resp_len) {
*resp_len = min(*resp_len, xfer.resp_len);
memcpy(resp, tresp, *resp_len);
}
err_dma:
kfree(treq);
kfree(tresp);
return ret;
}
static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state)
{
struct bmi_xfer *xfer;
if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer))
return;
xfer->tx_done = true;
}
static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state)
{
struct ath10k *ar = ce_state->ar;
struct bmi_xfer *xfer;
unsigned int nbytes;
if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer,
&nbytes))
return;
if (WARN_ON_ONCE(!xfer))
return;
if (!xfer->wait_for_resp) {
ath10k_warn(ar, "unexpected: BMI data received; ignoring\n");
return;
}
xfer->resp_len = nbytes;
xfer->rx_done = true;
}
static int ath10k_pci_bmi_wait(struct ath10k *ar,
struct ath10k_ce_pipe *tx_pipe,
struct ath10k_ce_pipe *rx_pipe,
struct bmi_xfer *xfer)
{
unsigned long timeout = jiffies + BMI_COMMUNICATION_TIMEOUT_HZ;
unsigned long started = jiffies;
unsigned long dur;
int ret;
while (time_before_eq(jiffies, timeout)) {
ath10k_pci_bmi_send_done(tx_pipe);
ath10k_pci_bmi_recv_data(rx_pipe);
if (xfer->tx_done && (xfer->rx_done == xfer->wait_for_resp)) {
ret = 0;
goto out;
}
schedule();
}
ret = -ETIMEDOUT;
out:
dur = jiffies - started;
if (dur > HZ)
ath10k_dbg(ar, ATH10K_DBG_BMI,
"bmi cmd took %lu jiffies hz %d ret %d\n",
dur, HZ, ret);
return ret;
}
/*
* Send an interrupt to the device to wake up the Target CPU
* so it has an opportunity to notice any changed state.
*/
static int ath10k_pci_wake_target_cpu(struct ath10k *ar)
{
u32 addr, val;
addr = SOC_CORE_BASE_ADDRESS + CORE_CTRL_ADDRESS;
val = ath10k_pci_read32(ar, addr);
val |= CORE_CTRL_CPU_INTR_MASK;
ath10k_pci_write32(ar, addr, val);
return 0;
}
static int ath10k_pci_get_num_banks(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
switch (ar_pci->pdev->device) {
case QCA988X_2_0_DEVICE_ID_UBNT:
case QCA988X_2_0_DEVICE_ID:
case QCA99X0_2_0_DEVICE_ID:
case QCA9888_2_0_DEVICE_ID:
case QCA9984_1_0_DEVICE_ID:
case QCA9887_1_0_DEVICE_ID:
return 1;
case QCA6164_2_1_DEVICE_ID:
case QCA6174_2_1_DEVICE_ID:
switch (MS(ar->bus_param.chip_id, SOC_CHIP_ID_REV)) {
case QCA6174_HW_1_0_CHIP_ID_REV:
case QCA6174_HW_1_1_CHIP_ID_REV:
case QCA6174_HW_2_1_CHIP_ID_REV:
case QCA6174_HW_2_2_CHIP_ID_REV:
return 3;
case QCA6174_HW_1_3_CHIP_ID_REV:
return 2;
case QCA6174_HW_3_0_CHIP_ID_REV:
case QCA6174_HW_3_1_CHIP_ID_REV:
case QCA6174_HW_3_2_CHIP_ID_REV:
return 9;
}
break;
case QCA9377_1_0_DEVICE_ID:
return 9;
}
ath10k_warn(ar, "unknown number of banks, assuming 1\n");
return 1;
}
static int ath10k_bus_get_num_banks(struct ath10k *ar)
{
struct ath10k_ce *ce = ath10k_ce_priv(ar);
return ce->bus_ops->get_num_banks(ar);
}
int ath10k_pci_init_config(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
u32 interconnect_targ_addr;
u32 pcie_state_targ_addr = 0;
u32 pipe_cfg_targ_addr = 0;
u32 svc_to_pipe_map = 0;
u32 pcie_config_flags = 0;
u32 ealloc_value;
u32 ealloc_targ_addr;
u32 flag2_value;
u32 flag2_targ_addr;
int ret = 0;
/* Download to Target the CE Config and the service-to-CE map */
interconnect_targ_addr =
host_interest_item_address(HI_ITEM(hi_interconnect_state));
/* Supply Target-side CE configuration */
ret = ath10k_pci_diag_read32(ar, interconnect_targ_addr,
&pcie_state_targ_addr);
if (ret != 0) {
ath10k_err(ar, "Failed to get pcie state addr: %d\n", ret);
return ret;
}
if (pcie_state_targ_addr == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid pcie state addr\n");
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
pipe_cfg_addr)),
&pipe_cfg_targ_addr);
if (ret != 0) {
ath10k_err(ar, "Failed to get pipe cfg addr: %d\n", ret);
return ret;
}
if (pipe_cfg_targ_addr == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid pipe cfg addr\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr,
ar_pci->pipe_config,
sizeof(struct ce_pipe_config) *
NUM_TARGET_CE_CONFIG_WLAN);
if (ret != 0) {
ath10k_err(ar, "Failed to write pipe cfg: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
svc_to_pipe_map)),
&svc_to_pipe_map);
if (ret != 0) {
ath10k_err(ar, "Failed to get svc/pipe map: %d\n", ret);
return ret;
}
if (svc_to_pipe_map == 0) {
ret = -EIO;
ath10k_err(ar, "Invalid svc_to_pipe map\n");
return ret;
}
ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map,
ar_pci->serv_to_pipe,
sizeof(pci_target_service_to_ce_map_wlan));
if (ret != 0) {
ath10k_err(ar, "Failed to write svc/pipe map: %d\n", ret);
return ret;
}
ret = ath10k_pci_diag_read32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
config_flags)),
&pcie_config_flags);
if (ret != 0) {
ath10k_err(ar, "Failed to get pcie config_flags: %d\n", ret);
return ret;
}
pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1;
ret = ath10k_pci_diag_write32(ar, (pcie_state_targ_addr +
offsetof(struct pcie_state,
config_flags)),
pcie_config_flags);
if (ret != 0) {
ath10k_err(ar, "Failed to write pcie config_flags: %d\n", ret);
return ret;
}
/* configure early allocation */
ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc));
ret = ath10k_pci_diag_read32(ar, ealloc_targ_addr, &ealloc_value);
if (ret != 0) {
ath10k_err(ar, "Failed to get early alloc val: %d\n", ret);
return ret;
}
/* first bank is switched to IRAM */
ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) &
HI_EARLY_ALLOC_MAGIC_MASK);
ealloc_value |= ((ath10k_bus_get_num_banks(ar) <<
HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) &
HI_EARLY_ALLOC_IRAM_BANKS_MASK);
ret = ath10k_pci_diag_write32(ar, ealloc_targ_addr, ealloc_value);
if (ret != 0) {
ath10k_err(ar, "Failed to set early alloc val: %d\n", ret);
return ret;
}
/* Tell Target to proceed with initialization */
flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2));
ret = ath10k_pci_diag_read32(ar, flag2_targ_addr, &flag2_value);
if (ret != 0) {
ath10k_err(ar, "Failed to get option val: %d\n", ret);
return ret;
}
flag2_value |= HI_OPTION_EARLY_CFG_DONE;
ret = ath10k_pci_diag_write32(ar, flag2_targ_addr, flag2_value);
if (ret != 0) {
ath10k_err(ar, "Failed to set option val: %d\n", ret);
return ret;
}
return 0;
}
static void ath10k_pci_override_ce_config(struct ath10k *ar)
{
struct ce_attr *attr;
struct ce_pipe_config *config;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
/* For QCA6174 we're overriding the Copy Engine 5 configuration,
* since it is currently used for other feature.
*/
/* Override Host's Copy Engine 5 configuration */
attr = &ar_pci->attr[5];
attr->src_sz_max = 0;
attr->dest_nentries = 0;
/* Override Target firmware's Copy Engine configuration */
config = &ar_pci->pipe_config[5];
config->pipedir = __cpu_to_le32(PIPEDIR_OUT);
config->nbytes_max = __cpu_to_le32(2048);
/* Map from service/endpoint to Copy Engine */
ar_pci->serv_to_pipe[15].pipenum = __cpu_to_le32(1);
}
int ath10k_pci_alloc_pipes(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_pci_pipe *pipe;
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int i, ret;
for (i = 0; i < CE_COUNT; i++) {
pipe = &ar_pci->pipe_info[i];
pipe->ce_hdl = &ce->ce_states[i];
pipe->pipe_num = i;
pipe->hif_ce_state = ar;
ret = ath10k_ce_alloc_pipe(ar, i, &ar_pci->attr[i]);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipe %d: %d\n",
i, ret);
return ret;
}
/* Last CE is Diagnostic Window */
if (i == CE_DIAG_PIPE) {
ar_pci->ce_diag = pipe->ce_hdl;
continue;
}
pipe->buf_sz = (size_t)(ar_pci->attr[i].src_sz_max);
}
return 0;
}
void ath10k_pci_free_pipes(struct ath10k *ar)
{
int i;
for (i = 0; i < CE_COUNT; i++)
ath10k_ce_free_pipe(ar, i);
}
int ath10k_pci_init_pipes(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int i, ret;
for (i = 0; i < CE_COUNT; i++) {
ret = ath10k_ce_init_pipe(ar, i, &ar_pci->attr[i]);
if (ret) {
ath10k_err(ar, "failed to initialize copy engine pipe %d: %d\n",
i, ret);
return ret;
}
}
return 0;
}
static bool ath10k_pci_has_fw_crashed(struct ath10k *ar)
{
return ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS) &
FW_IND_EVENT_PENDING;
}
static void ath10k_pci_fw_crashed_clear(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
val &= ~FW_IND_EVENT_PENDING;
ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, val);
}
static bool ath10k_pci_has_device_gone(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
return (val == 0xffffffff);
}
/* this function effectively clears target memory controller assert line */
static void ath10k_pci_warm_reset_si0(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_SI0_RST_MASK);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
msleep(10);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val & ~SOC_RESET_CONTROL_SI0_RST_MASK);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
msleep(10);
}
static void ath10k_pci_warm_reset_cpu(struct ath10k *ar)
{
u32 val;
ath10k_pci_write32(ar, FW_INDICATOR_ADDRESS, 0);
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_CPU_WARM_RST_MASK);
}
static void ath10k_pci_warm_reset_ce(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_soc_read32(ar, SOC_RESET_CONTROL_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val | SOC_RESET_CONTROL_CE_RST_MASK);
msleep(10);
ath10k_pci_soc_write32(ar, SOC_RESET_CONTROL_ADDRESS,
val & ~SOC_RESET_CONTROL_CE_RST_MASK);
}
static void ath10k_pci_warm_reset_clear_lf(struct ath10k *ar)
{
u32 val;
val = ath10k_pci_soc_read32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS);
ath10k_pci_soc_write32(ar, SOC_LF_TIMER_CONTROL0_ADDRESS,
val & ~SOC_LF_TIMER_CONTROL0_ENABLE_MASK);
}
static int ath10k_pci_warm_reset(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset\n");
spin_lock_bh(&ar->data_lock);
ar->stats.fw_warm_reset_counter++;
spin_unlock_bh(&ar->data_lock);
ath10k_pci_irq_disable(ar);
/* Make sure the target CPU is not doing anything dangerous, e.g. if it
* were to access copy engine while host performs copy engine reset
* then it is possible for the device to confuse pci-e controller to
* the point of bringing host system to a complete stop (i.e. hang).
*/
ath10k_pci_warm_reset_si0(ar);
ath10k_pci_warm_reset_cpu(ar);
ath10k_pci_init_pipes(ar);
ath10k_pci_wait_for_target_init(ar);
ath10k_pci_warm_reset_clear_lf(ar);
ath10k_pci_warm_reset_ce(ar);
ath10k_pci_warm_reset_cpu(ar);
ath10k_pci_init_pipes(ar);
ret = ath10k_pci_wait_for_target_init(ar);
if (ret) {
ath10k_warn(ar, "failed to wait for target init: %d\n", ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot warm reset complete\n");
return 0;
}
static int ath10k_pci_qca99x0_soft_chip_reset(struct ath10k *ar)
{
ath10k_pci_irq_disable(ar);
return ath10k_pci_qca99x0_chip_reset(ar);
}
static int ath10k_pci_safe_chip_reset(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (!ar_pci->pci_soft_reset)
return -ENOTSUPP;
return ar_pci->pci_soft_reset(ar);
}
static int ath10k_pci_qca988x_chip_reset(struct ath10k *ar)
{
int i, ret;
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot 988x chip reset\n");
/* Some hardware revisions (e.g. CUS223v2) has issues with cold reset.
* It is thus preferred to use warm reset which is safer but may not be
* able to recover the device from all possible fail scenarios.
*
* Warm reset doesn't always work on first try so attempt it a few
* times before giving up.
*/
for (i = 0; i < ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS; i++) {
ret = ath10k_pci_warm_reset(ar);
if (ret) {
ath10k_warn(ar, "failed to warm reset attempt %d of %d: %d\n",
i + 1, ATH10K_PCI_NUM_WARM_RESET_ATTEMPTS,
ret);
continue;
}
/* FIXME: Sometimes copy engine doesn't recover after warm
* reset. In most cases this needs cold reset. In some of these
* cases the device is in such a state that a cold reset may
* lock up the host.
*
* Reading any host interest register via copy engine is
* sufficient to verify if device is capable of booting
* firmware blob.
*/
ret = ath10k_pci_init_pipes(ar);
if (ret) {
ath10k_warn(ar, "failed to init copy engine: %d\n",
ret);
continue;
}
ret = ath10k_pci_diag_read32(ar, QCA988X_HOST_INTEREST_ADDRESS,
&val);
if (ret) {
ath10k_warn(ar, "failed to poke copy engine: %d\n",
ret);
continue;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot chip reset complete (warm)\n");
return 0;
}
if (ath10k_pci_reset_mode == ATH10K_PCI_RESET_WARM_ONLY) {
ath10k_warn(ar, "refusing cold reset as requested\n");
return -EPERM;
}
ret = ath10k_pci_cold_reset(ar);
if (ret) {
ath10k_warn(ar, "failed to cold reset: %d\n", ret);
return ret;
}
ret = ath10k_pci_wait_for_target_init(ar);
if (ret) {
ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca988x chip reset complete (cold)\n");
return 0;
}
static int ath10k_pci_qca6174_chip_reset(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset\n");
/* FIXME: QCA6174 requires cold + warm reset to work. */
ret = ath10k_pci_cold_reset(ar);
if (ret) {
ath10k_warn(ar, "failed to cold reset: %d\n", ret);
return ret;
}
ret = ath10k_pci_wait_for_target_init(ar);
if (ret) {
ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
ret);
return ret;
}
ret = ath10k_pci_warm_reset(ar);
if (ret) {
ath10k_warn(ar, "failed to warm reset: %d\n", ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca6174 chip reset complete (cold)\n");
return 0;
}
static int ath10k_pci_qca99x0_chip_reset(struct ath10k *ar)
{
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset\n");
ret = ath10k_pci_cold_reset(ar);
if (ret) {
ath10k_warn(ar, "failed to cold reset: %d\n", ret);
return ret;
}
ret = ath10k_pci_wait_for_target_init(ar);
if (ret) {
ath10k_warn(ar, "failed to wait for target after cold reset: %d\n",
ret);
return ret;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot qca99x0 chip reset complete (cold)\n");
return 0;
}
static int ath10k_pci_chip_reset(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
if (WARN_ON(!ar_pci->pci_hard_reset))
return -ENOTSUPP;
return ar_pci->pci_hard_reset(ar);
}
static int ath10k_pci_hif_power_up(struct ath10k *ar,
enum ath10k_firmware_mode fw_mode)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power up\n");
pcie_capability_read_word(ar_pci->pdev, PCI_EXP_LNKCTL,
&ar_pci->link_ctl);
pcie_capability_write_word(ar_pci->pdev, PCI_EXP_LNKCTL,
ar_pci->link_ctl & ~PCI_EXP_LNKCTL_ASPMC);
/*
* Bring the target up cleanly.
*
* The target may be in an undefined state with an AUX-powered Target
* and a Host in WoW mode. If the Host crashes, loses power, or is
* restarted (without unloading the driver) then the Target is left
* (aux) powered and running. On a subsequent driver load, the Target
* is in an unexpected state. We try to catch that here in order to
* reset the Target and retry the probe.
*/
ret = ath10k_pci_chip_reset(ar);
if (ret) {
if (ath10k_pci_has_fw_crashed(ar)) {
ath10k_warn(ar, "firmware crashed during chip reset\n");
ath10k_pci_fw_crashed_clear(ar);
ath10k_pci_fw_crashed_dump(ar);
}
ath10k_err(ar, "failed to reset chip: %d\n", ret);
goto err_sleep;
}
ret = ath10k_pci_init_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to initialize CE: %d\n", ret);
goto err_sleep;
}
ret = ath10k_pci_init_config(ar);
if (ret) {
ath10k_err(ar, "failed to setup init config: %d\n", ret);
goto err_ce;
}
ret = ath10k_pci_wake_target_cpu(ar);
if (ret) {
ath10k_err(ar, "could not wake up target CPU: %d\n", ret);
goto err_ce;
}
return 0;
err_ce:
ath10k_pci_ce_deinit(ar);
err_sleep:
return ret;
}
void ath10k_pci_hif_power_down(struct ath10k *ar)
{
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot hif power down\n");
/* Currently hif_power_up performs effectively a reset and hif_stop
* resets the chip as well so there's no point in resetting here.
*/
}
static int ath10k_pci_hif_suspend(struct ath10k *ar)
{
/* Nothing to do; the important stuff is in the driver suspend. */
return 0;
}
static int ath10k_pci_suspend(struct ath10k *ar)
{
/* The grace timer can still be counting down and ar->ps_awake be true.
* It is known that the device may be asleep after resuming regardless
* of the SoC powersave state before suspending. Hence make sure the
* device is asleep before proceeding.
*/
ath10k_pci_sleep_sync(ar);
return 0;
}
static int ath10k_pci_hif_resume(struct ath10k *ar)
{
/* Nothing to do; the important stuff is in the driver resume. */
return 0;
}
static int ath10k_pci_resume(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
u32 val;
int ret = 0;
ret = ath10k_pci_force_wake(ar);
if (ret) {
ath10k_err(ar, "failed to wake up target: %d\n", ret);
return ret;
}
/* Suspend/Resume resets the PCI configuration space, so we have to
* re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
* from interfering with C3 CPU state. pci_restore_state won't help
* here since it only restores the first 64 bytes pci config header.
*/
pci_read_config_dword(pdev, 0x40, &val);
if ((val & 0x0000ff00) != 0)
pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
return ret;
}
static bool ath10k_pci_validate_cal(void *data, size_t size)
{
__le16 *cal_words = data;
u16 checksum = 0;
size_t i;
if (size % 2 != 0)
return false;
for (i = 0; i < size / 2; i++)
checksum ^= le16_to_cpu(cal_words[i]);
return checksum == 0xffff;
}
static void ath10k_pci_enable_eeprom(struct ath10k *ar)
{
/* Enable SI clock */
ath10k_pci_soc_write32(ar, CLOCK_CONTROL_OFFSET, 0x0);
/* Configure GPIOs for I2C operation */
ath10k_pci_write32(ar,
GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
4 * QCA9887_1_0_I2C_SDA_GPIO_PIN,
SM(QCA9887_1_0_I2C_SDA_PIN_CONFIG,
GPIO_PIN0_CONFIG) |
SM(1, GPIO_PIN0_PAD_PULL));
ath10k_pci_write32(ar,
GPIO_BASE_ADDRESS + GPIO_PIN0_OFFSET +
4 * QCA9887_1_0_SI_CLK_GPIO_PIN,
SM(QCA9887_1_0_SI_CLK_PIN_CONFIG, GPIO_PIN0_CONFIG) |
SM(1, GPIO_PIN0_PAD_PULL));
ath10k_pci_write32(ar,
GPIO_BASE_ADDRESS +
QCA9887_1_0_GPIO_ENABLE_W1TS_LOW_ADDRESS,
1u << QCA9887_1_0_SI_CLK_GPIO_PIN);
/* In Swift ASIC - EEPROM clock will be (110MHz/512) = 214KHz */
ath10k_pci_write32(ar,
SI_BASE_ADDRESS + SI_CONFIG_OFFSET,
SM(1, SI_CONFIG_ERR_INT) |
SM(1, SI_CONFIG_BIDIR_OD_DATA) |
SM(1, SI_CONFIG_I2C) |
SM(1, SI_CONFIG_POS_SAMPLE) |
SM(1, SI_CONFIG_INACTIVE_DATA) |
SM(1, SI_CONFIG_INACTIVE_CLK) |
SM(8, SI_CONFIG_DIVIDER));
}
static int ath10k_pci_read_eeprom(struct ath10k *ar, u16 addr, u8 *out)
{
u32 reg;
int wait_limit;
/* set device select byte and for the read operation */
reg = QCA9887_EEPROM_SELECT_READ |
SM(addr, QCA9887_EEPROM_ADDR_LO) |
SM(addr >> 8, QCA9887_EEPROM_ADDR_HI);
ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_TX_DATA0_OFFSET, reg);
/* write transmit data, transfer length, and START bit */
ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET,
SM(1, SI_CS_START) | SM(1, SI_CS_RX_CNT) |
SM(4, SI_CS_TX_CNT));
/* wait max 1 sec */
wait_limit = 100000;
/* wait for SI_CS_DONE_INT */
do {
reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET);
if (MS(reg, SI_CS_DONE_INT))
break;
wait_limit--;
udelay(10);
} while (wait_limit > 0);
if (!MS(reg, SI_CS_DONE_INT)) {
ath10k_err(ar, "timeout while reading device EEPROM at %04x\n",
addr);
return -ETIMEDOUT;
}
/* clear SI_CS_DONE_INT */
ath10k_pci_write32(ar, SI_BASE_ADDRESS + SI_CS_OFFSET, reg);
if (MS(reg, SI_CS_DONE_ERR)) {
ath10k_err(ar, "failed to read device EEPROM at %04x\n", addr);
return -EIO;
}
/* extract receive data */
reg = ath10k_pci_read32(ar, SI_BASE_ADDRESS + SI_RX_DATA0_OFFSET);
*out = reg;
return 0;
}
static int ath10k_pci_hif_fetch_cal_eeprom(struct ath10k *ar, void **data,
size_t *data_len)
{
u8 *caldata = NULL;
size_t calsize, i;
int ret;
if (!QCA_REV_9887(ar))
return -EOPNOTSUPP;
calsize = ar->hw_params.cal_data_len;
caldata = kmalloc(calsize, GFP_KERNEL);
if (!caldata)
return -ENOMEM;
ath10k_pci_enable_eeprom(ar);
for (i = 0; i < calsize; i++) {
ret = ath10k_pci_read_eeprom(ar, i, &caldata[i]);
if (ret)
goto err_free;
}
if (!ath10k_pci_validate_cal(caldata, calsize))
goto err_free;
*data = caldata;
*data_len = calsize;
return 0;
err_free:
kfree(caldata);
return -EINVAL;
}
static const struct ath10k_hif_ops ath10k_pci_hif_ops = {
.tx_sg = ath10k_pci_hif_tx_sg,
.diag_read = ath10k_pci_hif_diag_read,
.diag_write = ath10k_pci_diag_write_mem,
.exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg,
.start = ath10k_pci_hif_start,
.stop = ath10k_pci_hif_stop,
.map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe,
.get_default_pipe = ath10k_pci_hif_get_default_pipe,
.send_complete_check = ath10k_pci_hif_send_complete_check,
.get_free_queue_number = ath10k_pci_hif_get_free_queue_number,
.power_up = ath10k_pci_hif_power_up,
.power_down = ath10k_pci_hif_power_down,
.read32 = ath10k_pci_read32,
.write32 = ath10k_pci_write32,
.suspend = ath10k_pci_hif_suspend,
.resume = ath10k_pci_hif_resume,
.fetch_cal_eeprom = ath10k_pci_hif_fetch_cal_eeprom,
};
/*
* Top-level interrupt handler for all PCI interrupts from a Target.
* When a block of MSI interrupts is allocated, this top-level handler
* is not used; instead, we directly call the correct sub-handler.
*/
static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg)
{
struct ath10k *ar = arg;
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
if (ath10k_pci_has_device_gone(ar))
return IRQ_NONE;
ret = ath10k_pci_force_wake(ar);
if (ret) {
ath10k_warn(ar, "failed to wake device up on irq: %d\n", ret);
return IRQ_NONE;
}
if ((ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY) &&
!ath10k_pci_irq_pending(ar))
return IRQ_NONE;
ath10k_pci_disable_and_clear_legacy_irq(ar);
ath10k_pci_irq_msi_fw_mask(ar);
napi_schedule(&ar->napi);
return IRQ_HANDLED;
}
static int ath10k_pci_napi_poll(struct napi_struct *ctx, int budget)
{
struct ath10k *ar = container_of(ctx, struct ath10k, napi);
int done = 0;
if (ath10k_pci_has_fw_crashed(ar)) {
ath10k_pci_fw_crashed_clear(ar);
ath10k_pci_fw_crashed_dump(ar);
napi_complete(ctx);
return done;
}
ath10k_ce_per_engine_service_any(ar);
done = ath10k_htt_txrx_compl_task(ar, budget);
if (done < budget) {
napi_complete_done(ctx, done);
/* In case of MSI, it is possible that interrupts are received
* while NAPI poll is inprogress. So pending interrupts that are
* received after processing all copy engine pipes by NAPI poll
* will not be handled again. This is causing failure to
* complete boot sequence in x86 platform. So before enabling
* interrupts safer to check for pending interrupts for
* immediate servicing.
*/
if (ath10k_ce_interrupt_summary(ar)) {
napi_reschedule(ctx);
goto out;
}
ath10k_pci_enable_legacy_irq(ar);
ath10k_pci_irq_msi_fw_unmask(ar);
}
out:
return done;
}
static int ath10k_pci_request_irq_msi(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request MSI irq %d: %d\n",
ar_pci->pdev->irq, ret);
return ret;
}
return 0;
}
static int ath10k_pci_request_irq_legacy(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ret = request_irq(ar_pci->pdev->irq,
ath10k_pci_interrupt_handler,
IRQF_SHARED, "ath10k_pci", ar);
if (ret) {
ath10k_warn(ar, "failed to request legacy irq %d: %d\n",
ar_pci->pdev->irq, ret);
return ret;
}
return 0;
}
static int ath10k_pci_request_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
switch (ar_pci->oper_irq_mode) {
case ATH10K_PCI_IRQ_LEGACY:
return ath10k_pci_request_irq_legacy(ar);
case ATH10K_PCI_IRQ_MSI:
return ath10k_pci_request_irq_msi(ar);
default:
return -EINVAL;
}
}
static void ath10k_pci_free_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
free_irq(ar_pci->pdev->irq, ar);
}
void ath10k_pci_init_napi(struct ath10k *ar)
{
netif_napi_add(&ar->napi_dev, &ar->napi, ath10k_pci_napi_poll);
}
static int ath10k_pci_init_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
int ret;
ath10k_pci_init_napi(ar);
if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_AUTO)
ath10k_info(ar, "limiting irq mode to: %d\n",
ath10k_pci_irq_mode);
/* Try MSI */
if (ath10k_pci_irq_mode != ATH10K_PCI_IRQ_LEGACY) {
ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_MSI;
ret = pci_enable_msi(ar_pci->pdev);
if (ret == 0)
return 0;
/* MHI failed, try legacy irq next */
}
/* Try legacy irq
*
* A potential race occurs here: The CORE_BASE write
* depends on target correctly decoding AXI address but
* host won't know when target writes BAR to CORE_CTRL.
* This write might get lost if target has NOT written BAR.
* For now, fix the race by repeating the write in below
* synchronization checking.
*/
ar_pci->oper_irq_mode = ATH10K_PCI_IRQ_LEGACY;
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL);
return 0;
}
static void ath10k_pci_deinit_irq_legacy(struct ath10k *ar)
{
ath10k_pci_write32(ar, SOC_CORE_BASE_ADDRESS + PCIE_INTR_ENABLE_ADDRESS,
0);
}
static int ath10k_pci_deinit_irq(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
switch (ar_pci->oper_irq_mode) {
case ATH10K_PCI_IRQ_LEGACY:
ath10k_pci_deinit_irq_legacy(ar);
break;
default:
pci_disable_msi(ar_pci->pdev);
break;
}
return 0;
}
int ath10k_pci_wait_for_target_init(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
unsigned long timeout;
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot waiting target to initialise\n");
timeout = jiffies + msecs_to_jiffies(ATH10K_PCI_TARGET_WAIT);
do {
val = ath10k_pci_read32(ar, FW_INDICATOR_ADDRESS);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target indicator %x\n",
val);
/* target should never return this */
if (val == 0xffffffff)
continue;
/* the device has crashed so don't bother trying anymore */
if (val & FW_IND_EVENT_PENDING)
break;
if (val & FW_IND_INITIALIZED)
break;
if (ar_pci->oper_irq_mode == ATH10K_PCI_IRQ_LEGACY)
/* Fix potential race by repeating CORE_BASE writes */
ath10k_pci_enable_legacy_irq(ar);
mdelay(10);
} while (time_before(jiffies, timeout));
ath10k_pci_disable_and_clear_legacy_irq(ar);
ath10k_pci_irq_msi_fw_mask(ar);
if (val == 0xffffffff) {
ath10k_err(ar, "failed to read device register, device is gone\n");
return -EIO;
}
if (val & FW_IND_EVENT_PENDING) {
ath10k_warn(ar, "device has crashed during init\n");
return -ECOMM;
}
if (!(val & FW_IND_INITIALIZED)) {
ath10k_err(ar, "failed to receive initialized event from target: %08x\n",
val);
return -ETIMEDOUT;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot target initialised\n");
return 0;
}
static int ath10k_pci_cold_reset(struct ath10k *ar)
{
u32 val;
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset\n");
spin_lock_bh(&ar->data_lock);
ar->stats.fw_cold_reset_counter++;
spin_unlock_bh(&ar->data_lock);
/* Put Target, including PCIe, into RESET. */
val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS);
val |= 1;
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
/* After writing into SOC_GLOBAL_RESET to put device into
* reset and pulling out of reset pcie may not be stable
* for any immediate pcie register access and cause bus error,
* add delay before any pcie access request to fix this issue.
*/
msleep(20);
/* Pull Target, including PCIe, out of RESET. */
val &= ~1;
ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val);
msleep(20);
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot cold reset complete\n");
return 0;
}
static int ath10k_pci_claim(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
int ret;
pci_set_drvdata(pdev, ar);
ret = pci_enable_device(pdev);
if (ret) {
ath10k_err(ar, "failed to enable pci device: %d\n", ret);
return ret;
}
ret = pci_request_region(pdev, BAR_NUM, "ath");
if (ret) {
ath10k_err(ar, "failed to request region BAR%d: %d\n", BAR_NUM,
ret);
goto err_device;
}
/* Target expects 32 bit DMA. Enforce it. */
ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (ret) {
ath10k_err(ar, "failed to set dma mask to 32-bit: %d\n", ret);
goto err_region;
}
pci_set_master(pdev);
/* Arrange for access to Target SoC registers. */
ar_pci->mem_len = pci_resource_len(pdev, BAR_NUM);
ar_pci->mem = pci_iomap(pdev, BAR_NUM, 0);
if (!ar_pci->mem) {
ath10k_err(ar, "failed to iomap BAR%d\n", BAR_NUM);
ret = -EIO;
goto err_master;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "boot pci_mem 0x%pK\n", ar_pci->mem);
return 0;
err_master:
pci_clear_master(pdev);
err_region:
pci_release_region(pdev, BAR_NUM);
err_device:
pci_disable_device(pdev);
return ret;
}
static void ath10k_pci_release(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct pci_dev *pdev = ar_pci->pdev;
pci_iounmap(pdev, ar_pci->mem);
pci_release_region(pdev, BAR_NUM);
pci_clear_master(pdev);
pci_disable_device(pdev);
}
static bool ath10k_pci_chip_is_supported(u32 dev_id, u32 chip_id)
{
const struct ath10k_pci_supp_chip *supp_chip;
int i;
u32 rev_id = MS(chip_id, SOC_CHIP_ID_REV);
for (i = 0; i < ARRAY_SIZE(ath10k_pci_supp_chips); i++) {
supp_chip = &ath10k_pci_supp_chips[i];
if (supp_chip->dev_id == dev_id &&
supp_chip->rev_id == rev_id)
return true;
}
return false;
}
int ath10k_pci_setup_resource(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
struct ath10k_ce *ce = ath10k_ce_priv(ar);
int ret;
spin_lock_init(&ce->ce_lock);
spin_lock_init(&ar_pci->ps_lock);
mutex_init(&ar_pci->ce_diag_mutex);
INIT_WORK(&ar_pci->dump_work, ath10k_pci_fw_dump_work);
timer_setup(&ar_pci->rx_post_retry, ath10k_pci_rx_replenish_retry, 0);
ar_pci->attr = kmemdup(pci_host_ce_config_wlan,
sizeof(pci_host_ce_config_wlan),
GFP_KERNEL);
if (!ar_pci->attr)
return -ENOMEM;
ar_pci->pipe_config = kmemdup(pci_target_ce_config_wlan,
sizeof(pci_target_ce_config_wlan),
GFP_KERNEL);
if (!ar_pci->pipe_config) {
ret = -ENOMEM;
goto err_free_attr;
}
ar_pci->serv_to_pipe = kmemdup(pci_target_service_to_ce_map_wlan,
sizeof(pci_target_service_to_ce_map_wlan),
GFP_KERNEL);
if (!ar_pci->serv_to_pipe) {
ret = -ENOMEM;
goto err_free_pipe_config;
}
if (QCA_REV_6174(ar) || QCA_REV_9377(ar))
ath10k_pci_override_ce_config(ar);
ret = ath10k_pci_alloc_pipes(ar);
if (ret) {
ath10k_err(ar, "failed to allocate copy engine pipes: %d\n",
ret);
goto err_free_serv_to_pipe;
}
return 0;
err_free_serv_to_pipe:
kfree(ar_pci->serv_to_pipe);
err_free_pipe_config:
kfree(ar_pci->pipe_config);
err_free_attr:
kfree(ar_pci->attr);
return ret;
}
void ath10k_pci_release_resource(struct ath10k *ar)
{
struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
ath10k_pci_rx_retry_sync(ar);
netif_napi_del(&ar->napi);
ath10k_pci_ce_deinit(ar);
ath10k_pci_free_pipes(ar);
kfree(ar_pci->attr);
kfree(ar_pci->pipe_config);
kfree(ar_pci->serv_to_pipe);
}
static const struct ath10k_bus_ops ath10k_pci_bus_ops = {
.read32 = ath10k_bus_pci_read32,
.write32 = ath10k_bus_pci_write32,
.get_num_banks = ath10k_pci_get_num_banks,
};
static int ath10k_pci_probe(struct pci_dev *pdev,
const struct pci_device_id *pci_dev)
{
int ret = 0;
struct ath10k *ar;
struct ath10k_pci *ar_pci;
enum ath10k_hw_rev hw_rev;
struct ath10k_bus_params bus_params = {};
bool pci_ps, is_qca988x = false;
int (*pci_soft_reset)(struct ath10k *ar);
int (*pci_hard_reset)(struct ath10k *ar);
u32 (*targ_cpu_to_ce_addr)(struct ath10k *ar, u32 addr);
switch (pci_dev->device) {
case QCA988X_2_0_DEVICE_ID_UBNT:
case QCA988X_2_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA988X;
pci_ps = false;
is_qca988x = true;
pci_soft_reset = ath10k_pci_warm_reset;
pci_hard_reset = ath10k_pci_qca988x_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
break;
case QCA9887_1_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA9887;
pci_ps = false;
pci_soft_reset = ath10k_pci_warm_reset;
pci_hard_reset = ath10k_pci_qca988x_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca988x_targ_cpu_to_ce_addr;
break;
case QCA6164_2_1_DEVICE_ID:
case QCA6174_2_1_DEVICE_ID:
hw_rev = ATH10K_HW_QCA6174;
pci_ps = true;
pci_soft_reset = ath10k_pci_warm_reset;
pci_hard_reset = ath10k_pci_qca6174_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
break;
case QCA99X0_2_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA99X0;
pci_ps = false;
pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
break;
case QCA9984_1_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA9984;
pci_ps = false;
pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
break;
case QCA9888_2_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA9888;
pci_ps = false;
pci_soft_reset = ath10k_pci_qca99x0_soft_chip_reset;
pci_hard_reset = ath10k_pci_qca99x0_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca99x0_targ_cpu_to_ce_addr;
break;
case QCA9377_1_0_DEVICE_ID:
hw_rev = ATH10K_HW_QCA9377;
pci_ps = true;
pci_soft_reset = ath10k_pci_warm_reset;
pci_hard_reset = ath10k_pci_qca6174_chip_reset;
targ_cpu_to_ce_addr = ath10k_pci_qca6174_targ_cpu_to_ce_addr;
break;
default:
WARN_ON(1);
return -ENOTSUPP;
}
ar = ath10k_core_create(sizeof(*ar_pci), &pdev->dev, ATH10K_BUS_PCI,
hw_rev, &ath10k_pci_hif_ops);
if (!ar) {
dev_err(&pdev->dev, "failed to allocate core\n");
return -ENOMEM;
}
ath10k_dbg(ar, ATH10K_DBG_BOOT, "pci probe %04x:%04x %04x:%04x\n",
pdev->vendor, pdev->device,
pdev->subsystem_vendor, pdev->subsystem_device);
ar_pci = ath10k_pci_priv(ar);
ar_pci->pdev = pdev;
ar_pci->dev = &pdev->dev;
ar_pci->ar = ar;
ar->dev_id = pci_dev->device;
ar_pci->pci_ps = pci_ps;
ar_pci->ce.bus_ops = &ath10k_pci_bus_ops;
ar_pci->pci_soft_reset = pci_soft_reset;
ar_pci->pci_hard_reset = pci_hard_reset;
ar_pci->targ_cpu_to_ce_addr = targ_cpu_to_ce_addr;
ar->ce_priv = &ar_pci->ce;
ar->id.vendor = pdev->vendor;
ar->id.device = pdev->device;
ar->id.subsystem_vendor = pdev->subsystem_vendor;
ar->id.subsystem_device = pdev->subsystem_device;
timer_setup(&ar_pci->ps_timer, ath10k_pci_ps_timer, 0);
ret = ath10k_pci_setup_resource(ar);
if (ret) {
ath10k_err(ar, "failed to setup resource: %d\n", ret);
goto err_core_destroy;
}
ret = ath10k_pci_claim(ar);
if (ret) {
ath10k_err(ar, "failed to claim device: %d\n", ret);
goto err_free_pipes;
}
ret = ath10k_pci_force_wake(ar);
if (ret) {
ath10k_warn(ar, "failed to wake up device : %d\n", ret);
goto err_sleep;
}
ath10k_pci_ce_deinit(ar);
ath10k_pci_irq_disable(ar);
ret = ath10k_pci_init_irq(ar);
if (ret) {
ath10k_err(ar, "failed to init irqs: %d\n", ret);
goto err_sleep;
}
ath10k_info(ar, "pci irq %s oper_irq_mode %d irq_mode %d reset_mode %d\n",
ath10k_pci_get_irq_method(ar), ar_pci->oper_irq_mode,
ath10k_pci_irq_mode, ath10k_pci_reset_mode);
ret = ath10k_pci_request_irq(ar);
if (ret) {
ath10k_warn(ar, "failed to request irqs: %d\n", ret);
goto err_deinit_irq;
}
bus_params.dev_type = ATH10K_DEV_TYPE_LL;
bus_params.link_can_suspend = true;
/* Read CHIP_ID before reset to catch QCA9880-AR1A v1 devices that
* fall off the bus during chip_reset. These chips have the same pci
* device id as the QCA9880 BR4A or 2R4E. So that's why the check.
*/
if (is_qca988x) {
bus_params.chip_id =
ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
if (bus_params.chip_id != 0xffffffff) {
if (!ath10k_pci_chip_is_supported(pdev->device,
bus_params.chip_id)) {
ret = -ENODEV;
goto err_unsupported;
}
}
}
ret = ath10k_pci_chip_reset(ar);
if (ret) {
ath10k_err(ar, "failed to reset chip: %d\n", ret);
goto err_free_irq;
}
bus_params.chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS);
if (bus_params.chip_id == 0xffffffff) {
ret = -ENODEV;
goto err_unsupported;
}
if (!ath10k_pci_chip_is_supported(pdev->device, bus_params.chip_id)) {
ret = -ENODEV;
goto err_unsupported;
}
ret = ath10k_core_register(ar, &bus_params);
if (ret) {
ath10k_err(ar, "failed to register driver core: %d\n", ret);
goto err_free_irq;
}
return 0;
err_unsupported:
ath10k_err(ar, "device %04x with chip_id %08x isn't supported\n",
pdev->device, bus_params.chip_id);
err_free_irq:
ath10k_pci_free_irq(ar);
err_deinit_irq:
ath10k_pci_release_resource(ar);
err_sleep:
ath10k_pci_sleep_sync(ar);
ath10k_pci_release(ar);
err_free_pipes:
ath10k_pci_free_pipes(ar);
err_core_destroy:
ath10k_core_destroy(ar);
return ret;
}
static void ath10k_pci_remove(struct pci_dev *pdev)
{
struct ath10k *ar = pci_get_drvdata(pdev);
ath10k_dbg(ar, ATH10K_DBG_PCI, "pci remove\n");
if (!ar)
return;
ath10k_core_unregister(ar);
ath10k_pci_free_irq(ar);
ath10k_pci_deinit_irq(ar);
ath10k_pci_release_resource(ar);
ath10k_pci_sleep_sync(ar);
ath10k_pci_release(ar);
ath10k_core_destroy(ar);
}
MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table);
static __maybe_unused int ath10k_pci_pm_suspend(struct device *dev)
{
struct ath10k *ar = dev_get_drvdata(dev);
int ret;
ret = ath10k_pci_suspend(ar);
if (ret)
ath10k_warn(ar, "failed to suspend hif: %d\n", ret);
return ret;
}
static __maybe_unused int ath10k_pci_pm_resume(struct device *dev)
{
struct ath10k *ar = dev_get_drvdata(dev);
int ret;
ret = ath10k_pci_resume(ar);
if (ret)
ath10k_warn(ar, "failed to resume hif: %d\n", ret);
return ret;
}
static SIMPLE_DEV_PM_OPS(ath10k_pci_pm_ops,
ath10k_pci_pm_suspend,
ath10k_pci_pm_resume);
static struct pci_driver ath10k_pci_driver = {
.name = "ath10k_pci",
.id_table = ath10k_pci_id_table,
.probe = ath10k_pci_probe,
.remove = ath10k_pci_remove,
#ifdef CONFIG_PM
.driver.pm = &ath10k_pci_pm_ops,
#endif
};
static int __init ath10k_pci_init(void)
{
int ret1, ret2;
ret1 = pci_register_driver(&ath10k_pci_driver);
if (ret1)
printk(KERN_ERR "failed to register ath10k pci driver: %d\n",
ret1);
ret2 = ath10k_ahb_init();
if (ret2)
printk(KERN_ERR "ahb init failed: %d\n", ret2);
if (ret1 && ret2)
return ret1;
/* registered to at least one bus */
return 0;
}
module_init(ath10k_pci_init);
static void __exit ath10k_pci_exit(void)
{
pci_unregister_driver(&ath10k_pci_driver);
ath10k_ahb_exit();
}
module_exit(ath10k_pci_exit);
MODULE_AUTHOR("Qualcomm Atheros");
MODULE_DESCRIPTION("Driver support for Qualcomm Atheros 802.11ac WLAN PCIe/AHB devices");
MODULE_LICENSE("Dual BSD/GPL");
/* QCA988x 2.0 firmware files */
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API2_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API3_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
/* QCA9887 1.0 firmware files */
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" QCA9887_HW_1_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA9887_HW_1_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
/* QCA6174 2.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" QCA6174_HW_2_1_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA6174_HW_2_1_FW_DIR "/" ATH10K_BOARD_API2_FILE);
/* QCA6174 3.1 firmware files */
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API4_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_FW_API6_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" QCA6174_HW_3_0_BOARD_DATA_FILE);
MODULE_FIRMWARE(QCA6174_HW_3_0_FW_DIR "/" ATH10K_BOARD_API2_FILE);
/* QCA9377 1.0 firmware files */
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API6_FILE);
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" ATH10K_FW_API5_FILE);
MODULE_FIRMWARE(QCA9377_HW_1_0_FW_DIR "/" QCA9377_HW_1_0_BOARD_DATA_FILE);