1870 lines
48 KiB
C
1870 lines
48 KiB
C
|
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
|
||
|
/*
|
||
|
* Copyright (C) 2020-2022 Intel Corporation
|
||
|
*/
|
||
|
#include <net/tso.h>
|
||
|
#include <linux/tcp.h>
|
||
|
|
||
|
#include "iwl-debug.h"
|
||
|
#include "iwl-io.h"
|
||
|
#include "fw/api/commands.h"
|
||
|
#include "fw/api/tx.h"
|
||
|
#include "fw/api/datapath.h"
|
||
|
#include "queue/tx.h"
|
||
|
#include "iwl-fh.h"
|
||
|
#include "iwl-scd.h"
|
||
|
#include <linux/dmapool.h>
|
||
|
|
||
|
/*
|
||
|
* iwl_txq_update_byte_tbl - Set up entry in Tx byte-count array
|
||
|
*/
|
||
|
static void iwl_pcie_gen2_update_byte_tbl(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq, u16 byte_cnt,
|
||
|
int num_tbs)
|
||
|
{
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
||
|
u8 filled_tfd_size, num_fetch_chunks;
|
||
|
u16 len = byte_cnt;
|
||
|
__le16 bc_ent;
|
||
|
|
||
|
if (WARN(idx >= txq->n_window, "%d >= %d\n", idx, txq->n_window))
|
||
|
return;
|
||
|
|
||
|
filled_tfd_size = offsetof(struct iwl_tfh_tfd, tbs) +
|
||
|
num_tbs * sizeof(struct iwl_tfh_tb);
|
||
|
/*
|
||
|
* filled_tfd_size contains the number of filled bytes in the TFD.
|
||
|
* Dividing it by 64 will give the number of chunks to fetch
|
||
|
* to SRAM- 0 for one chunk, 1 for 2 and so on.
|
||
|
* If, for example, TFD contains only 3 TBs then 32 bytes
|
||
|
* of the TFD are used, and only one chunk of 64 bytes should
|
||
|
* be fetched
|
||
|
*/
|
||
|
num_fetch_chunks = DIV_ROUND_UP(filled_tfd_size, 64) - 1;
|
||
|
|
||
|
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
||
|
struct iwl_gen3_bc_tbl_entry *scd_bc_tbl_gen3 = txq->bc_tbl.addr;
|
||
|
|
||
|
/* Starting from AX210, the HW expects bytes */
|
||
|
WARN_ON(trans->txqs.bc_table_dword);
|
||
|
WARN_ON(len > 0x3FFF);
|
||
|
bc_ent = cpu_to_le16(len | (num_fetch_chunks << 14));
|
||
|
scd_bc_tbl_gen3[idx].tfd_offset = bc_ent;
|
||
|
} else {
|
||
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl = txq->bc_tbl.addr;
|
||
|
|
||
|
/* Before AX210, the HW expects DW */
|
||
|
WARN_ON(!trans->txqs.bc_table_dword);
|
||
|
len = DIV_ROUND_UP(len, 4);
|
||
|
WARN_ON(len > 0xFFF);
|
||
|
bc_ent = cpu_to_le16(len | (num_fetch_chunks << 12));
|
||
|
scd_bc_tbl->tfd_offset[idx] = bc_ent;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_txq_inc_wr_ptr - Send new write index to hardware
|
||
|
*/
|
||
|
void iwl_txq_inc_wr_ptr(struct iwl_trans *trans, struct iwl_txq *txq)
|
||
|
{
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
IWL_DEBUG_TX(trans, "Q:%d WR: 0x%x\n", txq->id, txq->write_ptr);
|
||
|
|
||
|
/*
|
||
|
* if not in power-save mode, uCode will never sleep when we're
|
||
|
* trying to tx (during RFKILL, we're not trying to tx).
|
||
|
*/
|
||
|
iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (txq->id << 16));
|
||
|
}
|
||
|
|
||
|
static u8 iwl_txq_gen2_get_num_tbs(struct iwl_trans *trans,
|
||
|
struct iwl_tfh_tfd *tfd)
|
||
|
{
|
||
|
return le16_to_cpu(tfd->num_tbs) & 0x1f;
|
||
|
}
|
||
|
|
||
|
void iwl_txq_gen2_tfd_unmap(struct iwl_trans *trans, struct iwl_cmd_meta *meta,
|
||
|
struct iwl_tfh_tfd *tfd)
|
||
|
{
|
||
|
int i, num_tbs;
|
||
|
|
||
|
/* Sanity check on number of chunks */
|
||
|
num_tbs = iwl_txq_gen2_get_num_tbs(trans, tfd);
|
||
|
|
||
|
if (num_tbs > trans->txqs.tfd.max_tbs) {
|
||
|
IWL_ERR(trans, "Too many chunks: %i\n", num_tbs);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* first TB is never freed - it's the bidirectional DMA data */
|
||
|
for (i = 1; i < num_tbs; i++) {
|
||
|
if (meta->tbs & BIT(i))
|
||
|
dma_unmap_page(trans->dev,
|
||
|
le64_to_cpu(tfd->tbs[i].addr),
|
||
|
le16_to_cpu(tfd->tbs[i].tb_len),
|
||
|
DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_single(trans->dev,
|
||
|
le64_to_cpu(tfd->tbs[i].addr),
|
||
|
le16_to_cpu(tfd->tbs[i].tb_len),
|
||
|
DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
tfd->num_tbs = 0;
|
||
|
}
|
||
|
|
||
|
void iwl_txq_gen2_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq)
|
||
|
{
|
||
|
/* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and
|
||
|
* idx is bounded by n_window
|
||
|
*/
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr);
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
if (!txq->entries)
|
||
|
return;
|
||
|
|
||
|
iwl_txq_gen2_tfd_unmap(trans, &txq->entries[idx].meta,
|
||
|
iwl_txq_get_tfd(trans, txq, idx));
|
||
|
|
||
|
skb = txq->entries[idx].skb;
|
||
|
|
||
|
/* Can be called from irqs-disabled context
|
||
|
* If skb is not NULL, it means that the whole queue is being
|
||
|
* freed and that the queue is not empty - free the skb
|
||
|
*/
|
||
|
if (skb) {
|
||
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
||
|
txq->entries[idx].skb = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int iwl_txq_gen2_set_tb(struct iwl_trans *trans, struct iwl_tfh_tfd *tfd,
|
||
|
dma_addr_t addr, u16 len)
|
||
|
{
|
||
|
int idx = iwl_txq_gen2_get_num_tbs(trans, tfd);
|
||
|
struct iwl_tfh_tb *tb;
|
||
|
|
||
|
/*
|
||
|
* Only WARN here so we know about the issue, but we mess up our
|
||
|
* unmap path because not every place currently checks for errors
|
||
|
* returned from this function - it can only return an error if
|
||
|
* there's no more space, and so when we know there is enough we
|
||
|
* don't always check ...
|
||
|
*/
|
||
|
WARN(iwl_txq_crosses_4g_boundary(addr, len),
|
||
|
"possible DMA problem with iova:0x%llx, len:%d\n",
|
||
|
(unsigned long long)addr, len);
|
||
|
|
||
|
if (WARN_ON(idx >= IWL_TFH_NUM_TBS))
|
||
|
return -EINVAL;
|
||
|
tb = &tfd->tbs[idx];
|
||
|
|
||
|
/* Each TFD can point to a maximum max_tbs Tx buffers */
|
||
|
if (le16_to_cpu(tfd->num_tbs) >= trans->txqs.tfd.max_tbs) {
|
||
|
IWL_ERR(trans, "Error can not send more than %d chunks\n",
|
||
|
trans->txqs.tfd.max_tbs);
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
put_unaligned_le64(addr, &tb->addr);
|
||
|
tb->tb_len = cpu_to_le16(len);
|
||
|
|
||
|
tfd->num_tbs = cpu_to_le16(idx + 1);
|
||
|
|
||
|
return idx;
|
||
|
}
|
||
|
|
||
|
static struct page *get_workaround_page(struct iwl_trans *trans,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct page **page_ptr;
|
||
|
struct page *ret;
|
||
|
|
||
|
page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs);
|
||
|
|
||
|
ret = alloc_page(GFP_ATOMIC);
|
||
|
if (!ret)
|
||
|
return NULL;
|
||
|
|
||
|
/* set the chaining pointer to the previous page if there */
|
||
|
*(void **)((u8 *)page_address(ret) + PAGE_SIZE - sizeof(void *)) = *page_ptr;
|
||
|
*page_ptr = ret;
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Add a TB and if needed apply the FH HW bug workaround;
|
||
|
* meta != NULL indicates that it's a page mapping and we
|
||
|
* need to dma_unmap_page() and set the meta->tbs bit in
|
||
|
* this case.
|
||
|
*/
|
||
|
static int iwl_txq_gen2_set_tb_with_wa(struct iwl_trans *trans,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_tfh_tfd *tfd,
|
||
|
dma_addr_t phys, void *virt,
|
||
|
u16 len, struct iwl_cmd_meta *meta)
|
||
|
{
|
||
|
dma_addr_t oldphys = phys;
|
||
|
struct page *page;
|
||
|
int ret;
|
||
|
|
||
|
if (unlikely(dma_mapping_error(trans->dev, phys)))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
if (likely(!iwl_txq_crosses_4g_boundary(phys, len))) {
|
||
|
ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len);
|
||
|
|
||
|
if (ret < 0)
|
||
|
goto unmap;
|
||
|
|
||
|
if (meta)
|
||
|
meta->tbs |= BIT(ret);
|
||
|
|
||
|
ret = 0;
|
||
|
goto trace;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Work around a hardware bug. If (as expressed in the
|
||
|
* condition above) the TB ends on a 32-bit boundary,
|
||
|
* then the next TB may be accessed with the wrong
|
||
|
* address.
|
||
|
* To work around it, copy the data elsewhere and make
|
||
|
* a new mapping for it so the device will not fail.
|
||
|
*/
|
||
|
|
||
|
if (WARN_ON(len > PAGE_SIZE - sizeof(void *))) {
|
||
|
ret = -ENOBUFS;
|
||
|
goto unmap;
|
||
|
}
|
||
|
|
||
|
page = get_workaround_page(trans, skb);
|
||
|
if (!page) {
|
||
|
ret = -ENOMEM;
|
||
|
goto unmap;
|
||
|
}
|
||
|
|
||
|
memcpy(page_address(page), virt, len);
|
||
|
|
||
|
phys = dma_map_single(trans->dev, page_address(page), len,
|
||
|
DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, phys)))
|
||
|
return -ENOMEM;
|
||
|
ret = iwl_txq_gen2_set_tb(trans, tfd, phys, len);
|
||
|
if (ret < 0) {
|
||
|
/* unmap the new allocation as single */
|
||
|
oldphys = phys;
|
||
|
meta = NULL;
|
||
|
goto unmap;
|
||
|
}
|
||
|
IWL_WARN(trans,
|
||
|
"TB bug workaround: copied %d bytes from 0x%llx to 0x%llx\n",
|
||
|
len, (unsigned long long)oldphys, (unsigned long long)phys);
|
||
|
|
||
|
ret = 0;
|
||
|
unmap:
|
||
|
if (meta)
|
||
|
dma_unmap_page(trans->dev, oldphys, len, DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_single(trans->dev, oldphys, len, DMA_TO_DEVICE);
|
||
|
trace:
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, virt, phys, len);
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
#ifdef CONFIG_INET
|
||
|
struct iwl_tso_hdr_page *get_page_hdr(struct iwl_trans *trans, size_t len,
|
||
|
struct sk_buff *skb)
|
||
|
{
|
||
|
struct iwl_tso_hdr_page *p = this_cpu_ptr(trans->txqs.tso_hdr_page);
|
||
|
struct page **page_ptr;
|
||
|
|
||
|
page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs);
|
||
|
|
||
|
if (WARN_ON(*page_ptr))
|
||
|
return NULL;
|
||
|
|
||
|
if (!p->page)
|
||
|
goto alloc;
|
||
|
|
||
|
/*
|
||
|
* Check if there's enough room on this page
|
||
|
*
|
||
|
* Note that we put a page chaining pointer *last* in the
|
||
|
* page - we need it somewhere, and if it's there then we
|
||
|
* avoid DMA mapping the last bits of the page which may
|
||
|
* trigger the 32-bit boundary hardware bug.
|
||
|
*
|
||
|
* (see also get_workaround_page() in tx-gen2.c)
|
||
|
*/
|
||
|
if (p->pos + len < (u8 *)page_address(p->page) + PAGE_SIZE -
|
||
|
sizeof(void *))
|
||
|
goto out;
|
||
|
|
||
|
/* We don't have enough room on this page, get a new one. */
|
||
|
__free_page(p->page);
|
||
|
|
||
|
alloc:
|
||
|
p->page = alloc_page(GFP_ATOMIC);
|
||
|
if (!p->page)
|
||
|
return NULL;
|
||
|
p->pos = page_address(p->page);
|
||
|
/* set the chaining pointer to NULL */
|
||
|
*(void **)((u8 *)page_address(p->page) + PAGE_SIZE - sizeof(void *)) = NULL;
|
||
|
out:
|
||
|
*page_ptr = p->page;
|
||
|
get_page(p->page);
|
||
|
return p;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
static int iwl_txq_gen2_build_amsdu(struct iwl_trans *trans,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_tfh_tfd *tfd, int start_len,
|
||
|
u8 hdr_len,
|
||
|
struct iwl_device_tx_cmd *dev_cmd)
|
||
|
{
|
||
|
#ifdef CONFIG_INET
|
||
|
struct iwl_tx_cmd_gen2 *tx_cmd = (void *)dev_cmd->payload;
|
||
|
struct ieee80211_hdr *hdr = (void *)skb->data;
|
||
|
unsigned int snap_ip_tcp_hdrlen, ip_hdrlen, total_len, hdr_room;
|
||
|
unsigned int mss = skb_shinfo(skb)->gso_size;
|
||
|
u16 length, amsdu_pad;
|
||
|
u8 *start_hdr;
|
||
|
struct iwl_tso_hdr_page *hdr_page;
|
||
|
struct tso_t tso;
|
||
|
|
||
|
trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd),
|
||
|
&dev_cmd->hdr, start_len, 0);
|
||
|
|
||
|
ip_hdrlen = skb_transport_header(skb) - skb_network_header(skb);
|
||
|
snap_ip_tcp_hdrlen = 8 + ip_hdrlen + tcp_hdrlen(skb);
|
||
|
total_len = skb->len - snap_ip_tcp_hdrlen - hdr_len;
|
||
|
amsdu_pad = 0;
|
||
|
|
||
|
/* total amount of header we may need for this A-MSDU */
|
||
|
hdr_room = DIV_ROUND_UP(total_len, mss) *
|
||
|
(3 + snap_ip_tcp_hdrlen + sizeof(struct ethhdr));
|
||
|
|
||
|
/* Our device supports 9 segments at most, it will fit in 1 page */
|
||
|
hdr_page = get_page_hdr(trans, hdr_room, skb);
|
||
|
if (!hdr_page)
|
||
|
return -ENOMEM;
|
||
|
|
||
|
start_hdr = hdr_page->pos;
|
||
|
|
||
|
/*
|
||
|
* Pull the ieee80211 header to be able to use TSO core,
|
||
|
* we will restore it for the tx_status flow.
|
||
|
*/
|
||
|
skb_pull(skb, hdr_len);
|
||
|
|
||
|
/*
|
||
|
* Remove the length of all the headers that we don't actually
|
||
|
* have in the MPDU by themselves, but that we duplicate into
|
||
|
* all the different MSDUs inside the A-MSDU.
|
||
|
*/
|
||
|
le16_add_cpu(&tx_cmd->len, -snap_ip_tcp_hdrlen);
|
||
|
|
||
|
tso_start(skb, &tso);
|
||
|
|
||
|
while (total_len) {
|
||
|
/* this is the data left for this subframe */
|
||
|
unsigned int data_left = min_t(unsigned int, mss, total_len);
|
||
|
unsigned int tb_len;
|
||
|
dma_addr_t tb_phys;
|
||
|
u8 *subf_hdrs_start = hdr_page->pos;
|
||
|
|
||
|
total_len -= data_left;
|
||
|
|
||
|
memset(hdr_page->pos, 0, amsdu_pad);
|
||
|
hdr_page->pos += amsdu_pad;
|
||
|
amsdu_pad = (4 - (sizeof(struct ethhdr) + snap_ip_tcp_hdrlen +
|
||
|
data_left)) & 0x3;
|
||
|
ether_addr_copy(hdr_page->pos, ieee80211_get_DA(hdr));
|
||
|
hdr_page->pos += ETH_ALEN;
|
||
|
ether_addr_copy(hdr_page->pos, ieee80211_get_SA(hdr));
|
||
|
hdr_page->pos += ETH_ALEN;
|
||
|
|
||
|
length = snap_ip_tcp_hdrlen + data_left;
|
||
|
*((__be16 *)hdr_page->pos) = cpu_to_be16(length);
|
||
|
hdr_page->pos += sizeof(length);
|
||
|
|
||
|
/*
|
||
|
* This will copy the SNAP as well which will be considered
|
||
|
* as MAC header.
|
||
|
*/
|
||
|
tso_build_hdr(skb, hdr_page->pos, &tso, data_left, !total_len);
|
||
|
|
||
|
hdr_page->pos += snap_ip_tcp_hdrlen;
|
||
|
|
||
|
tb_len = hdr_page->pos - start_hdr;
|
||
|
tb_phys = dma_map_single(trans->dev, start_hdr,
|
||
|
tb_len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
||
|
goto out_err;
|
||
|
/*
|
||
|
* No need for _with_wa, this is from the TSO page and
|
||
|
* we leave some space at the end of it so can't hit
|
||
|
* the buggy scenario.
|
||
|
*/
|
||
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb_len);
|
||
|
trace_iwlwifi_dev_tx_tb(trans->dev, skb, start_hdr,
|
||
|
tb_phys, tb_len);
|
||
|
/* add this subframe's headers' length to the tx_cmd */
|
||
|
le16_add_cpu(&tx_cmd->len, hdr_page->pos - subf_hdrs_start);
|
||
|
|
||
|
/* prepare the start_hdr for the next subframe */
|
||
|
start_hdr = hdr_page->pos;
|
||
|
|
||
|
/* put the payload */
|
||
|
while (data_left) {
|
||
|
int ret;
|
||
|
|
||
|
tb_len = min_t(unsigned int, tso.size, data_left);
|
||
|
tb_phys = dma_map_single(trans->dev, tso.data,
|
||
|
tb_len, DMA_TO_DEVICE);
|
||
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd,
|
||
|
tb_phys, tso.data,
|
||
|
tb_len, NULL);
|
||
|
if (ret)
|
||
|
goto out_err;
|
||
|
|
||
|
data_left -= tb_len;
|
||
|
tso_build_data(skb, &tso, tb_len);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* re -add the WiFi header */
|
||
|
skb_push(skb, hdr_len);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
out_err:
|
||
|
#endif
|
||
|
return -EINVAL;
|
||
|
}
|
||
|
|
||
|
static struct
|
||
|
iwl_tfh_tfd *iwl_txq_gen2_build_tx_amsdu(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq,
|
||
|
struct iwl_device_tx_cmd *dev_cmd,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_cmd_meta *out_meta,
|
||
|
int hdr_len,
|
||
|
int tx_cmd_len)
|
||
|
{
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
||
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
||
|
dma_addr_t tb_phys;
|
||
|
int len;
|
||
|
void *tb1_addr;
|
||
|
|
||
|
tb_phys = iwl_txq_get_first_tb_dma(txq, idx);
|
||
|
|
||
|
/*
|
||
|
* No need for _with_wa, the first TB allocation is aligned up
|
||
|
* to a 64-byte boundary and thus can't be at the end or cross
|
||
|
* a page boundary (much less a 2^32 boundary).
|
||
|
*/
|
||
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
/*
|
||
|
* The second TB (tb1) points to the remainder of the TX command
|
||
|
* and the 802.11 header - dword aligned size
|
||
|
* (This calculation modifies the TX command, so do it before the
|
||
|
* setup of the first TB)
|
||
|
*/
|
||
|
len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len -
|
||
|
IWL_FIRST_TB_SIZE;
|
||
|
|
||
|
/* do not align A-MSDU to dword as the subframe header aligns it */
|
||
|
|
||
|
/* map the data for TB1 */
|
||
|
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
|
||
|
tb_phys = dma_map_single(trans->dev, tb1_addr, len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
||
|
goto out_err;
|
||
|
/*
|
||
|
* No need for _with_wa(), we ensure (via alignment) that the data
|
||
|
* here can never cross or end at a page boundary.
|
||
|
*/
|
||
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, len);
|
||
|
|
||
|
if (iwl_txq_gen2_build_amsdu(trans, skb, tfd, len + IWL_FIRST_TB_SIZE,
|
||
|
hdr_len, dev_cmd))
|
||
|
goto out_err;
|
||
|
|
||
|
/* building the A-MSDU might have changed this data, memcpy it now */
|
||
|
memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE);
|
||
|
return tfd;
|
||
|
|
||
|
out_err:
|
||
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int iwl_txq_gen2_tx_add_frags(struct iwl_trans *trans,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_tfh_tfd *tfd,
|
||
|
struct iwl_cmd_meta *out_meta)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
||
|
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
||
|
dma_addr_t tb_phys;
|
||
|
unsigned int fragsz = skb_frag_size(frag);
|
||
|
int ret;
|
||
|
|
||
|
if (!fragsz)
|
||
|
continue;
|
||
|
|
||
|
tb_phys = skb_frag_dma_map(trans->dev, frag, 0,
|
||
|
fragsz, DMA_TO_DEVICE);
|
||
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
||
|
skb_frag_address(frag),
|
||
|
fragsz, out_meta);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static struct
|
||
|
iwl_tfh_tfd *iwl_txq_gen2_build_tx(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq,
|
||
|
struct iwl_device_tx_cmd *dev_cmd,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_cmd_meta *out_meta,
|
||
|
int hdr_len,
|
||
|
int tx_cmd_len,
|
||
|
bool pad)
|
||
|
{
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
||
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
||
|
dma_addr_t tb_phys;
|
||
|
int len, tb1_len, tb2_len;
|
||
|
void *tb1_addr;
|
||
|
struct sk_buff *frag;
|
||
|
|
||
|
tb_phys = iwl_txq_get_first_tb_dma(txq, idx);
|
||
|
|
||
|
/* The first TB points to bi-directional DMA data */
|
||
|
memcpy(&txq->first_tb_bufs[idx], dev_cmd, IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
/*
|
||
|
* No need for _with_wa, the first TB allocation is aligned up
|
||
|
* to a 64-byte boundary and thus can't be at the end or cross
|
||
|
* a page boundary (much less a 2^32 boundary).
|
||
|
*/
|
||
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
/*
|
||
|
* The second TB (tb1) points to the remainder of the TX command
|
||
|
* and the 802.11 header - dword aligned size
|
||
|
* (This calculation modifies the TX command, so do it before the
|
||
|
* setup of the first TB)
|
||
|
*/
|
||
|
len = tx_cmd_len + sizeof(struct iwl_cmd_header) + hdr_len -
|
||
|
IWL_FIRST_TB_SIZE;
|
||
|
|
||
|
if (pad)
|
||
|
tb1_len = ALIGN(len, 4);
|
||
|
else
|
||
|
tb1_len = len;
|
||
|
|
||
|
/* map the data for TB1 */
|
||
|
tb1_addr = ((u8 *)&dev_cmd->hdr) + IWL_FIRST_TB_SIZE;
|
||
|
tb_phys = dma_map_single(trans->dev, tb1_addr, tb1_len, DMA_TO_DEVICE);
|
||
|
if (unlikely(dma_mapping_error(trans->dev, tb_phys)))
|
||
|
goto out_err;
|
||
|
/*
|
||
|
* No need for _with_wa(), we ensure (via alignment) that the data
|
||
|
* here can never cross or end at a page boundary.
|
||
|
*/
|
||
|
iwl_txq_gen2_set_tb(trans, tfd, tb_phys, tb1_len);
|
||
|
trace_iwlwifi_dev_tx(trans->dev, skb, tfd, sizeof(*tfd), &dev_cmd->hdr,
|
||
|
IWL_FIRST_TB_SIZE + tb1_len, hdr_len);
|
||
|
|
||
|
/* set up TFD's third entry to point to remainder of skb's head */
|
||
|
tb2_len = skb_headlen(skb) - hdr_len;
|
||
|
|
||
|
if (tb2_len > 0) {
|
||
|
int ret;
|
||
|
|
||
|
tb_phys = dma_map_single(trans->dev, skb->data + hdr_len,
|
||
|
tb2_len, DMA_TO_DEVICE);
|
||
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
||
|
skb->data + hdr_len, tb2_len,
|
||
|
NULL);
|
||
|
if (ret)
|
||
|
goto out_err;
|
||
|
}
|
||
|
|
||
|
if (iwl_txq_gen2_tx_add_frags(trans, skb, tfd, out_meta))
|
||
|
goto out_err;
|
||
|
|
||
|
skb_walk_frags(skb, frag) {
|
||
|
int ret;
|
||
|
|
||
|
tb_phys = dma_map_single(trans->dev, frag->data,
|
||
|
skb_headlen(frag), DMA_TO_DEVICE);
|
||
|
ret = iwl_txq_gen2_set_tb_with_wa(trans, skb, tfd, tb_phys,
|
||
|
frag->data,
|
||
|
skb_headlen(frag), NULL);
|
||
|
if (ret)
|
||
|
goto out_err;
|
||
|
if (iwl_txq_gen2_tx_add_frags(trans, frag, tfd, out_meta))
|
||
|
goto out_err;
|
||
|
}
|
||
|
|
||
|
return tfd;
|
||
|
|
||
|
out_err:
|
||
|
iwl_txq_gen2_tfd_unmap(trans, out_meta, tfd);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static
|
||
|
struct iwl_tfh_tfd *iwl_txq_gen2_build_tfd(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq,
|
||
|
struct iwl_device_tx_cmd *dev_cmd,
|
||
|
struct sk_buff *skb,
|
||
|
struct iwl_cmd_meta *out_meta)
|
||
|
{
|
||
|
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
||
|
struct iwl_tfh_tfd *tfd = iwl_txq_get_tfd(trans, txq, idx);
|
||
|
int len, hdr_len;
|
||
|
bool amsdu;
|
||
|
|
||
|
/* There must be data left over for TB1 or this code must be changed */
|
||
|
BUILD_BUG_ON(sizeof(struct iwl_tx_cmd_gen2) < IWL_FIRST_TB_SIZE);
|
||
|
|
||
|
memset(tfd, 0, sizeof(*tfd));
|
||
|
|
||
|
if (trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_AX210)
|
||
|
len = sizeof(struct iwl_tx_cmd_gen2);
|
||
|
else
|
||
|
len = sizeof(struct iwl_tx_cmd_gen3);
|
||
|
|
||
|
amsdu = ieee80211_is_data_qos(hdr->frame_control) &&
|
||
|
(*ieee80211_get_qos_ctl(hdr) &
|
||
|
IEEE80211_QOS_CTL_A_MSDU_PRESENT);
|
||
|
|
||
|
hdr_len = ieee80211_hdrlen(hdr->frame_control);
|
||
|
|
||
|
/*
|
||
|
* Only build A-MSDUs here if doing so by GSO, otherwise it may be
|
||
|
* an A-MSDU for other reasons, e.g. NAN or an A-MSDU having been
|
||
|
* built in the higher layers already.
|
||
|
*/
|
||
|
if (amsdu && skb_shinfo(skb)->gso_size)
|
||
|
return iwl_txq_gen2_build_tx_amsdu(trans, txq, dev_cmd, skb,
|
||
|
out_meta, hdr_len, len);
|
||
|
return iwl_txq_gen2_build_tx(trans, txq, dev_cmd, skb, out_meta,
|
||
|
hdr_len, len, !amsdu);
|
||
|
}
|
||
|
|
||
|
int iwl_txq_space(struct iwl_trans *trans, const struct iwl_txq *q)
|
||
|
{
|
||
|
unsigned int max;
|
||
|
unsigned int used;
|
||
|
|
||
|
/*
|
||
|
* To avoid ambiguity between empty and completely full queues, there
|
||
|
* should always be less than max_tfd_queue_size elements in the queue.
|
||
|
* If q->n_window is smaller than max_tfd_queue_size, there is no need
|
||
|
* to reserve any queue entries for this purpose.
|
||
|
*/
|
||
|
if (q->n_window < trans->trans_cfg->base_params->max_tfd_queue_size)
|
||
|
max = q->n_window;
|
||
|
else
|
||
|
max = trans->trans_cfg->base_params->max_tfd_queue_size - 1;
|
||
|
|
||
|
/*
|
||
|
* max_tfd_queue_size is a power of 2, so the following is equivalent to
|
||
|
* modulo by max_tfd_queue_size and is well defined.
|
||
|
*/
|
||
|
used = (q->write_ptr - q->read_ptr) &
|
||
|
(trans->trans_cfg->base_params->max_tfd_queue_size - 1);
|
||
|
|
||
|
if (WARN_ON(used > max))
|
||
|
return 0;
|
||
|
|
||
|
return max - used;
|
||
|
}
|
||
|
|
||
|
int iwl_txq_gen2_tx(struct iwl_trans *trans, struct sk_buff *skb,
|
||
|
struct iwl_device_tx_cmd *dev_cmd, int txq_id)
|
||
|
{
|
||
|
struct iwl_cmd_meta *out_meta;
|
||
|
struct iwl_txq *txq = trans->txqs.txq[txq_id];
|
||
|
u16 cmd_len;
|
||
|
int idx;
|
||
|
void *tfd;
|
||
|
|
||
|
if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES,
|
||
|
"queue %d out of range", txq_id))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (WARN_ONCE(!test_bit(txq_id, trans->txqs.queue_used),
|
||
|
"TX on unused queue %d\n", txq_id))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (skb_is_nonlinear(skb) &&
|
||
|
skb_shinfo(skb)->nr_frags > IWL_TRANS_MAX_FRAGS(trans) &&
|
||
|
__skb_linearize(skb))
|
||
|
return -ENOMEM;
|
||
|
|
||
|
spin_lock(&txq->lock);
|
||
|
|
||
|
if (iwl_txq_space(trans, txq) < txq->high_mark) {
|
||
|
iwl_txq_stop(trans, txq);
|
||
|
|
||
|
/* don't put the packet on the ring, if there is no room */
|
||
|
if (unlikely(iwl_txq_space(trans, txq) < 3)) {
|
||
|
struct iwl_device_tx_cmd **dev_cmd_ptr;
|
||
|
|
||
|
dev_cmd_ptr = (void *)((u8 *)skb->cb +
|
||
|
trans->txqs.dev_cmd_offs);
|
||
|
|
||
|
*dev_cmd_ptr = dev_cmd;
|
||
|
__skb_queue_tail(&txq->overflow_q, skb);
|
||
|
spin_unlock(&txq->lock);
|
||
|
return 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
idx = iwl_txq_get_cmd_index(txq, txq->write_ptr);
|
||
|
|
||
|
/* Set up driver data for this TFD */
|
||
|
txq->entries[idx].skb = skb;
|
||
|
txq->entries[idx].cmd = dev_cmd;
|
||
|
|
||
|
dev_cmd->hdr.sequence =
|
||
|
cpu_to_le16((u16)(QUEUE_TO_SEQ(txq_id) |
|
||
|
INDEX_TO_SEQ(idx)));
|
||
|
|
||
|
/* Set up first empty entry in queue's array of Tx/cmd buffers */
|
||
|
out_meta = &txq->entries[idx].meta;
|
||
|
out_meta->flags = 0;
|
||
|
|
||
|
tfd = iwl_txq_gen2_build_tfd(trans, txq, dev_cmd, skb, out_meta);
|
||
|
if (!tfd) {
|
||
|
spin_unlock(&txq->lock);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
|
||
|
struct iwl_tx_cmd_gen3 *tx_cmd_gen3 =
|
||
|
(void *)dev_cmd->payload;
|
||
|
|
||
|
cmd_len = le16_to_cpu(tx_cmd_gen3->len);
|
||
|
} else {
|
||
|
struct iwl_tx_cmd_gen2 *tx_cmd_gen2 =
|
||
|
(void *)dev_cmd->payload;
|
||
|
|
||
|
cmd_len = le16_to_cpu(tx_cmd_gen2->len);
|
||
|
}
|
||
|
|
||
|
/* Set up entry for this TFD in Tx byte-count array */
|
||
|
iwl_pcie_gen2_update_byte_tbl(trans, txq, cmd_len,
|
||
|
iwl_txq_gen2_get_num_tbs(trans, tfd));
|
||
|
|
||
|
/* start timer if queue currently empty */
|
||
|
if (txq->read_ptr == txq->write_ptr && txq->wd_timeout)
|
||
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
||
|
|
||
|
/* Tell device the write index *just past* this latest filled TFD */
|
||
|
txq->write_ptr = iwl_txq_inc_wrap(trans, txq->write_ptr);
|
||
|
iwl_txq_inc_wr_ptr(trans, txq);
|
||
|
/*
|
||
|
* At this point the frame is "transmitted" successfully
|
||
|
* and we will get a TX status notification eventually.
|
||
|
*/
|
||
|
spin_unlock(&txq->lock);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*************** HOST COMMAND QUEUE FUNCTIONS *****/
|
||
|
|
||
|
/*
|
||
|
* iwl_txq_gen2_unmap - Unmap any remaining DMA mappings and free skb's
|
||
|
*/
|
||
|
void iwl_txq_gen2_unmap(struct iwl_trans *trans, int txq_id)
|
||
|
{
|
||
|
struct iwl_txq *txq = trans->txqs.txq[txq_id];
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
while (txq->write_ptr != txq->read_ptr) {
|
||
|
IWL_DEBUG_TX_REPLY(trans, "Q %d Free %d\n",
|
||
|
txq_id, txq->read_ptr);
|
||
|
|
||
|
if (txq_id != trans->txqs.cmd.q_id) {
|
||
|
int idx = iwl_txq_get_cmd_index(txq, txq->read_ptr);
|
||
|
struct sk_buff *skb = txq->entries[idx].skb;
|
||
|
|
||
|
if (!WARN_ON_ONCE(!skb))
|
||
|
iwl_txq_free_tso_page(trans, skb);
|
||
|
}
|
||
|
iwl_txq_gen2_free_tfd(trans, txq);
|
||
|
txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr);
|
||
|
}
|
||
|
|
||
|
while (!skb_queue_empty(&txq->overflow_q)) {
|
||
|
struct sk_buff *skb = __skb_dequeue(&txq->overflow_q);
|
||
|
|
||
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
||
|
}
|
||
|
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
|
||
|
/* just in case - this queue may have been stopped */
|
||
|
iwl_wake_queue(trans, txq);
|
||
|
}
|
||
|
|
||
|
static void iwl_txq_gen2_free_memory(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq)
|
||
|
{
|
||
|
struct device *dev = trans->dev;
|
||
|
|
||
|
/* De-alloc circular buffer of TFDs */
|
||
|
if (txq->tfds) {
|
||
|
dma_free_coherent(dev,
|
||
|
trans->txqs.tfd.size * txq->n_window,
|
||
|
txq->tfds, txq->dma_addr);
|
||
|
dma_free_coherent(dev,
|
||
|
sizeof(*txq->first_tb_bufs) * txq->n_window,
|
||
|
txq->first_tb_bufs, txq->first_tb_dma);
|
||
|
}
|
||
|
|
||
|
kfree(txq->entries);
|
||
|
if (txq->bc_tbl.addr)
|
||
|
dma_pool_free(trans->txqs.bc_pool,
|
||
|
txq->bc_tbl.addr, txq->bc_tbl.dma);
|
||
|
kfree(txq);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_pcie_txq_free - Deallocate DMA queue.
|
||
|
* @txq: Transmit queue to deallocate.
|
||
|
*
|
||
|
* Empty queue by removing and destroying all BD's.
|
||
|
* Free all buffers.
|
||
|
* 0-fill, but do not free "txq" descriptor structure.
|
||
|
*/
|
||
|
static void iwl_txq_gen2_free(struct iwl_trans *trans, int txq_id)
|
||
|
{
|
||
|
struct iwl_txq *txq;
|
||
|
int i;
|
||
|
|
||
|
if (WARN_ONCE(txq_id >= IWL_MAX_TVQM_QUEUES,
|
||
|
"queue %d out of range", txq_id))
|
||
|
return;
|
||
|
|
||
|
txq = trans->txqs.txq[txq_id];
|
||
|
|
||
|
if (WARN_ON(!txq))
|
||
|
return;
|
||
|
|
||
|
iwl_txq_gen2_unmap(trans, txq_id);
|
||
|
|
||
|
/* De-alloc array of command/tx buffers */
|
||
|
if (txq_id == trans->txqs.cmd.q_id)
|
||
|
for (i = 0; i < txq->n_window; i++) {
|
||
|
kfree_sensitive(txq->entries[i].cmd);
|
||
|
kfree_sensitive(txq->entries[i].free_buf);
|
||
|
}
|
||
|
del_timer_sync(&txq->stuck_timer);
|
||
|
|
||
|
iwl_txq_gen2_free_memory(trans, txq);
|
||
|
|
||
|
trans->txqs.txq[txq_id] = NULL;
|
||
|
|
||
|
clear_bit(txq_id, trans->txqs.queue_used);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_queue_init - Initialize queue's high/low-water and read/write indexes
|
||
|
*/
|
||
|
static int iwl_queue_init(struct iwl_txq *q, int slots_num)
|
||
|
{
|
||
|
q->n_window = slots_num;
|
||
|
|
||
|
/* slots_num must be power-of-two size, otherwise
|
||
|
* iwl_txq_get_cmd_index is broken. */
|
||
|
if (WARN_ON(!is_power_of_2(slots_num)))
|
||
|
return -EINVAL;
|
||
|
|
||
|
q->low_mark = q->n_window / 4;
|
||
|
if (q->low_mark < 4)
|
||
|
q->low_mark = 4;
|
||
|
|
||
|
q->high_mark = q->n_window / 8;
|
||
|
if (q->high_mark < 2)
|
||
|
q->high_mark = 2;
|
||
|
|
||
|
q->write_ptr = 0;
|
||
|
q->read_ptr = 0;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int iwl_txq_init(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num,
|
||
|
bool cmd_queue)
|
||
|
{
|
||
|
int ret;
|
||
|
u32 tfd_queue_max_size =
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size;
|
||
|
|
||
|
txq->need_update = false;
|
||
|
|
||
|
/* max_tfd_queue_size must be power-of-two size, otherwise
|
||
|
* iwl_txq_inc_wrap and iwl_txq_dec_wrap are broken. */
|
||
|
if (WARN_ONCE(tfd_queue_max_size & (tfd_queue_max_size - 1),
|
||
|
"Max tfd queue size must be a power of two, but is %d",
|
||
|
tfd_queue_max_size))
|
||
|
return -EINVAL;
|
||
|
|
||
|
/* Initialize queue's high/low-water marks, and head/tail indexes */
|
||
|
ret = iwl_queue_init(txq, slots_num);
|
||
|
if (ret)
|
||
|
return ret;
|
||
|
|
||
|
spin_lock_init(&txq->lock);
|
||
|
|
||
|
if (cmd_queue) {
|
||
|
static struct lock_class_key iwl_txq_cmd_queue_lock_class;
|
||
|
|
||
|
lockdep_set_class(&txq->lock, &iwl_txq_cmd_queue_lock_class);
|
||
|
}
|
||
|
|
||
|
__skb_queue_head_init(&txq->overflow_q);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
void iwl_txq_free_tso_page(struct iwl_trans *trans, struct sk_buff *skb)
|
||
|
{
|
||
|
struct page **page_ptr;
|
||
|
struct page *next;
|
||
|
|
||
|
page_ptr = (void *)((u8 *)skb->cb + trans->txqs.page_offs);
|
||
|
next = *page_ptr;
|
||
|
*page_ptr = NULL;
|
||
|
|
||
|
while (next) {
|
||
|
struct page *tmp = next;
|
||
|
|
||
|
next = *(void **)((u8 *)page_address(next) + PAGE_SIZE -
|
||
|
sizeof(void *));
|
||
|
__free_page(tmp);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void iwl_txq_log_scd_error(struct iwl_trans *trans, struct iwl_txq *txq)
|
||
|
{
|
||
|
u32 txq_id = txq->id;
|
||
|
u32 status;
|
||
|
bool active;
|
||
|
u8 fifo;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id,
|
||
|
txq->read_ptr, txq->write_ptr);
|
||
|
/* TODO: access new SCD registers and dump them */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
|
||
|
fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
|
||
|
active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
|
||
|
|
||
|
IWL_ERR(trans,
|
||
|
"Queue %d is %sactive on fifo %d and stuck for %u ms. SW [%d, %d] HW [%d, %d] FH TRB=0x0%x\n",
|
||
|
txq_id, active ? "" : "in", fifo,
|
||
|
jiffies_to_msecs(txq->wd_timeout),
|
||
|
txq->read_ptr, txq->write_ptr,
|
||
|
iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
|
||
|
(trans->trans_cfg->base_params->max_tfd_queue_size - 1),
|
||
|
iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
|
||
|
(trans->trans_cfg->base_params->max_tfd_queue_size - 1),
|
||
|
iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
|
||
|
}
|
||
|
|
||
|
static void iwl_txq_stuck_timer(struct timer_list *t)
|
||
|
{
|
||
|
struct iwl_txq *txq = from_timer(txq, t, stuck_timer);
|
||
|
struct iwl_trans *trans = txq->trans;
|
||
|
|
||
|
spin_lock(&txq->lock);
|
||
|
/* check if triggered erroneously */
|
||
|
if (txq->read_ptr == txq->write_ptr) {
|
||
|
spin_unlock(&txq->lock);
|
||
|
return;
|
||
|
}
|
||
|
spin_unlock(&txq->lock);
|
||
|
|
||
|
iwl_txq_log_scd_error(trans, txq);
|
||
|
|
||
|
iwl_force_nmi(trans);
|
||
|
}
|
||
|
|
||
|
int iwl_txq_alloc(struct iwl_trans *trans, struct iwl_txq *txq, int slots_num,
|
||
|
bool cmd_queue)
|
||
|
{
|
||
|
size_t tfd_sz = trans->txqs.tfd.size *
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size;
|
||
|
size_t tb0_buf_sz;
|
||
|
int i;
|
||
|
|
||
|
if (WARN_ON(txq->entries || txq->tfds))
|
||
|
return -EINVAL;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh)
|
||
|
tfd_sz = trans->txqs.tfd.size * slots_num;
|
||
|
|
||
|
timer_setup(&txq->stuck_timer, iwl_txq_stuck_timer, 0);
|
||
|
txq->trans = trans;
|
||
|
|
||
|
txq->n_window = slots_num;
|
||
|
|
||
|
txq->entries = kcalloc(slots_num,
|
||
|
sizeof(struct iwl_pcie_txq_entry),
|
||
|
GFP_KERNEL);
|
||
|
|
||
|
if (!txq->entries)
|
||
|
goto error;
|
||
|
|
||
|
if (cmd_queue)
|
||
|
for (i = 0; i < slots_num; i++) {
|
||
|
txq->entries[i].cmd =
|
||
|
kmalloc(sizeof(struct iwl_device_cmd),
|
||
|
GFP_KERNEL);
|
||
|
if (!txq->entries[i].cmd)
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* Circular buffer of transmit frame descriptors (TFDs),
|
||
|
* shared with device */
|
||
|
txq->tfds = dma_alloc_coherent(trans->dev, tfd_sz,
|
||
|
&txq->dma_addr, GFP_KERNEL);
|
||
|
if (!txq->tfds)
|
||
|
goto error;
|
||
|
|
||
|
BUILD_BUG_ON(sizeof(*txq->first_tb_bufs) != IWL_FIRST_TB_SIZE_ALIGN);
|
||
|
|
||
|
tb0_buf_sz = sizeof(*txq->first_tb_bufs) * slots_num;
|
||
|
|
||
|
txq->first_tb_bufs = dma_alloc_coherent(trans->dev, tb0_buf_sz,
|
||
|
&txq->first_tb_dma,
|
||
|
GFP_KERNEL);
|
||
|
if (!txq->first_tb_bufs)
|
||
|
goto err_free_tfds;
|
||
|
|
||
|
return 0;
|
||
|
err_free_tfds:
|
||
|
dma_free_coherent(trans->dev, tfd_sz, txq->tfds, txq->dma_addr);
|
||
|
txq->tfds = NULL;
|
||
|
error:
|
||
|
if (txq->entries && cmd_queue)
|
||
|
for (i = 0; i < slots_num; i++)
|
||
|
kfree(txq->entries[i].cmd);
|
||
|
kfree(txq->entries);
|
||
|
txq->entries = NULL;
|
||
|
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
|
||
|
static struct iwl_txq *
|
||
|
iwl_txq_dyn_alloc_dma(struct iwl_trans *trans, int size, unsigned int timeout)
|
||
|
{
|
||
|
size_t bc_tbl_size, bc_tbl_entries;
|
||
|
struct iwl_txq *txq;
|
||
|
int ret;
|
||
|
|
||
|
WARN_ON(!trans->txqs.bc_tbl_size);
|
||
|
|
||
|
bc_tbl_size = trans->txqs.bc_tbl_size;
|
||
|
bc_tbl_entries = bc_tbl_size / sizeof(u16);
|
||
|
|
||
|
if (WARN_ON(size > bc_tbl_entries))
|
||
|
return ERR_PTR(-EINVAL);
|
||
|
|
||
|
txq = kzalloc(sizeof(*txq), GFP_KERNEL);
|
||
|
if (!txq)
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
|
||
|
txq->bc_tbl.addr = dma_pool_alloc(trans->txqs.bc_pool, GFP_KERNEL,
|
||
|
&txq->bc_tbl.dma);
|
||
|
if (!txq->bc_tbl.addr) {
|
||
|
IWL_ERR(trans, "Scheduler BC Table allocation failed\n");
|
||
|
kfree(txq);
|
||
|
return ERR_PTR(-ENOMEM);
|
||
|
}
|
||
|
|
||
|
ret = iwl_txq_alloc(trans, txq, size, false);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx queue alloc failed\n");
|
||
|
goto error;
|
||
|
}
|
||
|
ret = iwl_txq_init(trans, txq, size, false);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx queue init failed\n");
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
txq->wd_timeout = msecs_to_jiffies(timeout);
|
||
|
|
||
|
return txq;
|
||
|
|
||
|
error:
|
||
|
iwl_txq_gen2_free_memory(trans, txq);
|
||
|
return ERR_PTR(ret);
|
||
|
}
|
||
|
|
||
|
static int iwl_txq_alloc_response(struct iwl_trans *trans, struct iwl_txq *txq,
|
||
|
struct iwl_host_cmd *hcmd)
|
||
|
{
|
||
|
struct iwl_tx_queue_cfg_rsp *rsp;
|
||
|
int ret, qid;
|
||
|
u32 wr_ptr;
|
||
|
|
||
|
if (WARN_ON(iwl_rx_packet_payload_len(hcmd->resp_pkt) !=
|
||
|
sizeof(*rsp))) {
|
||
|
ret = -EINVAL;
|
||
|
goto error_free_resp;
|
||
|
}
|
||
|
|
||
|
rsp = (void *)hcmd->resp_pkt->data;
|
||
|
qid = le16_to_cpu(rsp->queue_number);
|
||
|
wr_ptr = le16_to_cpu(rsp->write_pointer);
|
||
|
|
||
|
if (qid >= ARRAY_SIZE(trans->txqs.txq)) {
|
||
|
WARN_ONCE(1, "queue index %d unsupported", qid);
|
||
|
ret = -EIO;
|
||
|
goto error_free_resp;
|
||
|
}
|
||
|
|
||
|
if (test_and_set_bit(qid, trans->txqs.queue_used)) {
|
||
|
WARN_ONCE(1, "queue %d already used", qid);
|
||
|
ret = -EIO;
|
||
|
goto error_free_resp;
|
||
|
}
|
||
|
|
||
|
if (WARN_ONCE(trans->txqs.txq[qid],
|
||
|
"queue %d already allocated\n", qid)) {
|
||
|
ret = -EIO;
|
||
|
goto error_free_resp;
|
||
|
}
|
||
|
|
||
|
txq->id = qid;
|
||
|
trans->txqs.txq[qid] = txq;
|
||
|
wr_ptr &= (trans->trans_cfg->base_params->max_tfd_queue_size - 1);
|
||
|
|
||
|
/* Place first TFD at index corresponding to start sequence number */
|
||
|
txq->read_ptr = wr_ptr;
|
||
|
txq->write_ptr = wr_ptr;
|
||
|
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "Activate queue %d\n", qid);
|
||
|
|
||
|
iwl_free_resp(hcmd);
|
||
|
return qid;
|
||
|
|
||
|
error_free_resp:
|
||
|
iwl_free_resp(hcmd);
|
||
|
iwl_txq_gen2_free_memory(trans, txq);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int iwl_txq_dyn_alloc(struct iwl_trans *trans, u32 flags, u32 sta_mask,
|
||
|
u8 tid, int size, unsigned int timeout)
|
||
|
{
|
||
|
struct iwl_txq *txq;
|
||
|
union {
|
||
|
struct iwl_tx_queue_cfg_cmd old;
|
||
|
struct iwl_scd_queue_cfg_cmd new;
|
||
|
} cmd;
|
||
|
struct iwl_host_cmd hcmd = {
|
||
|
.flags = CMD_WANT_SKB,
|
||
|
};
|
||
|
int ret;
|
||
|
|
||
|
if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_BZ &&
|
||
|
trans->hw_rev_step == SILICON_A_STEP)
|
||
|
size = 4096;
|
||
|
|
||
|
txq = iwl_txq_dyn_alloc_dma(trans, size, timeout);
|
||
|
if (IS_ERR(txq))
|
||
|
return PTR_ERR(txq);
|
||
|
|
||
|
if (trans->txqs.queue_alloc_cmd_ver == 0) {
|
||
|
memset(&cmd.old, 0, sizeof(cmd.old));
|
||
|
cmd.old.tfdq_addr = cpu_to_le64(txq->dma_addr);
|
||
|
cmd.old.byte_cnt_addr = cpu_to_le64(txq->bc_tbl.dma);
|
||
|
cmd.old.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size));
|
||
|
cmd.old.flags = cpu_to_le16(flags | TX_QUEUE_CFG_ENABLE_QUEUE);
|
||
|
cmd.old.tid = tid;
|
||
|
|
||
|
if (hweight32(sta_mask) != 1) {
|
||
|
ret = -EINVAL;
|
||
|
goto error;
|
||
|
}
|
||
|
cmd.old.sta_id = ffs(sta_mask) - 1;
|
||
|
|
||
|
hcmd.id = SCD_QUEUE_CFG;
|
||
|
hcmd.len[0] = sizeof(cmd.old);
|
||
|
hcmd.data[0] = &cmd.old;
|
||
|
} else if (trans->txqs.queue_alloc_cmd_ver == 3) {
|
||
|
memset(&cmd.new, 0, sizeof(cmd.new));
|
||
|
cmd.new.operation = cpu_to_le32(IWL_SCD_QUEUE_ADD);
|
||
|
cmd.new.u.add.tfdq_dram_addr = cpu_to_le64(txq->dma_addr);
|
||
|
cmd.new.u.add.bc_dram_addr = cpu_to_le64(txq->bc_tbl.dma);
|
||
|
cmd.new.u.add.cb_size = cpu_to_le32(TFD_QUEUE_CB_SIZE(size));
|
||
|
cmd.new.u.add.flags = cpu_to_le32(flags);
|
||
|
cmd.new.u.add.sta_mask = cpu_to_le32(sta_mask);
|
||
|
cmd.new.u.add.tid = tid;
|
||
|
|
||
|
hcmd.id = WIDE_ID(DATA_PATH_GROUP, SCD_QUEUE_CONFIG_CMD);
|
||
|
hcmd.len[0] = sizeof(cmd.new);
|
||
|
hcmd.data[0] = &cmd.new;
|
||
|
} else {
|
||
|
ret = -EOPNOTSUPP;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
ret = iwl_trans_send_cmd(trans, &hcmd);
|
||
|
if (ret)
|
||
|
goto error;
|
||
|
|
||
|
return iwl_txq_alloc_response(trans, txq, &hcmd);
|
||
|
|
||
|
error:
|
||
|
iwl_txq_gen2_free_memory(trans, txq);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
void iwl_txq_dyn_free(struct iwl_trans *trans, int queue)
|
||
|
{
|
||
|
if (WARN(queue >= IWL_MAX_TVQM_QUEUES,
|
||
|
"queue %d out of range", queue))
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* Upon HW Rfkill - we stop the device, and then stop the queues
|
||
|
* in the op_mode. Just for the sake of the simplicity of the op_mode,
|
||
|
* allow the op_mode to call txq_disable after it already called
|
||
|
* stop_device.
|
||
|
*/
|
||
|
if (!test_and_clear_bit(queue, trans->txqs.queue_used)) {
|
||
|
WARN_ONCE(test_bit(STATUS_DEVICE_ENABLED, &trans->status),
|
||
|
"queue %d not used", queue);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
iwl_txq_gen2_free(trans, queue);
|
||
|
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "Deactivate queue %d\n", queue);
|
||
|
}
|
||
|
|
||
|
void iwl_txq_gen2_tx_free(struct iwl_trans *trans)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
memset(trans->txqs.queue_used, 0, sizeof(trans->txqs.queue_used));
|
||
|
|
||
|
/* Free all TX queues */
|
||
|
for (i = 0; i < ARRAY_SIZE(trans->txqs.txq); i++) {
|
||
|
if (!trans->txqs.txq[i])
|
||
|
continue;
|
||
|
|
||
|
iwl_txq_gen2_free(trans, i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int iwl_txq_gen2_init(struct iwl_trans *trans, int txq_id, int queue_size)
|
||
|
{
|
||
|
struct iwl_txq *queue;
|
||
|
int ret;
|
||
|
|
||
|
/* alloc and init the tx queue */
|
||
|
if (!trans->txqs.txq[txq_id]) {
|
||
|
queue = kzalloc(sizeof(*queue), GFP_KERNEL);
|
||
|
if (!queue) {
|
||
|
IWL_ERR(trans, "Not enough memory for tx queue\n");
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
trans->txqs.txq[txq_id] = queue;
|
||
|
ret = iwl_txq_alloc(trans, queue, queue_size, true);
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx %d queue init failed\n", txq_id);
|
||
|
goto error;
|
||
|
}
|
||
|
} else {
|
||
|
queue = trans->txqs.txq[txq_id];
|
||
|
}
|
||
|
|
||
|
ret = iwl_txq_init(trans, queue, queue_size,
|
||
|
(txq_id == trans->txqs.cmd.q_id));
|
||
|
if (ret) {
|
||
|
IWL_ERR(trans, "Tx %d queue alloc failed\n", txq_id);
|
||
|
goto error;
|
||
|
}
|
||
|
trans->txqs.txq[txq_id]->id = txq_id;
|
||
|
set_bit(txq_id, trans->txqs.queue_used);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
error:
|
||
|
iwl_txq_gen2_tx_free(trans);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static inline dma_addr_t iwl_txq_gen1_tfd_tb_get_addr(struct iwl_trans *trans,
|
||
|
void *_tfd, u8 idx)
|
||
|
{
|
||
|
struct iwl_tfd *tfd;
|
||
|
struct iwl_tfd_tb *tb;
|
||
|
dma_addr_t addr;
|
||
|
dma_addr_t hi_len;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
struct iwl_tfh_tfd *tfh_tfd = _tfd;
|
||
|
struct iwl_tfh_tb *tfh_tb = &tfh_tfd->tbs[idx];
|
||
|
|
||
|
return (dma_addr_t)(le64_to_cpu(tfh_tb->addr));
|
||
|
}
|
||
|
|
||
|
tfd = _tfd;
|
||
|
tb = &tfd->tbs[idx];
|
||
|
addr = get_unaligned_le32(&tb->lo);
|
||
|
|
||
|
if (sizeof(dma_addr_t) <= sizeof(u32))
|
||
|
return addr;
|
||
|
|
||
|
hi_len = le16_to_cpu(tb->hi_n_len) & 0xF;
|
||
|
|
||
|
/*
|
||
|
* shift by 16 twice to avoid warnings on 32-bit
|
||
|
* (where this code never runs anyway due to the
|
||
|
* if statement above)
|
||
|
*/
|
||
|
return addr | ((hi_len << 16) << 16);
|
||
|
}
|
||
|
|
||
|
void iwl_txq_gen1_tfd_unmap(struct iwl_trans *trans,
|
||
|
struct iwl_cmd_meta *meta,
|
||
|
struct iwl_txq *txq, int index)
|
||
|
{
|
||
|
int i, num_tbs;
|
||
|
void *tfd = iwl_txq_get_tfd(trans, txq, index);
|
||
|
|
||
|
/* Sanity check on number of chunks */
|
||
|
num_tbs = iwl_txq_gen1_tfd_get_num_tbs(trans, tfd);
|
||
|
|
||
|
if (num_tbs > trans->txqs.tfd.max_tbs) {
|
||
|
IWL_ERR(trans, "Too many chunks: %i\n", num_tbs);
|
||
|
/* @todo issue fatal error, it is quite serious situation */
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/* first TB is never freed - it's the bidirectional DMA data */
|
||
|
|
||
|
for (i = 1; i < num_tbs; i++) {
|
||
|
if (meta->tbs & BIT(i))
|
||
|
dma_unmap_page(trans->dev,
|
||
|
iwl_txq_gen1_tfd_tb_get_addr(trans,
|
||
|
tfd, i),
|
||
|
iwl_txq_gen1_tfd_tb_get_len(trans,
|
||
|
tfd, i),
|
||
|
DMA_TO_DEVICE);
|
||
|
else
|
||
|
dma_unmap_single(trans->dev,
|
||
|
iwl_txq_gen1_tfd_tb_get_addr(trans,
|
||
|
tfd, i),
|
||
|
iwl_txq_gen1_tfd_tb_get_len(trans,
|
||
|
tfd, i),
|
||
|
DMA_TO_DEVICE);
|
||
|
}
|
||
|
|
||
|
meta->tbs = 0;
|
||
|
|
||
|
if (trans->trans_cfg->use_tfh) {
|
||
|
struct iwl_tfh_tfd *tfd_fh = (void *)tfd;
|
||
|
|
||
|
tfd_fh->num_tbs = 0;
|
||
|
} else {
|
||
|
struct iwl_tfd *tfd_fh = (void *)tfd;
|
||
|
|
||
|
tfd_fh->num_tbs = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define IWL_TX_CRC_SIZE 4
|
||
|
#define IWL_TX_DELIMITER_SIZE 4
|
||
|
|
||
|
/*
|
||
|
* iwl_txq_gen1_update_byte_cnt_tbl - Set up entry in Tx byte-count array
|
||
|
*/
|
||
|
void iwl_txq_gen1_update_byte_cnt_tbl(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq, u16 byte_cnt,
|
||
|
int num_tbs)
|
||
|
{
|
||
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl;
|
||
|
int write_ptr = txq->write_ptr;
|
||
|
int txq_id = txq->id;
|
||
|
u8 sec_ctl = 0;
|
||
|
u16 len = byte_cnt + IWL_TX_CRC_SIZE + IWL_TX_DELIMITER_SIZE;
|
||
|
__le16 bc_ent;
|
||
|
struct iwl_device_tx_cmd *dev_cmd = txq->entries[txq->write_ptr].cmd;
|
||
|
struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload;
|
||
|
u8 sta_id = tx_cmd->sta_id;
|
||
|
|
||
|
scd_bc_tbl = trans->txqs.scd_bc_tbls.addr;
|
||
|
|
||
|
sec_ctl = tx_cmd->sec_ctl;
|
||
|
|
||
|
switch (sec_ctl & TX_CMD_SEC_MSK) {
|
||
|
case TX_CMD_SEC_CCM:
|
||
|
len += IEEE80211_CCMP_MIC_LEN;
|
||
|
break;
|
||
|
case TX_CMD_SEC_TKIP:
|
||
|
len += IEEE80211_TKIP_ICV_LEN;
|
||
|
break;
|
||
|
case TX_CMD_SEC_WEP:
|
||
|
len += IEEE80211_WEP_IV_LEN + IEEE80211_WEP_ICV_LEN;
|
||
|
break;
|
||
|
}
|
||
|
if (trans->txqs.bc_table_dword)
|
||
|
len = DIV_ROUND_UP(len, 4);
|
||
|
|
||
|
if (WARN_ON(len > 0xFFF || write_ptr >= TFD_QUEUE_SIZE_MAX))
|
||
|
return;
|
||
|
|
||
|
bc_ent = cpu_to_le16(len | (sta_id << 12));
|
||
|
|
||
|
scd_bc_tbl[txq_id].tfd_offset[write_ptr] = bc_ent;
|
||
|
|
||
|
if (write_ptr < TFD_QUEUE_SIZE_BC_DUP)
|
||
|
scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + write_ptr] =
|
||
|
bc_ent;
|
||
|
}
|
||
|
|
||
|
void iwl_txq_gen1_inval_byte_cnt_tbl(struct iwl_trans *trans,
|
||
|
struct iwl_txq *txq)
|
||
|
{
|
||
|
struct iwlagn_scd_bc_tbl *scd_bc_tbl = trans->txqs.scd_bc_tbls.addr;
|
||
|
int txq_id = txq->id;
|
||
|
int read_ptr = txq->read_ptr;
|
||
|
u8 sta_id = 0;
|
||
|
__le16 bc_ent;
|
||
|
struct iwl_device_tx_cmd *dev_cmd = txq->entries[read_ptr].cmd;
|
||
|
struct iwl_tx_cmd *tx_cmd = (void *)dev_cmd->payload;
|
||
|
|
||
|
WARN_ON(read_ptr >= TFD_QUEUE_SIZE_MAX);
|
||
|
|
||
|
if (txq_id != trans->txqs.cmd.q_id)
|
||
|
sta_id = tx_cmd->sta_id;
|
||
|
|
||
|
bc_ent = cpu_to_le16(1 | (sta_id << 12));
|
||
|
|
||
|
scd_bc_tbl[txq_id].tfd_offset[read_ptr] = bc_ent;
|
||
|
|
||
|
if (read_ptr < TFD_QUEUE_SIZE_BC_DUP)
|
||
|
scd_bc_tbl[txq_id].tfd_offset[TFD_QUEUE_SIZE_MAX + read_ptr] =
|
||
|
bc_ent;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* iwl_txq_free_tfd - Free all chunks referenced by TFD [txq->q.read_ptr]
|
||
|
* @trans - transport private data
|
||
|
* @txq - tx queue
|
||
|
* @dma_dir - the direction of the DMA mapping
|
||
|
*
|
||
|
* Does NOT advance any TFD circular buffer read/write indexes
|
||
|
* Does NOT free the TFD itself (which is within circular buffer)
|
||
|
*/
|
||
|
void iwl_txq_free_tfd(struct iwl_trans *trans, struct iwl_txq *txq)
|
||
|
{
|
||
|
/* rd_ptr is bounded by TFD_QUEUE_SIZE_MAX and
|
||
|
* idx is bounded by n_window
|
||
|
*/
|
||
|
int rd_ptr = txq->read_ptr;
|
||
|
int idx = iwl_txq_get_cmd_index(txq, rd_ptr);
|
||
|
struct sk_buff *skb;
|
||
|
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
if (!txq->entries)
|
||
|
return;
|
||
|
|
||
|
/* We have only q->n_window txq->entries, but we use
|
||
|
* TFD_QUEUE_SIZE_MAX tfds
|
||
|
*/
|
||
|
iwl_txq_gen1_tfd_unmap(trans, &txq->entries[idx].meta, txq, rd_ptr);
|
||
|
|
||
|
/* free SKB */
|
||
|
skb = txq->entries[idx].skb;
|
||
|
|
||
|
/* Can be called from irqs-disabled context
|
||
|
* If skb is not NULL, it means that the whole queue is being
|
||
|
* freed and that the queue is not empty - free the skb
|
||
|
*/
|
||
|
if (skb) {
|
||
|
iwl_op_mode_free_skb(trans->op_mode, skb);
|
||
|
txq->entries[idx].skb = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void iwl_txq_progress(struct iwl_txq *txq)
|
||
|
{
|
||
|
lockdep_assert_held(&txq->lock);
|
||
|
|
||
|
if (!txq->wd_timeout)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* station is asleep and we send data - that must
|
||
|
* be uAPSD or PS-Poll. Don't rearm the timer.
|
||
|
*/
|
||
|
if (txq->frozen)
|
||
|
return;
|
||
|
|
||
|
/*
|
||
|
* if empty delete timer, otherwise move timer forward
|
||
|
* since we're making progress on this queue
|
||
|
*/
|
||
|
if (txq->read_ptr == txq->write_ptr)
|
||
|
del_timer(&txq->stuck_timer);
|
||
|
else
|
||
|
mod_timer(&txq->stuck_timer, jiffies + txq->wd_timeout);
|
||
|
}
|
||
|
|
||
|
/* Frees buffers until index _not_ inclusive */
|
||
|
void iwl_txq_reclaim(struct iwl_trans *trans, int txq_id, int ssn,
|
||
|
struct sk_buff_head *skbs)
|
||
|
{
|
||
|
struct iwl_txq *txq = trans->txqs.txq[txq_id];
|
||
|
int tfd_num = iwl_txq_get_cmd_index(txq, ssn);
|
||
|
int read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr);
|
||
|
int last_to_free;
|
||
|
|
||
|
/* This function is not meant to release cmd queue*/
|
||
|
if (WARN_ON(txq_id == trans->txqs.cmd.q_id))
|
||
|
return;
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
if (!test_bit(txq_id, trans->txqs.queue_used)) {
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "Q %d inactive - ignoring idx %d\n",
|
||
|
txq_id, ssn);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (read_ptr == tfd_num)
|
||
|
goto out;
|
||
|
|
||
|
IWL_DEBUG_TX_REPLY(trans, "[Q %d] %d -> %d (%d)\n",
|
||
|
txq_id, txq->read_ptr, tfd_num, ssn);
|
||
|
|
||
|
/*Since we free until index _not_ inclusive, the one before index is
|
||
|
* the last we will free. This one must be used */
|
||
|
last_to_free = iwl_txq_dec_wrap(trans, tfd_num);
|
||
|
|
||
|
if (!iwl_txq_used(txq, last_to_free)) {
|
||
|
IWL_ERR(trans,
|
||
|
"%s: Read index for txq id (%d), last_to_free %d is out of range [0-%d] %d %d.\n",
|
||
|
__func__, txq_id, last_to_free,
|
||
|
trans->trans_cfg->base_params->max_tfd_queue_size,
|
||
|
txq->write_ptr, txq->read_ptr);
|
||
|
|
||
|
iwl_op_mode_time_point(trans->op_mode,
|
||
|
IWL_FW_INI_TIME_POINT_FAKE_TX,
|
||
|
NULL);
|
||
|
goto out;
|
||
|
}
|
||
|
|
||
|
if (WARN_ON(!skb_queue_empty(skbs)))
|
||
|
goto out;
|
||
|
|
||
|
for (;
|
||
|
read_ptr != tfd_num;
|
||
|
txq->read_ptr = iwl_txq_inc_wrap(trans, txq->read_ptr),
|
||
|
read_ptr = iwl_txq_get_cmd_index(txq, txq->read_ptr)) {
|
||
|
struct sk_buff *skb = txq->entries[read_ptr].skb;
|
||
|
|
||
|
if (WARN_ON_ONCE(!skb))
|
||
|
continue;
|
||
|
|
||
|
iwl_txq_free_tso_page(trans, skb);
|
||
|
|
||
|
__skb_queue_tail(skbs, skb);
|
||
|
|
||
|
txq->entries[read_ptr].skb = NULL;
|
||
|
|
||
|
if (!trans->trans_cfg->use_tfh)
|
||
|
iwl_txq_gen1_inval_byte_cnt_tbl(trans, txq);
|
||
|
|
||
|
iwl_txq_free_tfd(trans, txq);
|
||
|
}
|
||
|
|
||
|
iwl_txq_progress(txq);
|
||
|
|
||
|
if (iwl_txq_space(trans, txq) > txq->low_mark &&
|
||
|
test_bit(txq_id, trans->txqs.queue_stopped)) {
|
||
|
struct sk_buff_head overflow_skbs;
|
||
|
|
||
|
__skb_queue_head_init(&overflow_skbs);
|
||
|
skb_queue_splice_init(&txq->overflow_q, &overflow_skbs);
|
||
|
|
||
|
/*
|
||
|
* We are going to transmit from the overflow queue.
|
||
|
* Remember this state so that wait_for_txq_empty will know we
|
||
|
* are adding more packets to the TFD queue. It cannot rely on
|
||
|
* the state of &txq->overflow_q, as we just emptied it, but
|
||
|
* haven't TXed the content yet.
|
||
|
*/
|
||
|
txq->overflow_tx = true;
|
||
|
|
||
|
/*
|
||
|
* This is tricky: we are in reclaim path which is non
|
||
|
* re-entrant, so noone will try to take the access the
|
||
|
* txq data from that path. We stopped tx, so we can't
|
||
|
* have tx as well. Bottom line, we can unlock and re-lock
|
||
|
* later.
|
||
|
*/
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
|
||
|
while (!skb_queue_empty(&overflow_skbs)) {
|
||
|
struct sk_buff *skb = __skb_dequeue(&overflow_skbs);
|
||
|
struct iwl_device_tx_cmd *dev_cmd_ptr;
|
||
|
|
||
|
dev_cmd_ptr = *(void **)((u8 *)skb->cb +
|
||
|
trans->txqs.dev_cmd_offs);
|
||
|
|
||
|
/*
|
||
|
* Note that we can very well be overflowing again.
|
||
|
* In that case, iwl_txq_space will be small again
|
||
|
* and we won't wake mac80211's queue.
|
||
|
*/
|
||
|
iwl_trans_tx(trans, skb, dev_cmd_ptr, txq_id);
|
||
|
}
|
||
|
|
||
|
if (iwl_txq_space(trans, txq) > txq->low_mark)
|
||
|
iwl_wake_queue(trans, txq);
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
txq->overflow_tx = false;
|
||
|
}
|
||
|
|
||
|
out:
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
|
||
|
/* Set wr_ptr of specific device and txq */
|
||
|
void iwl_txq_set_q_ptrs(struct iwl_trans *trans, int txq_id, int ptr)
|
||
|
{
|
||
|
struct iwl_txq *txq = trans->txqs.txq[txq_id];
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
txq->write_ptr = ptr;
|
||
|
txq->read_ptr = txq->write_ptr;
|
||
|
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
|
||
|
void iwl_trans_txq_freeze_timer(struct iwl_trans *trans, unsigned long txqs,
|
||
|
bool freeze)
|
||
|
{
|
||
|
int queue;
|
||
|
|
||
|
for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
|
||
|
struct iwl_txq *txq = trans->txqs.txq[queue];
|
||
|
unsigned long now;
|
||
|
|
||
|
spin_lock_bh(&txq->lock);
|
||
|
|
||
|
now = jiffies;
|
||
|
|
||
|
if (txq->frozen == freeze)
|
||
|
goto next_queue;
|
||
|
|
||
|
IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n",
|
||
|
freeze ? "Freezing" : "Waking", queue);
|
||
|
|
||
|
txq->frozen = freeze;
|
||
|
|
||
|
if (txq->read_ptr == txq->write_ptr)
|
||
|
goto next_queue;
|
||
|
|
||
|
if (freeze) {
|
||
|
if (unlikely(time_after(now,
|
||
|
txq->stuck_timer.expires))) {
|
||
|
/*
|
||
|
* The timer should have fired, maybe it is
|
||
|
* spinning right now on the lock.
|
||
|
*/
|
||
|
goto next_queue;
|
||
|
}
|
||
|
/* remember how long until the timer fires */
|
||
|
txq->frozen_expiry_remainder =
|
||
|
txq->stuck_timer.expires - now;
|
||
|
del_timer(&txq->stuck_timer);
|
||
|
goto next_queue;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Wake a non-empty queue -> arm timer with the
|
||
|
* remainder before it froze
|
||
|
*/
|
||
|
mod_timer(&txq->stuck_timer,
|
||
|
now + txq->frozen_expiry_remainder);
|
||
|
|
||
|
next_queue:
|
||
|
spin_unlock_bh(&txq->lock);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define HOST_COMPLETE_TIMEOUT (2 * HZ)
|
||
|
|
||
|
static int iwl_trans_txq_send_hcmd_sync(struct iwl_trans *trans,
|
||
|
struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
const char *cmd_str = iwl_get_cmd_string(trans, cmd->id);
|
||
|
struct iwl_txq *txq = trans->txqs.txq[trans->txqs.cmd.q_id];
|
||
|
int cmd_idx;
|
||
|
int ret;
|
||
|
|
||
|
IWL_DEBUG_INFO(trans, "Attempting to send sync command %s\n", cmd_str);
|
||
|
|
||
|
if (WARN(test_and_set_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status),
|
||
|
"Command %s: a command is already active!\n", cmd_str))
|
||
|
return -EIO;
|
||
|
|
||
|
IWL_DEBUG_INFO(trans, "Setting HCMD_ACTIVE for command %s\n", cmd_str);
|
||
|
|
||
|
cmd_idx = trans->ops->send_cmd(trans, cmd);
|
||
|
if (cmd_idx < 0) {
|
||
|
ret = cmd_idx;
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
IWL_ERR(trans, "Error sending %s: enqueue_hcmd failed: %d\n",
|
||
|
cmd_str, ret);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
ret = wait_event_timeout(trans->wait_command_queue,
|
||
|
!test_bit(STATUS_SYNC_HCMD_ACTIVE,
|
||
|
&trans->status),
|
||
|
HOST_COMPLETE_TIMEOUT);
|
||
|
if (!ret) {
|
||
|
IWL_ERR(trans, "Error sending %s: time out after %dms.\n",
|
||
|
cmd_str, jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
|
||
|
|
||
|
IWL_ERR(trans, "Current CMD queue read_ptr %d write_ptr %d\n",
|
||
|
txq->read_ptr, txq->write_ptr);
|
||
|
|
||
|
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
|
||
|
IWL_DEBUG_INFO(trans, "Clearing HCMD_ACTIVE for command %s\n",
|
||
|
cmd_str);
|
||
|
ret = -ETIMEDOUT;
|
||
|
|
||
|
iwl_trans_sync_nmi(trans);
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if (test_bit(STATUS_FW_ERROR, &trans->status)) {
|
||
|
if (!test_and_clear_bit(STATUS_SUPPRESS_CMD_ERROR_ONCE,
|
||
|
&trans->status)) {
|
||
|
IWL_ERR(trans, "FW error in SYNC CMD %s\n", cmd_str);
|
||
|
dump_stack();
|
||
|
}
|
||
|
ret = -EIO;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if (!(cmd->flags & CMD_SEND_IN_RFKILL) &&
|
||
|
test_bit(STATUS_RFKILL_OPMODE, &trans->status)) {
|
||
|
IWL_DEBUG_RF_KILL(trans, "RFKILL in SYNC CMD... no rsp\n");
|
||
|
ret = -ERFKILL;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
if ((cmd->flags & CMD_WANT_SKB) && !cmd->resp_pkt) {
|
||
|
IWL_ERR(trans, "Error: Response NULL in '%s'\n", cmd_str);
|
||
|
ret = -EIO;
|
||
|
goto cancel;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
cancel:
|
||
|
if (cmd->flags & CMD_WANT_SKB) {
|
||
|
/*
|
||
|
* Cancel the CMD_WANT_SKB flag for the cmd in the
|
||
|
* TX cmd queue. Otherwise in case the cmd comes
|
||
|
* in later, it will possibly set an invalid
|
||
|
* address (cmd->meta.source).
|
||
|
*/
|
||
|
txq->entries[cmd_idx].meta.flags &= ~CMD_WANT_SKB;
|
||
|
}
|
||
|
|
||
|
if (cmd->resp_pkt) {
|
||
|
iwl_free_resp(cmd);
|
||
|
cmd->resp_pkt = NULL;
|
||
|
}
|
||
|
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
int iwl_trans_txq_send_hcmd(struct iwl_trans *trans,
|
||
|
struct iwl_host_cmd *cmd)
|
||
|
{
|
||
|
/* Make sure the NIC is still alive in the bus */
|
||
|
if (test_bit(STATUS_TRANS_DEAD, &trans->status))
|
||
|
return -ENODEV;
|
||
|
|
||
|
if (!(cmd->flags & CMD_SEND_IN_RFKILL) &&
|
||
|
test_bit(STATUS_RFKILL_OPMODE, &trans->status)) {
|
||
|
IWL_DEBUG_RF_KILL(trans, "Dropping CMD 0x%x: RF KILL\n",
|
||
|
cmd->id);
|
||
|
return -ERFKILL;
|
||
|
}
|
||
|
|
||
|
if (unlikely(trans->system_pm_mode == IWL_PLAT_PM_MODE_D3 &&
|
||
|
!(cmd->flags & CMD_SEND_IN_D3))) {
|
||
|
IWL_DEBUG_WOWLAN(trans, "Dropping CMD 0x%x: D3\n", cmd->id);
|
||
|
return -EHOSTDOWN;
|
||
|
}
|
||
|
|
||
|
if (cmd->flags & CMD_ASYNC) {
|
||
|
int ret;
|
||
|
|
||
|
/* An asynchronous command can not expect an SKB to be set. */
|
||
|
if (WARN_ON(cmd->flags & CMD_WANT_SKB))
|
||
|
return -EINVAL;
|
||
|
|
||
|
ret = trans->ops->send_cmd(trans, cmd);
|
||
|
if (ret < 0) {
|
||
|
IWL_ERR(trans,
|
||
|
"Error sending %s: enqueue_hcmd failed: %d\n",
|
||
|
iwl_get_cmd_string(trans, cmd->id), ret);
|
||
|
return ret;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return iwl_trans_txq_send_hcmd_sync(trans, cmd);
|
||
|
}
|
||
|
|